Shear Thinning in Xenon

Robert F. Berg and Michael R. Moldover
National Institute of Standards and Technology, Gaithersburg, Maryland

Minwu Yao
Ohio Aerospace Institute, Brook Park, Ohio

Gregory A. Zimmerli
Glenn Research Center, Cleveland, Ohio

January 2009
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at 301–621–0134

- Telephone the NASA STI Help Desk at 301–621–0390

- Write to: NASA Center for AeroSpace Information (CASI) 7115 Standard Drive Hanover, MD 21076–1320
Shear Thinning in Xenon

Robert F. Berg and Michael R. Moldover
National Institute of Standards and Technology, Gaithersburg, Maryland

Minwu Yao
Ohio Aerospace Institute, Brook Park, Ohio

Gregory A. Zimmerli
Glenn Research Center, Cleveland, Ohio

January 2009
Acknowledgments

We thank the CVX–2 team at the NASA Glenn Research Center for building and supporting the flight apparatus, and the Hitchhiker team at the NASA Goddard Space Flight Center for coordinating and operating FREESTAR. We thank Arnon Chait for his initial CFD calculations and for arranging Minwu Yao’s collaboration. The terrible loss of the Space Shuttle Columbia and its crew saddened us, but we remain grateful for the scientific opportunity given to us by the flight of STS–107. This work was funded, in part, by the NASA Fundamental Physics program under contract number C32966J.

Level of Review: This material has been technically reviewed by a committee of peers.
Shear Thinning in Xenon

Robert F. Berg and Michael R. Moldover
National Institute of Standards and Technology
Gaithersburg, Maryland 20899

Minwu Yao
Ohio Aerospace Institute
Brook Park, Ohio 44142

Gregory A. Zimmerli
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Summary

We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: $10^{-3} < \dot{\gamma} \tau < 700$, where $\dot{\gamma}$ is the shear rate and τ is the relaxation time of critical fluctuations. As predicted by theory, shear thinning occurred when $\dot{\gamma} \tau > 1$. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth’s gravity.

Introduction

Both oil in a car engine and paint on a paintbrush need viscosity control. Sliding engine parts sometimes shear the intervening oil layer fast enough to decrease the viscosity of the oil’s polymer additives, and such shear thinning is bad for the engine. Conversely, brushing a well-engineered paint onto a wall temporarily decreases the paint’s viscosity, and shear thinning helps to spread the paint. In general, shearing any fluid fast enough to distort its microscopic structure will change the viscosity. Shear thinning, a decrease in viscosity with increasing shear rate, is common in complex fluids from molten plastics to ketchup; such fluids have microscopic structures that relax slowly in comparison with the shear rate $\dot{\gamma}$. Here, we report the first observation of shear thinning in a simple fluid. A viscometer measured the drag on a delicate nickel screen as it oscillated in a sample of xenon at its critical density. Upon approaching the liquid-vapor critical point (Fig. 1), the relaxation time τ of the critical fluctuations increased by orders of magnitude, and shear thinning occurred when $\dot{\gamma} \tau > 1$.

Predictions of shear thinning usually rely on a detailed model of the molecules and their interactions. In contrast, the theory for viscosity near critical points (Refs. 1 to 10) assumes only that the interactions are short ranged and that the viscosity is dominated by the microscopic fluctuations that occur in all fluids. Because of this generality, an understanding of how distorted fluctuations cause shear thinning may lead to general insights for rheology, which describes the dependence of viscosity on shear rate and frequency.

The critical fluctuations have a size ξ that increases as a fluid approaches its liquid-vapor critical point. Coupling between fluctuations of density and velocity causes the viscosity η to increase as the power law $\eta \propto \xi^{x\eta}$. The viscosity increase is small because the universal exponent $x_{\eta} = 0.069$ is small (Refs. 10 and 11). However, τ has a much larger increase because it is nearly proportional to the volume of a fluctuation ξ^3. More precisely, τ varies as follows (Ref. 3):

$$\tau = \tau_0 \left(\frac{T - T_c}{T_c} \right)^{-1.93} \propto \xi^{3.069}$$

which increases as the temperature T approaches the critical temperature T_c. Xenon at its critical density ($\rho_c = 1.1$ g/cm³) is a monatomic fluid with a convenient critical temperature of $T_c = 17 ^\circ$C. In Equation (1), the time-constant amplitude τ_0 is tiny (1 ps), but we achieved a relaxation time as large as $\tau = 1$ s during the microgravity measurements at 0.19 mK above the critical temperature.

