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Geometric Modeling of Inclusions as Ellipsoids 
 

Peter J. Bonacuse 
U.S. Army Research Laboratory 

Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
Nonmetallic inclusions in gas turbine disk alloys can have a significant detrimental impact on fatigue 

life. Because large inclusions that lead to anomalously low lives occur infrequently, probabilistic 
approaches can be utilized to avoid the excessively conservative assumption of lifing to a large inclusion 
in a high stress location. A prerequisite to modeling the impact of inclusions on the fatigue life 
distribution is a characterization of the inclusion occurrence rate and size distribution. To help facilitate 
this process, a geometric simulation of the inclusions was devised. To make the simulation problem 
tractable, the irregularly sized and shaped inclusions were modeled as arbitrarily oriented, three 
independent dimensioned, ellipsoids. Random orientation of the ellipsoid is accomplished through a 
series of three orthogonal rotations of axes. In this report, a set of mathematical models for the following 
parameters are described: the intercepted area of a randomly sectioned ellipsoid, the dimensions and 
orientation of the intercepted ellipse, the area of a randomly oriented sectioned ellipse, the depth and 
width of a randomly oriented sectioned ellipse, and the projected area of a randomly oriented ellipsoid. 
These parameters are necessary to determine an inclusion’s potential to develop a propagating fatigue 
crack. Without these mathematical models, computationally expensive search algorithms would be 
required to compute these parameters. 

Introduction 
Nonmetallic inclusions (NMI) in powder metallurgy (PM) alloys tend to cause early formation of 

propagating cracks that can lead to catastrophic failures in gas turbine engine rotating components. These 
NMIs tend to be irregularly shaped although mostly convex (Fig. 1). They also can be deformed, broken, 
and oriented (although not perfectly so) by the processing deformations (extrusion and forging). In order 
to model the crack initiating potential of these inclusions, ellipsoids may be used as an approximation of 
the inclusion’s size and shape. A series of mathematical models for section and projection parameters of 
randomly oriented general (three independent semi-axis dimensions) ellipsoids have been derived. 
Although the parameters described by these solutions can be determined using iterative search algorithms, 
these tend to be computationally expensive. The “closed-form” mathematical models speed the execution 
of Monte Carlo simulations of inclusion populations in test specimens and prototype components (Ref. 1). 

A parameter that can be used to assess an inclusion’s potential of initiating a propagating fatigue 
crack is the area perpendicular to the principal loading direction. A solution for the intercepted area 
(planar section) of oblate and prolate spheroids (two independent dimensions; rotational symmetry about 
one semi-axis, often referred to as “regular” ellipsoids) was derived by Dehoff in 1962 (Ref. 2). No such 
solution could be found for general (three independent semi-axes or 3–D) ellipsoids. A solution for the 
intercepted area of an arbitrarily oriented general ellipsoid was derived with the assistance of symbolic 
math software and will be presented herein. Additionally, solutions for the dimensions and orientation of 
the intercepted ellipse were derived as they could also potentially provide correlations with observations 
of inclusion initiated cracks. These solutions were necessary for comparison with the distributions of the 
dimensions and orientations of inclusions observed on polished sections of turbine disk forgings (Ref. 1). 
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An crack initiating inclusion connected to the component surface can be envisioned as being 
sectioned twice; once by the surface and again by the crack. With the ellipsoid approximation, the 
resulting area on the fracture surface is a sectioned ellipse. A solution for the area, as well as the depth 
and width, of an arbitrarily sized and oriented sectioned ellipse were derived. 

Observations of fracture surfaces and cracked inclusions on specimen surfaces has led to the 
proposition that the projected area (perpendicular to the maximum principal stress) of an inclusion may be 
a better indicator of the inclusion’s crack initiating potential. A solution for the projected area of an 
arbitrarily oriented 3–D ellipsoid is also provided. 

