Radiation Testing on State-of-the-Art CMOS: Challenges, Plans, and Preliminary Results

Kenneth A. LaBel
NASA/GSFC, Code 561.4, Greenbelt, MD 20771

Lewis M. Cohn
NRL, Code 6800, 8800 Overlook Road, Wash., DC 20377
(formerly DTRA/NTRS, FT Belvoir, VA 22060)

Abstract: At GOMAC 2007 and 2008, we discussed a variety of challenges for radiation testing of modern semiconductor devices and technologies [1, 2]. In this presentation, we provide more specific details in this on-going investigation focusing on out-of-the-box lessons observed for providing radiation effects assurances as well as preliminary test results.

Keywords: CMOS; radiation effects; digital electronics.

Introduction
Radiation effects testing of electronics has become more challenging [3]. In particular, testability of devices for both total ionizing dose (TID) and single event effects (SEE) is continuing to provide major challenges.

In this talk, we shall consider these challenges as they pertain to radiation effects testing of modern commercial CMOS devices in the natural space environment. Both SEE and TID issues will be discussed focusing on specific examples and current plans. The approach will focus on radiation testing of both commercial devices as well as CMOS process test structures.

We will again ask and attempt to answer the following question: Based on increasing device complexity, can adequate parametric and functional measurements be made to support the use of a technology for operation in a critical space system application?

Manufacturers of complex devices such as processors invest tens of millions of dollars into creating test programs for multi-million dollar automated test equipment (ATE) to collect parametric measurements on such a device. For TID testing, functional and parametric measurements are the norm for monitoring device performance. Without vendor collaboration, this full TID characterization would be impossible on devices such as processors and FPGAs.

Discussion
The specific topics to be addressed in this paper will include SEE and TID radiation test results from a number of advanced technologies to include IBM 65nm technologies [4], TI 65nm technologies [5], and Intel 45nm Hi-K dielectric technology. A discussion of current advanced CMOS radiation testing plans and efforts will be included. In addition, radiation test data from selected other advanced commercial microelectronics will be provided. Prior work (4) indicated an anomalous low energy proton SEE response on the 65nm technology node. This will be discussed including the issues involved with performing very low energy proton testing. Recommendations concerning the need for low energy proton testing will be provided.

Radiation Test Results: 65nm CMOS
NASA and DTRA have been working with two different commercial vendors (IBM and TI) to evaluate the inherent radiation tolerance of highly scaled CMOS devices. By determining the radiation-induced failure mechanisms, two key technology needs are met. They are:

- Develop a knowledge-base for future test guidance of commercial highly scaled devices, and
- Determine appropriate Rad Hard by Design (RHBD) techniques for new device development.

The IBM 65nm CMOS technology evaluated is a silicon-on-insulator (SOI) technology. Figure 1 is a photo of the test sample used. This particular package is designed so that irradiation may take place using the front (rather than the back) side of the packaged die.

![Figure 1. Photo of 1Mbit 65nm SOI SRAM used for "front-side" testing.](https://ntrs.nasa.gov/search.jsp?R=20090010083)

Whereas there are numerous radiation related conditions to consider such as particle arrival angle, energy deposition,
and single particles inducing multiple bit flips (MBU), the issues related to proton SEE testing is key. In particular, the low proton energy regime response has implications for both test and design that require consideration. Figure 2 illustrates the response of this test sample to a range of proton energies.

![Upsets vs. Proton Energy: 65nm SOI SRAM](image)

Figure 2. Data from 1-500 MeV at normal incidence.

In previous generations of CMOS technology, it has been noted that the response is relatively flat with energy for energies greater than ~25MeV. This dataset is consistent with the flatness for these higher energies, however, for energies <25MeV, the result is inconsistent. First, one would expect a drop in measured sensitivity below 25MeV based on previous technology generations. This is roughly observed between the 25 and 10MeV points, however, a rise in sensitivity is observed at energies below 10MeV.

One may wonder if this is an artifact of SOI technology, however as shown in Figure 3, bulk CMOS 65nm technology from TI shows a similar shape to its sensitivity.

![Proton test of bulk CMOS 65nm technology from TI](image)

Figure 3. Proton test of bulk CMOS 65nm technology from TI.

There are several takeaway points to consider based on the low energy proton sensitivity. They are:

- Do we understand the mechanisms causing this increased sensitivity? Direct ionization (which is new for proton sensitivity) has been proposed.
- Even though shielding may reduce the number of protons impinging on the device in a space mission, higher energy protons are degraded in energy when passing through this material and create low energy particles that may increase the overall device SEU rate in space. And,
- Given that these are test structures where many details of the technology are available, how do we handle testing of commercial devices (like a FPGA, for example) that may have these same low energy issues? Efforts are underway to develop techniques to do just this using a qualitative if not quantitative approach to sensitivity estimation. Results of this work are expected later this year.

