Launching to the Moon, Mars, and Beyond

Presented to The Auburn Chapter of the American Institute of Aeronautics and Astronautics, September 30, 2008
Auburn University, AL

C. Herbert Shivers, PhD, PE, CSP
Deputy Director, Safety and Mission Assurance Directorate
NASA/Marshall Space Flight Center
What is NASA’s Mission?

♦ Safely fly the Space Shuttle until 2010
♦ Complete the International Space Station
♦ Develop a balanced program of science, exploration, and aeronautics
♦ Develop and fly the Orion Crew Exploration Vehicle (CEV)
♦ Return to the Moon no later than 2020
♦ Promote international and commercial participation in exploration

“The next steps in returning to the Moon and moving onward to Mars, the near-Earth asteroids, and beyond, are crucial in deciding the course of future space exploration. We must understand that these steps are incremental, cumulative, and incredibly powerful in their ultimate effect.”

– NASA Administrator Michael Griffin
October 24, 2006
Spacelab J - Huntsville and Decatur

Auburn 6
Alabama 1
♦ State of Alabama
 • 150,000 aerospace industry workers in the state
 - $6.16 billion annual payroll
 - Third highest average annual wage in the Nation behind VA and CA

♦ Huntsville, Al
 • 430 aerospace companies
 • Home to Redstone Arsenal
 - RSA – 8 major commands – soon 11 General Officers
 - 30,000 people come on site at Redstone each day
 - More than $35 billion in Federal procurements each year
 • Home to Marshall Space Flight Center
 - $2 billion annual budget
 - About 2500 Civil Service employees
 - About 5000 contractor employees
 • Need all disciplines of engineers
 • 2000 - 20,000 new jobs over the next five years (BRAC)
 • Baby Boomers are retiring – outnumber Gen X about 3 to 1
- Number of Civil Service Engineers (as of August 2007)
 - NASA – 9563
 - Johnson Space Center – 2230
 - Marshall Space Flight Center – 1650
 - Kennedy Space Center – 1264
 - Goddard Space Flight Center – 1414
- Disciplines
- Probably 3 to 4 times this number of contractor engineers
MSFC LEGACY
Today’s Journey

🔹 What is NASA’s mission?
🔹 Why do we explore?
🔹 What is our timeline?
🔹 Why the Moon first?
🔹 What will the vehicles look like?
🔹 What progress have we made?
🔹 Who will be doing the work?
🔹 What are the benefits of space exploration?
Why Do We Explore?

♦ Inspiration
- Inspire students to explore, learn, contribute to our nation’s economic competitiveness, and build a better future

♦ Innovation
- Provide opportunities to develop new technologies, new jobs, and new markets

♦ Discovery
- Discover new information about ourselves, our world, and how to manage and protect it
MAJOR NASA PROGRAMS

- Space Shuttle
- International Space Station
- Earth and Space Sciences
- Constellation Program
 - Crew Launch Vehicle
 - Cargo Launch Vehicle
 - Crew Exploration Vehicle
 - Crew Service Module
 - Earth Departure Stage
 - Altair Lunar Lander
 - Mars Transfer Vehicle
 - Mars Descent/Ascent Vehicle
- Lunar Precursor Robotic Program
 - Lunar Reconnaissance Orbiter (LRO)
 - Lunar Crater Observation and Sensing Satellite (LCROSS)
Earth and Space Sciences

♦ SERVIR

- A system that helps scientists and authorities in southern Mexico and Central America identify sudden changes in environmental conditions, mapping details of deforestation, forest fires, hurricanes and toxic algae red tides
- Beginning applications in Africa

♦ Hubble Space Telescope

- The visible/ultraviolet/near-infrared element of the Great Observatories astronomical program.
- STS 125 is the final servicing mission to HST
- Extend its life and increase capabilities

♦ Other Space Telescopes – Spitzer, Chandra, James Webb (2013)
Shuttle Processing
Rare Site – Two Shuttle on Pads
October 20, 2008
International Space Station
The Moon

♦ Lunar missions allow us to:
 • Gain exploration experience
 – Space no longer a short-term destination
 – Will test human support systems
 – Use Moon to prove ability to build and repair long-duration space assets
 • Develop exploration technologies
 – Launch and exploration vehicles
 – *In-situ* resource utilization
 – Power and robotic systems
 • Conduct fundamental science
 – Astronomy, physics, astrobiology, geology, exobiology

Next Step in Fulfilling Our Destiny as Explorers
There Are Many Places To Explore

We Can Land Anywhere on the Moon!
Our Exploration Fleet

What will the vehicles look like?