The solutions described in the following sections have proved useful in simulating the area 
distributions of inclusions randomly distributed in a specimen volume. Other applications may benefit 
from the reduction in computational effort required in utilizing search algorithms often used in computing 
the cross sectional and projected area of an ellipsoid. 

Intercepted Area of a General Ellipsoid (Three Independent Semi-Axes) 
Cut by an Arbitrary Plane 

A search of the literature for a closed form solution for the intersection between a plane and a general 
(three independent semi-axes) ellipsoid was not productive. The following describes a solution for the 
intercepted area of general ellipsoid.  

For a triaxial or general ellipsoid, a sequence of three rotations is necessary to arrive at an arbitrary 
orientation (Fig. 2) (Ref. 3). Only two rotations are necessary for a regular ellipsoid. To track the new 
orientation, a new local coordinate system is defined after each rotation. Choosing the first rotation to be 
an angle φ about the original z axis gives new x and y coordinate axes that will be referred to as x′ and y′. 
A second rotation of an angle θ about the y′ axis gives new coordinate axes of x″ and z″. The third rotation 
of an angle ψ about the x″ axis gives the final ellipsoid orientation. This rotation order will be referred to 
as a zyx rotation. This is just one of the twelve possible orthogonal rotation sequences (Ref. 3). 

Given the equation of a general ellipsoid 
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z

b
y

a
x  (1) 

 
with a, b, and c being the ellipsoid semi-axes dimensions (half the ellipsoid’s length, breadth and depth) 
which are initially aligned with the x, y, and z axes, respectively. 
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Figure 2.—Illustration of a randomly oriented general 
ellipsoid with intercepted area shown. 

 
 

The first rotation about the z axis accomplished with the following transformation 
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In a similar manner, two additional rotations about the y′ and x″ axes can be executed. This series of 

rotations may be computed as a series of matrix multiplications 
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Substituting the thrice rotated terms into the original ellipsoid Equation (1) gives 
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Defining a sectioning plane as a constant distance from the origin along the original x-axis, x = ρ, the 
rotated Equation (4) can be rearranged into the following form 
 
 Ay2 + Byz + Cz2 + Dy + Ez + F = 0 (5) 
 

With some algebraic manipulation, the coefficients A to F are 
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This is a general equation for the intercepted ellipse. Solving Equation (5) for z gives 
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These two solutions constitute the upper and lower portions of the ellipse in the yz plane. The integral 

of the difference between these two solutions is the area, Δ, of the ellipse. 
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The limits of integration, y1 and y2, may be determined by recognizing that the integrand must remain 

real over the interval. This requires that the sum of the terms under the square root remain nonnegative. 
Therefore, by setting the sum of the terms under the root equal to zero and solving for y, the integration 
limits in the y direction are 
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With the assistance of symbolic math software to solve the definite integral, one can substitute the 

constants (A, B, C, D, E, and F), and apply the identity, ln(-ξ) – ln(ξ) = iπ, which results in 
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This Δ is the area of the intercepted ellipse in terms of the ellipsoid dimensions, the three rotation 

angles, and the distance from the ellipsoid centroid to the sectioning plane. It must be noted that this 
solution only applies for the zyx rotation order and a sectioning plane defined by a constant x. Similar 
solutions may be derived for different rotation orders and sectioning planes. The solutions for different 
rotation orders differ only in the form and sequence of trigonometric factors in the Φ term. For this 
solution, one can readily note that trigonometric factors in the Φ term are the squares of the x coefficients 
in the rotated frame Equation (4). This is obviously not a coincidence. This Equation (16) also has the 
interesting property of calculating a positive value only if the sectioning plane actually intercepts the 
ellipsoid. 
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Orientation and Dimensions of the Intercepted Ellipse Defined by the 
Intersection of a Plane and an Arbitrarily Oriented General Ellipsoid  

The dimensions and orientation of the ellipse defined by the intersection of a plane and a general 
ellipse are of interest for fracture mechanics calculations in that it is often these dimensions that are the 
required parameters. Starting with Equation (5) the goal is to rearrange into the form of a general ellipse 
equation 
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Where â  and b̂  are the dimensions of the intercepted ellipse. To get these dimensions one must first 
perform a rotation of axes to eliminate the yz cross term 
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Setting the B′ term equal to zero, applying the appropriate trigonometric identity, and rearranging 

gives 
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This rotation of axes also provides the orientation angle of the intercepted ellipse, α. 