Shear thinning occurs when $\dot{\gamma} \tau > 1$. A related phenomenon, viscoelasticity, occurs at small shear rates when the shearing is oscillatory at a frequency f that exceeds $1/\tau$. The first accurate measurement of near-critical viscoelasticity was made by a previous microgravity experiment, Critical Viscosity of Xenon (CVX, Ref. 11). The present experiment, CVX–2, measured shear thinning by driving the same viscometer to amplitudes 30 times larger. This report summarizes the key results of the CVX–2 experiment. The interested reader can find a detailed description of the experiment and the data analysis in Reference 12. A list of symbols used in this report is presented in the appendix.
In general, the viscosity \(\eta(f, \gamma)\) depends on both the dimensionless frequency \(f\) and dimensionless shear rate \(\gamma\), but so far theory only handles viscoelasticity in the limit of zero shear rate, \(\eta(0, \gamma)\), and shear thinning in the limit of zero frequency, \(\eta(f, 0)\). Therefore, we analyzed our data by approximating xenon’s constitutive relation by the product of those two limiting cases:

\[
\eta(f, \gamma) = \eta(f, 0) \frac{\eta(0, \gamma)}{\eta(0, 0)} \tag{2}
\]

The viscoelastic behavior \(\eta(f, 0)\) is known from theory (Ref. 6) and has been confirmed by experiment (Ref. 11). The shear-thinning behavior,

\[
\eta(0, \gamma) = \left[1 + A_f \gamma^p\right]^{-\rho} \tag{3}
\]

with \(\rho = x_0/(3 + x_0) = 0.022\), is based on an analogy between near-critical fluids and polymer fluids: Douglas (Ref. 13) pointed out that the empirical Carreau-Yasuda relation (Ref. 14) used for many polymer fluids is consistent with the results from the renormalization group theory for near-critical fluids in the limits of small and large shear rates. The shear-thinning function (Eq. (3)) also works at intermediate shear rates, but theory and experiment disagreed about the value of the shear-rate scale factor \(A_f\) (Ref. 15). The value \(A_f = 0.121\), which describes Oxtoby’s numerical results from mode-coupling theory (Ref. 1), is twice the value from Hamano et al.’s measurements, \(A_f = 0.067\pm0.007\) (Ref. 16). Like all previous measurements of near-critical shear thinning, Hamano et al. measured a binary liquid mixture instead of a monatomic fluid. However, their results are particularly valuable because they used a Couette viscometer to create a uniform shear field.

Experiment and Analysis

The density of a fluid near its liquid-vapor critical point is enormously sensitive to gradients of pressure and temperature. Shear thinning cannot be observed in quiescent xenon on Earth because the gradient of pressure caused by Earth’s gravity stratifies the density so that the layer near the critical density is too thin to be studied in a viscometer. To reduce gravitational stratification, the measurements were conducted in microgravity aboard Space Shuttle Columbia in 2003 during the ill-fated mission STS–107. Much of the data was downlinked during the flight, and the unexpected recovery of the hard disk drive from Columbia’s debris made 99 % of the data available.

To limit temperature gradients, the 11-cm\(^3\) xenon sample was sealed into a thick-walled copper cell (Fig. 2) that was surrounded by three temperature-controlled aluminum shells. That arrangement limited temporal variations of temperature to 10 \(\mu\)K and spatial variations to less than 0.2 \(\mu\)K. The viscosity was determined by measuring the drag on an oscillating rectangle of nickel screen. Its small mass (1 mg) made it insensitive to vibrations of the space shuttle’s structure. One of the screen wires was extended out of the rectangle and soldered to a stiff yoke to act as a torsion spring. The yoke supported the screen between four electrodes placed parallel to the screen.

Oscillating voltages applied to the electrodes generated a calculable torque on the screen that caused it to oscillate much like a child’s seesaw at frequencies of \(f = 1, 2, 3, \) or 5 Hz. The applied torque plus the opposing hydrodynamic torque determined the oscillating screen’s angular displacement, which was detected by the unbalance of a capacitance bridge. We obtained the hydrodynamic torque from the ratio of the Fourier transforms of torque and displacement. See Reference 11 for more details about the viscometer.

Attention was focused on the wires with the largest shear rate, specifically the wires located at both tips of the oscillator. Because the angular displacements were less than 0.05 radians, the tips’ motion was approximated as a linear displacement of amplitude \(x_0\). The hydrodynamic drag force on the tip wire, \(F(x_0, f, \gamma)\), which depended on \(x_0\) and \(f\) as well as on the dimensionless shear rate \(\gamma\), was deduced from the hydrodynamic torque on the entire oscillator and its derivative with respect to amplitude.
The qualitative signature of shear thinning near T_c was a nonlinear dependence of the drag force F as a function of the oscillator's amplitude x_0; the drag decreased as the amplitude increased. However, this signature was superimposed on an increase in the drag due to the convective term of the Navier-Stokes equation $\rho(\mathbf{v} \cdot \nabla)\mathbf{v}$, which is not related to critical fluctuations. Therefore, we measured just the convective contribution to F in the Newtonian fluid far from T_c and extrapolated its value into the non-Newtonian region near T_c. Dividing each non-Newtonian value of F by the extrapolated Newtonian value removed the Navier-Stokes nonlinearity and its noncritical dependence on x_0. Additional measurements made at a small amplitude x_{small} were used to remove the effect of viscoelasticity and its dependence on f. The resulting force ratio,

$$C_\gamma(\dot{\gamma}) = \frac{\left[F(x_0, f, \dot{\gamma})\right]_{\text{non-Newtonian}}}{\left[F(x_{\text{small}}, f, 0)\right]_{\text{extrapolated Newtonian}}}$$

was assumed to depend only on the dimensionless shear rate $\dot{\gamma}$. The shear rate varies by a factor of 1.8 or more, and the frequency varies by a factor of 5, while as predicted by theory, the data vary only with dimensionless shear rate. At large dimensionless shear rates, the force decreased by as much as 1% below the force in the absence of shear thinning. Although small, the decrease is remarkable because it indicates shear thinning of a monatomic fluid.