Radiation Test Results: 45nm CMOS

Preliminary TID data has been collected on the first commercially available Hi-K dielectric CMOS device, an Intel 45nm Wolfdale processor as seen in Figure 4. This is a dual-core processor with a 3 GHz clock frequency. In essence, two test campaigns are underway: a functional TID test where the device is irradiated then tested for power supply consumption and general functionality only and a full TID campaign where parametric measurements are taken. The functional TID testing was performed independent of Intel using strictly commercial motherboards and software to check performance. Tolerance to the 1 Mrad(Si) level was observed. Please note that the results can NOT be inferred as exceeding ITAR levels without parametric tests.

![Intel 45nm Hi-K Wolfdale processor](image)

Figure 4. Intel 45nm Hi-K Wolfdale processor.

Given the complexity of the commercial, it is simply not feasible for an independent test organization to re-create the infrastructure (ATE and test vector coverage that cost many millions of dollars and time) that a complex device manufacturer owns. Hence, the only way to perform a
proper TID test would be to utilize this existing infrastructure to provide the measurements. However, this does provide some data sensitivity for the manufacturer and may limit how the data is shared. The full TID testing on the Wolfdale is underway now and results are anticipated this fiscal year.

Radiation Test Plans for FY09
Table 1 illustrates the general radiation testing plans and status for CMOS test efforts in FY09. The 45nm structures from IBM and TI are a high priority to gather data.

<table>
<thead>
<tr>
<th></th>
<th>90 nm</th>
<th>65 nm</th>
<th>45 nm</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
<td>SOI and bulk SRAMs evaluated for SEE (proton and heavy ion)</td>
<td>SOI SRAMS received with preliminary data gathered</td>
<td>Collaboration with IBM and Sandia; Seeking structures for temporal SEE testing</td>
<td></td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>TID on transistors completed (90 and 130 nm)</td>
<td>SEU/SEL on SRAMs completed; Awaiting transistors for TID</td>
<td>SRAM test structures received; Vanderbilt designing new test structures</td>
<td>Collaboration with TI and Vanderbilt; Experiments also performed at temperature</td>
</tr>
<tr>
<td>SIRF Program</td>
<td>TID on transistors completed</td>
<td>TID on transistors completed</td>
<td>TID and dose rate planned on 1st commercially available Hi-K device (Preliminary TID completed – functional only)</td>
<td>Courtesy of Xilinx and AFRL; Experiments also performed with temperature</td>
</tr>
<tr>
<td>Intel</td>
<td>TID and dose rate completed</td>
<td>TID and dose rate completed</td>
<td>TID and dose rate completed</td>
<td>Collaboration with Intel and NSWC</td>
</tr>
</tbody>
</table>

Additional tasks related to scale CMOS include:
- Development of hardness assurance guideline for low proton energy testing,
- MBU analysis of 45 and 65nm CMOS,
- Commercial FPGA evaluation (65nm and below),
- Commercial Flash memory testing (including combined radiation and reliability implications),
- Commercial SDRAM radiation characterizations (including DDR3 and use of laser SEE test techniques),
- Support for DoD technology development programs, and,
- Tasks related to device preparation for radiation testing, combined radiation (TID impact on SEE) effects, and elevated temperature consequence on radiation response.

Summary
We have presented an overview of on-going investigations into the radiation sensitivity of emerging CMOS technologies. General trends indicate improving tolerance to TID, but new and increased sensitivities to SEE. By continuing to evaluate the state-of-the-art, we can provide a significant risk reduction for the development of new RHBD products as well guidance for testing new commercial electronics.

References
Radiation Testing on State-of-the-Art CMOS: Challenges, Plans, and Preliminary Results

Kenneth A. LaBel
ken.label@nasa.gov

Lewis M. Cohn
lewis.cohn@nrl.navy.mil

This work was sponsored in part by the NASA Electronic Parts and Packaging (NEPP) Program and the Defense Threat Reduction Agency under IACRO #08-43-43I and 09-4587I
Abstract

- At GOMAC 2007 and 2008, we discussed a variety of challenges for radiation testing of modern semiconductor devices and technologies.
- In this presentation, we provide more specific details in this on-going investigation focusing on out-of-the-box lessons observed for providing radiation effects assurances as well as preliminary test results.