Earth Departure Stage

Ares V
Cargo Launch Vehicle

Orion
Crew Exploration Vehicle

Altair
Lunar Lander

Ares I
Crew Launch Vehicle
Journey to the Moon
Building on a Foundation of Proven Technologies

Launch Vehicle Comparisons

Space Shuttle
- Height: 56.1 m (184.2 ft)
- Gross Lift off Mass: 2,041,166 kg (4.5M lbm)
- 25 MT (55k lbm) to Low Earth Orbit (LEO)

Ares I
- Height: 99.1 m (325 ft)
- Gross Lift off Mass: 927,114 kg (2.0M lbm)
- 25.6 MT (56.5k lbm) to LEO

Ares V
- Height: 109.7 m (360.5 ft)
- Gross Lift off Mass: 3,374,975 kg (7.4M lbm)
- 63.6 MT (140 2k lbm) to TLI (with Ares I)
- 55.9 MT (123k lbm) to Direct TLI
- 143.4 MT (316k lbm) to LEO

Saturn V
- Height: 110.9 m (364 ft)
- Gross Lift off Mass: 2,948,350 kg (6.5M lbm)
- 45 MT (99k lbm) to TLI
- 119 MT (252k lbm) to LEO
Ares I Elements

Instrument Unit
- Primary Ares I control avionics system
- NASA Design / Boeing Production ($0.8B)

Stack Integration
- 927k kg (2.0M lbm) gross liftoff weight
- 99 m (325 ft) in length
- NASA-led

First Stage
- Derived from current Shuttle RSRM/B
- Five segments/Polybutadiene Acrylonitrile (PBAN) propellant
- Recoverable
- New forward adapter
- Avionics upgrades
- ATK Launch Systems ($1.6B)

Upper Stage
- 137k kg (305k lbm)
- LOX/LH₂ stage
- 5.5 m (18 ft) diameter
- Aluminum-Lithium (Al-Li) structures
- Instrument unit and interstage
- Reaction Control System (RCS) / roll control for first stage flight
- Primary Ares I control avionics system
- NASA Design / Boeing Production ($1.12B)

Upper Stage Engine
- Saturn J–2 derived engine (J–2X)
- Expendable
- Pratt and Whitney Rocketdyne ($1.2B)
Ares V Elements

Stack Integration
- 3.4 M kg (7.4 M lb) gross liftoff weight
- 110 m (360.5 ft) in length

Solid Rocket Boosters
- Two recoverable 5-segment PBAN-fueled boosters (derived from current Ares I first stage)

Core Stage
- Five Delta IV-derived RS–68 LOX/LH₂ engines (expendable)
- 10 m (33-ft) diameter stage
- Composite structures
- Aluminum-Lithium (Al-Li) tanks

Earth Departure Stage (EDS)
- One Saturn-derived J–2X LOX/LH₂ engine (expendable)
- 10 m (33-ft) diameter stage
- Aluminum-Lithium (Al-Li) tanks
- Composite structures, instrument unit and interstage
- Primary Ares V avionics system

Payload Fairing
Altair Lunar Lander
EDS
J-2X
Loiter Skirt
Interstage
RS–68
Orion Crew Exploration Vehicle

Launch Abort System

- Attitude Control Motor (Eight Nozzles)
- Canard Section (Stowed Configuration)
- Jettison Motor (Four Aft, Scarfed Nozzles)
- Abort Motor (Four Exposed, Reverse Flow Nozzles)

Crew Module

Service Module

- Encapsulated Service Module (ESM) Panels
- Spacecraft Adapter

Volume: 10.8 m³ (380 ft³) - 80% larger than Apollo
Diameter: 50 m (16.5 ft)
First full-scale rocket motor test for the Orion spacecraft

- Test of a solid rocket that will be used to jettison the craft's launch abort system
- Separates the craft's launch abort system from the Orion crew module during launch
- The Orion launch abort system is a larger solid rocket motor system that will provide a safe escape for the crew in an emergency on the launch pad or during the climb to orbit
- Completed March 2008
What progress have we made?