 
Substitution of the rotated terms gives 

 
 2 2 0A y C z D y E z F′ ′ ′ ′+ + + + =  (20) 
 

To get Equation (20) into the standard ellipse form Equation (17) one must factor the equation by 
completing the squares. This gives the following solutions for the ellipse dimensions 
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This solution also provides a check on the area solution derived in the previous section in that the area 

of the intercepted ellipse, Δ, may also be computed by: 
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 ˆâ bΔ = π⋅ ⋅  (22) 
 

The areas for both procedures are identical for all rotations. 

Sectioned Area of a Randomly Oriented Ellipse 
The fracture area of a surface connected inclusion is a cross section of the inclusion sectioned again 

by the specimen surface. In the ellipsoid approximation of the inclusion this is a sectioned arbitrarily 
oriented ellipse (see Fig. 3). 

The area of this canted ellipse cut by a line can be derived by integrating the equation of the ellipse 
from the leftmost edge of the ellipse to the intersecting line (constant distance from the ellipse centroid, r, 
Fig. 3). Starting with the equation for a rotated ellipse, where a and b are the ellipse semi-axes and θ is the 
rotation angle 
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and solving for y 
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As shown earlier, the integrated difference between these solutions is the area of the ellipse. 
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As before, the edges of the ellipse in the x direction can by found by recognizing that the sum of the 

terms under the root must be nonnegative to be on the ellipse. Taking the part under the root, setting it 
equal to zero and solving for x 
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Taking the lower solution as one limit of integration and the other limit a distance, r, from the ellipse 

centroid (Fig. 3) gives the following definite integral 
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Again with the assistance of symbolic math software, this definite integral may be solved resulting in 
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This solution for the area of a sectioned ellipse is valid for r over: -[ 2â cos2θ + 2b̂ sin2θ] < r < 

[ 2â cos2θ + 2b̂ sin2θ] which defines the interval where the solution is real, i.e., where the line intercepts 
the ellipse. 

Depth and Width of a Randomly Oriented Twice-Sectioned Ellipse 
(Including Bounding Box Solution) 

For fracture mechanics calculations of surface connected inclusions it is necessary to know the depth 
and width of the feature used to approximate the crack. In this case it is the depth and width of an 
inclusion embedded in a metallic component as approximated by a general ellipsoid.  

Given a general equation of an ellipse Equation (29) in the plane perpendicular to the loading 
direction (Fig. 4) 
 
 Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (29) 
 

First the bounding box dimensions must be derived. Solving Equation (29) for x 
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resulting in two solutions. As before, observing that the solutions are real only when the sum of the terms 
under the square root are nonnegative, the bounding box limits in the y direction can be solved by setting 
the portion under the root equal to 0 and solving for y 
 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−+−−

−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−++−

=

2

222

2

222

21

4

422

4

422

,

BAC

BACFBDECDAEAAEBD

BAC

BACFBDECDAEAAEBD

yy  (31) 