FLASH memory is often near the leading edge of CMOS.
Outline

• What issues are at stake?
 – What devices are we discussing?
• Radiation Test Plans and Results
 – Overall plan
 – Recent results
 – Near-term plans
• Radiation Test Methods
 – Techniques and considerations
• Summary

Use of a cold LASER for device test preparation
Issues

• The radiation effects being discussed are
 – Total Ionizing Dose (TID) - a long-term cumulative degradation effect, and,
 – Single Event Effects (SEE) – impacts that occur from a single energetic particle as it deposits energy in a device

• For simplicity, we can characterize the challenges for <100nm CMOS in three ways:
 – Geometric: transistors are reduced in size and many more are available in the same form factor,
 – Temporal: operating speeds are getting faster and transient pulses may have increased impact, and,
 – Complexity: devices are now SYSTEMS in terms of functions and IP
Geometric

- As transistor physical volume and spacing between transistors shrinks
 - A single energetic ion becomes INCREASINGLY likely to affect multiple transistors
 - *This is the single event multiple upset (SEMU) or Multi-Cell/Bit Upset (MCU or MBU) issue*
 - This is exceedingly important for
 - Design hardening options
 - Error detection and correction (EDAC) schemes
 - Space SEU rate predictions

- In addition, as size has scaled, power supply voltages have been reduced as well
 - Implies that less deposited energy may be required to cause an SEU
 - That is: increased SEU rates are possible
Temporal

• Consider a particle depositing energy in a transistor
 – This charge may cause a transient pulse
 – The energy deposition is on the picosecond timeframe, but pulse size varies with the circuit
 – Whether a circuit responds to the pulse is a function of circuit bandwidth
 • The faster the operating speed of a device, the more sensitive it becomes to these pulses
 – More Single Event Transients (SETs) propagate to circuit effects in newer faster devices and may corrupt multiple clock cycles

• It has been demonstrated that in fast CMOS devices, SETs may be equally or more invasive than the traditional SEU.
Complexity

• Scaling has allowed a myriad of functions to be embedded in a single chip
 – Consider a field programmable gate array (FPGA) which may have
 • Processors
 • DSPs
 • Gbit I/O
 • Programmable logic strings
 • Memory arrays, and so on

• As we have presented in the past year’s GOMAC, complete radiation testing of a device as well as an interpretation of results have become increasingly difficult!
 – Working with the manufacturer is often the best way to perform full parametric and functional tests
CMOS Devices of Interest

• There is a wide variety of device types to consider
 – Custom
 • ASICs
 • Partially custom like FPGAs or structured ASICs
 – Processors
 – Memories
 • Volatile and non-volatile
 – Logic
 – And even mixed signal

• We will discuss some of the work being performed on test structures as well as commercially available devices.
Goals of This Work

- Investigate new and emerging electronics technologies to aid
 - Identification of failure modes for
 - Hardening approaches
 - Test requirements
 - Performance predictions
 - Validation of RHBD designs
 - Suitability of electronics technologies for space utilization
- Support and/or validate test methods
 - RHA
<table>
<thead>
<tr>
<th></th>
<th>90 nm</th>
<th>65 nm</th>
<th>45 nm</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
<td>SOI and bulk SRAMs evaluated for SEE (proton and heavy ion)</td>
<td>SOI SRAMS received and 1st series of tests performed</td>
<td>Collaboration with IBM and Sandia; Seeking structures for temporal SEE testing. 32 nm samples in the offing.</td>
<td></td>
</tr>
<tr>
<td>Texas Instruments</td>
<td>TID on transistors completed (90 and 130 nm)</td>
<td>SEU/SEL on SRAMs completed; Preparation for TID testing of transistors underway</td>
<td>SRAM Test Structures delivered and test development underway; Vanderbilt designing new test structures</td>
<td>Collaboration with TI and Vanderbilt; Experiments also performed at temperature</td>
</tr>
<tr>
<td>SIRF Program</td>
<td>TID on transistors completed</td>
<td>TID on transistors completed</td>
<td></td>
<td>Courtesy of Xilinx and AFRL; Experiments also performed with temperature</td>
</tr>
<tr>
<td>Intel</td>
<td>TID and dose rate completed</td>
<td>1st hi-K commercial device. TID and dose rate planned. Functional TID tests completed. Parametric TID tests completed (report being drafted)</td>
<td></td>
<td>Collaboration with Intel and NSWC</td>
</tr>
</tbody>
</table>

Additional discussions underway with eASIC and Freescale.