Programmatic Milestones Completed
- Ares 1 Systems Requirements Review
- Ares 1 Systems Definition Review
- Ares 1 Preliminary Design Review
- Contracts awarded for first stage, J-2X engine, upper stage, instrument unit, and Orion
- Ares 1-X test flight scheduled for Spring 2009

Technical Accomplishments
- First stage parachute tests
- Developing first stage nozzles
- J-2X test stand construction at Stennis Space Center
- J-2x injector and power pack tests
- Fabricating Ares 1-X hardware
- Wind tunnel tests

www.nasa.gov/ares
What progress have we made?

For more information go to www.nasa.gov/ares
Ares I–X Test Flight

- Demonstrate and collect key data to inform the Ares I design:
 - Vehicle integration, assembly, and launch operations
 - Staging/separation
 - Roll and overall vehicle control
 - Aerodynamics and vehicle loads
 - First stage entry dynamics for recovery

- Performance Data:

<table>
<thead>
<tr>
<th></th>
<th>Ares I–X</th>
<th>Ares I</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Stage Max. Thrust (vacuum):</td>
<td>14.1M N (3.13M lbf)</td>
<td>15.8M N (3.5M lbf)</td>
</tr>
<tr>
<td>Max. Speed:</td>
<td>Mach 4.7</td>
<td>Mach 5.84</td>
</tr>
<tr>
<td>Staging Altitude:</td>
<td>39,624 m (130,000 ft)</td>
<td>57,453 m (188,493 ft)</td>
</tr>
<tr>
<td>Liftoff Weight:</td>
<td>834k kg (1.8M lbm)</td>
<td>927k kg (2.0M lbm)</td>
</tr>
<tr>
<td>Length:</td>
<td>99.1 m (327 ft)</td>
<td>99 m (325 ft)</td>
</tr>
<tr>
<td>Max. Acceleration:</td>
<td>2.46 g</td>
<td>3.79 g</td>
</tr>
</tbody>
</table>
Transfer to and from Mars in about 6 months – Mars surface stay about 18 months. Each human mission to Mars is comprised of three vehicle sets, two cargo vehicles, and one round-trip piloted vehicle. Planned 2.5-year mission
Down-to-Earth Benefits from the Space Economy

NASA powers innovation that creates new jobs, new markets, and new technologies

♦ **Personal Health**
 - Eye tracker for LASIK surgery
 - Breast biopsy system
 - 3D Imaging for surgery

♦ **Consumer Products**
 - Wireless light switch
 - Remote appliance programmer
 - Global Positioning Systems (GPS)

♦ **Environmental**
 - Water Filtration system
 - Environmentally friendly chemical cleanup

♦ **Security**
 - Stair-climbing tactical robot
 - Crime scene video enhancement

Every Dollar Invested in Space is Spent on Earth

For more information see http://technology.jsc.nasa.gov
NASA Explores for Answers that Power Our Future

NASA powers inspiration that encourages future generations to explore, learn, and build a better future.

- NASA relies on a well-educated U.S. workforce to carry out missions of scientific discovery that improve life on Earth.

- America’s technological edge is diminishing.
 - Fewer engineering graduates from U.S. colleges and universities
 - More engineering and science graduates in other countries

- The global marketplace is increasingly competitive and technology-driven.

- Students need motivating goals and teachers with information to share.

- NASA continues to develop educational tools and experiences that inspire, educate, and motivate.
Summary

♦ Human beings will explore the Moon, Mars, and beyond to encourage inspiration, innovation, and discovery.

♦ We must build beyond our current capability to ferry astronauts and cargo to low Earth orbit.

♦ We are starting to design and build new vehicles, using extensive lessons learned to minimize cost, technical, and schedule risks.

♦ Exploring the Moon will help us reach Mars and beyond.

♦ Team is on board and making good progress – the Ares I-X test flight is on schedule for April 2009.
Acknowledgements

♦ Thanks to the following MSFC persons for providing information included in this presentation:
 ♦ Joel Best, Jo Weddendorf, Tim Self, John McIntyre
 ♦ Melissa Walden
 ♦ And of course to the NASA video archives available on NASA websites