  
This defines the upper and lower limits on y of the ellipse. The difference between these solutions is 

the bounding box dimension in y 
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and the average of these limits is the y coordinate of the ellipse centroid 
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If this same procedure is performed solving first for y, similar results are found for the upper and 

lower limits on x 
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Again, the difference between these solutions is the bounding box dimension in x 
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and the average of these limits is the x coordinate of the ellipse centroid 
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If it is assumed that the dimensions of the inclusion that are correlated with the initial crack size are 

the maximum depth of the sectioned ellipsoid and the maximum width parallel to the sectioning surface 
(Fig. 4) then there is still some work to be done. First, to find the maximum depth, one has to add the 
distance from the ellipse centroid to the sectioning surface and half the bounding box dimension in x the 
direction (Fig. 4). The convention chosen for the distance from the intercepted ellipse centroid to the 
surface, r, is that r is positive when the ellipse centroid is inside the surface and negative when the ellipse 
centroid is outside the surface. To find the maximum width of the sectioned ellipse it must be determined 
if the points where the ellipse touches the bounding box are inside or outside the specimen surface. There 
are thee possible cases (illustrated in Fig. 5). In the illustration, if the right most intercepted ellipse y 
bounding box tangent point is inside the surface, then the width is simply the y bounding box dimension 
(Fig. 5(a)). The second case would be where the surface is between the y bounding box touching points 
(Fig. 5(b)). In this instance the width is defined as the distance, in the y direction, from there the 
intercepted ellipse touches the surface to the y bounding box tangent point still inside the surface. The 
third instance is where the specimen surface is inside both bounding box y tangent points (Fig. 5(c)). In 
this case the width is the distance in y between the two points where the ellipse intersects the surface. In 
all three cases the depth may be defined by the addition of half the bounding box dimension in the x 
direction and the distance of the intercepted ellipse centroid to the specimen surface. 
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Figure 5.—Illustration of three cases of width and depth calculation for intercepted ellipsoid. 

 
Given this information it is possible to compute the intersection points where a line (simulating the 

surface) intercepts the ellipse (setting x in Eq. (29) equal to r and solving for y). It is therefore possible to 
compute the maximum extents of the ellipse both parallel (width) and perpendicular (depth) to the line 
(specimen surface). These parameters are needed to estimate the distribution of expected widths and 
depths of surface connected inclusions that could initiate fatigue cracks. 

Projected Area of a Randomly Oriented General Ellipsoid 
The projected area may be defined as the area of the shadow of an object left on a plane that is 

perpendicular to an infinitely distant light source. The projected area of a randomly oriented ellipsoid may 
be determined by deriving an equation for the maximum distance from a line drawn through the ellipsoid 
centroid and perpendicular to the projection plane. The equation of this distance is the equation of the 
projected ellipse. Starting again with an equation of a general ellipsoid 
 
 2 2 2 1Ax Bxy Cy Exz Dyz Fz+ + + + + =  (37) 
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The A to F coefficients are functions of the ellipsoid dimensions and the rotation angles of the three 
rotation transformations as described earlier. Note that in this derivation the distance from the xy plane, z, 
is not to be included in the E, D, and F coefficients (the ρ in Eqs. (9 to 11) would be removed) and 1 was 
not subtracted from both sides and included in the F term (as in Eqs. (5), (11), and (29)). The xy plane 
(z = 0), in this derivation, is the projection plane. 

First, a rotation of axes is performed to eliminate the B term; this gives an equation that may be 
solved for the bounding box dimensions of an intercepted ellipse at a given distance, z, from the 
projection plane.  
 
 2 2 2 1A x C y E x z D y z Fz′ ′ ′ ′ ′ ′ ′ ′+ + + + =  (38) 
 

Note that this rotation is about an xy plane normal vector. As in Equation (20), the values of the 
primed coefficients are functions of the original coefficients and the rotation angle. 

In this rotated frame, the intercepted ellipse defines the extremes, in the x′ and y′ directions, that the 
ellipsoid extends in the intercepting xy plane (Fig. 6). As can be seen in Figure 6, if one of the ellipse 
centroid coordinates is substituted into the rotated equation, one can solve the equation for the other 
coordinate to uniquely define the tangent point. When this is done for both centroid coordinates 
independently the bounding box of the intercepted ellipse is defined.  
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The centroid of the intercepted ellipse can be found by taking the partial derivative of the rotated 
equation with respect to x′ and solving for x′ and then with respect to y′ and solving for y′, with the 
following result 
 

 
C

zEy
A

zDx cc ′
′−

=′
′
′−

=′
22

 (39) 

 
Note the similarity to Equations (33) and (36) with B′ = 0. 