Support for RHBD efforts from DTRA/DARPA and AFRL
Highlights of Work So Far

• Among the Firsts
 – Test of a commercial hi-K device
 – SEU test of 45 nm SOI
 – Direct SEU comparison of 65nm bulk and SOI
 • Observation of possible proton direct ionization
 • Observation of enhanced sensitivity with low energy protons
 – Combined radiation and reliability on sub 90 nm flash
 – Use of Two-Photon Absorption (TPA) Laser for comparing cell (SEU) versus logic (SEFI) in commercial SDRAMs
 – Test of a commercial FPGA for low proton energy sensitivity
 • New method development
IBM 65nm SOI Results

Photo of 1Mbit 65nm SOI SRAM used for “front-side” testing

Data from 1 – 500 MeV @ normal incidence

Upsets vs. Proton Energy: 65nm SOI SRAM

Cross-section (cm²/Mbit) vs. Incident Proton Energy (MeV)

- V=1.2V (UC Davis @ 6 MeV)
- V=1.3V (UC Davis @ 63 MeV)
- V=1.0V (NPTC Boston)
- V=1.0V (TRIUMF)
- V=1.3V (IU)
- V=1.0V (IBM YKT)

Ratio of upsets from direct ionization vs. collision events

<table>
<thead>
<tr>
<th>Shielding</th>
<th>SEU Ratio: Direct Ionization/Collision</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mils</td>
<td>20 X</td>
</tr>
<tr>
<td>100 mils</td>
<td>10 X</td>
</tr>
<tr>
<td>200 mils</td>
<td>6 X</td>
</tr>
<tr>
<td>500 mils</td>
<td>3 X</td>
</tr>
</tbody>
</table>

MBU and angular analyses are still being performed.

Preliminary 45nm data will be shown at SEE Symposium and IEEE NSREC
TI CMOS Status

• Accomplishments
 – *Demonstrated direct ionization upset due to protons with energy < 2 MeV*
 – *1st test of MBU effects using goniometer set-up for solid angle coverage*
 • Successful MBU and SEL tests for various orientations of 65 nm SRAMs
 – Validated pulsed I-V TID tests with comparison to DC I-V measurements for 90 nm transistors
• Current status
 – Work being extended to 45 nm CMOS SRAMs and 65 nm transistors
Intel Processors

• TID and dose rate on 65nm bulk CMOS processor were completed in FY08
 – *Data may be requested via Intel for government only*
• 45nm Wolfdale processor has been TID irradiated
 – Functional tests show > 1 Mrad-Si tolerance
 – *Results can NOT be inferred as exceeding ITAR levels without parametrics.*
 • *Testing complete and report being developed*
 – Dose rate test planned

3.0 Ghz, dual-core
First commercially available hi-K device

Intel burn-in board modified for TID bias testing
Flash Memories

- Results in FY08 show promise for both SEU and TID
 - SEU rates
 - Low dose rate exposures
 - Unbiased TID
- Radiation test results
 - TID test of Samsung 4G NAND flash
 - Passed 100 krad (Si)
 - Micron 4G NAND flash
 - Passed 100 krad (Si)
 - SEE testing showed SEL, high SEFI rate, and extreme angular dependence effects
- Preliminary reliability study indicates radiation exposure has only a small effect on flash endurance reliability

These devices are having improved TID response, but SEE is still a prime concern
Highlights

SDRAMs

- Elpida SDRAM – Use of TPA to understand failure modes
 - Memory cells are harder than logic cells
 - Block errors nearly as common as SEUs
 - Control logic upsets cause (mostly) correctable block errors
 - Some SEFI seen
 - Recovery requires reset or power cycle
- GSFC results provide context to previous results from J. Benedetto (see NSREC 2008 short course)

**TPA is a powerful technique for failure isolation**
Testing with TPA SDRAMs

- TPA Laser Testing
 - Allows probing of individual features for SEE susceptibility
 - Separates control logic upsets from memory upsets
 - Enumerates Error modes
 - Packaging and metallization prevent use of top-side, single-photon laser testing for SDRAMs.
 - Difficult to estimate charge at sensitive volumes
 - Heavy-ion testing needed for quantitative SEE assessment.
 - Tests on FPGAs and ADCs planned

TPA and HI testing are Complementary
New Test Methods and Validation

• Conical SEE irradiation
 – Goniometer test system
 • Asymmetric angle coverage
• Development of low proton energy SEU assurance
 – Test structures (SRAMs) and Xilinx FPGA
• Cold LASER Device Preparation
• Laser testing of SDRAMs (w/NRL)
 – Establishment of test procedures
• Dry ice storage (TID)
• Combined TID and SEE performance
• Use of pulsed IV for TID transistor testing
• TID performance at elevated temperature

Conical Test System
Radiation Simulation – Vanderbilt and NASA

- Development of predictive SEE models for space application
- Development and validation on bulk CMOS <100 nm and Power MOSFETs
 - New tools for a new technology age!
Summary

• In the short time allotted, we have just touched the tip of the iceberg on CMOS and radiation issues
 – SEE and TID
 – Combined effects (radiation and radiation/reliability)
 – Test Methods

• The previous charts described some of the efforts supported by the NEPP Program in conjunction with DTRA
 – We have only touched on the Vanderbilt-led efforts for development of physics-based tools for SEU rate prediction, for example, talk 11.3!

• If you are interested in collaboration or for more information, please feel free to contact us or visit the NEPP website at:

 http://nepp.nasa.gov