 
If cx′  is substituted into the rotated equation 
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 (40) 

 
solving for y′ gives the y′ maximum distances 
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The difference between these solutions is the y′ bounding box dimension, bby′ .  
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Note that this Equation (42) is a function of z, the distance of the sectioning plane from the 
ellipsoid centroid.  
 

Starting with the other coordinate of the intercepted ellipse centroid, the x′ maximum distances are 
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and the x′ bounding box dimension, bbx′ , is 
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The larger of the two solutions for the x′ and y′ intercepts relate the maximum extents of the 
intercepted ellipse in the x′ and y′ directions in terms of the sectioning plane distance, z. Taking the 
derivative of these equations with respect to z, setting to zero and solving for z will give the distance from 
the projection plane where the distance from a xy plane normal through the ellipsoid centroid reaches its 
maximum in the x′ and y′ directions. 
 

First taking the derivative of the larger of the two y′ bounding box solutions 
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Solving the derivative symbolically and setting to 0 
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Solving for z gives two roots 
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Back substituting the positive root of z in Equation (47) into the larger of the two y′ maximum 

distance Equations (41) and simplifying gives 
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 (48) 

 
which is the y′ projected ellipse bounding box half-dimension. Using a similar methodology, starting with 
the larger x′ maximum distance solution Equation (43), gives 
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 (49) 

 
which is the x′ projected ellipse bounding box half-dimension. 

Given the center of the projected ellipse (which coincides with the ellipsoid centroid) and the 
projected ellipse bounding box touching points, one can find the equation of the projected ellipse (two 
points on the ellipse with an additional constraint and three unknowns). The coefficients Ap, Bp, and Cp for 
the projected ellipse equation ( )2 2 1p p pA x B x y C y′ ′ ′ ′+ + =  are 
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F
EDBp 2

′′−
=  (51) 
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ECCp 4

2′
−′=  (52) 

 
As the projected ellipse is in the z = 0 plane, the Ep, Dp, and Fp terms are zero. Using these values for 

Ap, Bp, and Cp and Equations (18) and (21) (with F = –1), one can calculate the projected ellipse 
orientation and dimensions. Once the dimensions and orientation of the projected ellipse are known one 
can use Equation (28) (sectioned ellipse area) to calculate the sectioned area of a surface connected 
projected ellipse. 

Observations 
In working with the above derivations, the following may be observed about ellipsoid sections 

 
(1) An arbitrary planar section of an ellipsoid is an ellipse. 
(2) Any ellipsoid will always have at least two orientations that will have circular cross sections. 
(3) For any arbitrarily oriented ellipsoid, if the sectioning plane is translated along the plane’s normal 

vector, the orientation of the intercepted ellipse remains constant. 
(4) The maximum cross sectional area of an ellipsoid for a given orientation is always a section 

through its centroid. 
(5) For any fixed orientation, the projected area of an ellipsoid will always be greater than, or equal 

to, the maximum cross sectional area. 
(6) At most three rotations of axes are required to arrive at an arbitrary orientation for a general 

ellipsoid and there are twelve possible orthogonal rotation sequences (Ref. 3). 

Summary 
The solutions presented were derived to facilitate modeling of the distribution of measurable 

inclusion dimensions in metallic materials. Inclusions are assumed to be well approximated as randomly 
oriented general (three independent semi-axes) ellipsoids. These solutions may also be applied for 
applications where ellipsoidal shaped particles are embedded in a matrix and the sectioned area if the 
particles is to be calculated/simulated. These applications could include: dispersed particulates, 
aggregates, closed cell foams, and secondary phase grains in complex alloys.  
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