The calculations yielded the force on a circular cylinder oscillating perpendicular to its axis. The fluid density and viscosity were matched to the experimental xenon, and the cylinder diameter was matched to the effective hydrodynamic diameter of the screen wires (Ref. 11), which had a roughly rectangular cross section of 8 by 30 μm. The circular cross section used by the CFD calculations allowed a direct check against Stokes’ analytical result (Refs. 17 and 18) at small amplitudes. At both small and large amplitudes, the CFD calculations approximated the response of the experimental oscillator in the Newtonian xenon far from T_c.

There is no accurate analytical expression for $C_\gamma(\dot{\gamma})$, the force ratio of a cylinder oscillating in a shear-thinning fluid. Therefore, we derived an approximate expression for the real quantity $1 - C_\gamma(\dot{\gamma})$ and generalized it with two free parameters to obtain the fitting function

$$1 - C_\gamma^{\text{magFit}}(\dot{\gamma}) = \alpha_{\text{mag}} \left[1 - \left(1 + \frac{\beta_{\text{mag}}}{\alpha_{\text{mag}}} \right) \dot{\gamma} \right]^{-p}$$

At large shear rates, the empirical parameter α_{mag} allows for errors due to the approximate nature of Equation (5) (Ref. 12). At small shear rates, Equation (5) reduces to the simple expression

$$1 - C_\gamma^{\text{magFit}}(\dot{\gamma}) \approx p \beta_{\text{mag}} \dot{\gamma}$$

Results and Discussion

Figure 3 shows the measured magnitude and phase of the force ratio $C_\gamma(\dot{\gamma})$. The shear rate varies by a factor of 1.8 or more, and the frequency varies by a factor of 5, while as predicted by theory, the data vary only with dimensionless shear rate. At large dimensionless shear rates, the force decreased by as much as 1% below the force in the absence of shear thinning. Although small, the decrease is remarkable because it indicates shear thinning of a monatomic fluid.

Figure 3 also shows the results from computational fluid dynamics (CFD) calculations, which had two purposes. The first purpose was to estimate the shear rate at the surface of the experimental oscillator. The second purpose was to estimate the force ratio $C_\gamma(\dot{\gamma})$ in non-Newtonian xenon. To do so, the CFD calculations used Equation (3) with the value $A_\gamma = 0.067$, which describes Hamano et al.’s experimental data. Viscoelasticity was ignored because the assumed constitutive relation of Equation (2) causes viscoelasticity to cancel out of the force ratio of Equation (4).

The calculations yielded the force on a circular cylinder oscillating perpendicular to its axis. The fluid density and viscosity were matched to the experimental xenon, and the cylinder diameter was matched to the effective hydrodynamic diameter of the screen wires (Ref. 11), which had a roughly rectangular cross section of 8 by 30 μm. The circular cross section used by the CFD calculations allowed a direct check against Stokes’ analytical result (Refs. 17 and 18) at small amplitudes. At both small and large amplitudes, the CFD calculations approximated the response of the experimental oscillator in the Newtonian xenon far from T_c.

There is no accurate analytical expression for $C_\gamma(\dot{\gamma})$, the force ratio of a cylinder oscillating in a shear-thinning fluid. Therefore, we derived an approximate expression for the real quantity $1 - C_\gamma(\dot{\gamma})$ and generalized it with two free parameters to obtain the fitting function

$$1 - C_\gamma^{\text{magFit}}(\dot{\gamma}) = \alpha_{\text{mag}} \left[1 - \left(1 + \frac{\beta_{\text{mag}}}{\alpha_{\text{mag}}} \right) \dot{\gamma} \right]^{-p}$$

At large shear rates, the empirical parameter α_{mag} allows for errors due to the approximate nature of Equation (5) (Ref. 12). At small shear rates, Equation (5) reduces to the simple expression

$$1 - C_\gamma^{\text{magFit}}(\dot{\gamma}) \approx p \beta_{\text{mag}} \dot{\gamma}$$
Equation (6) has the same form as Equation (3) in the limit of small shear rate; its only free parameter β_{mag} is thus directly sensitive to the shear-rate scale factor A_{γ}.

Equation (5) was fit to values of $1 - \left| C_{\gamma} (\gamma_{\tau}) \right|$ for both the CFD data sets and the experimental data sets. Figure 4 shows that the fitted values of β_{mag} have little frequency dependence but are larger than the values fit to the CFD results. The ratio between the measured and CFD values of β_{mag} yields the result for A_{γ} in Equation (3):

$$A_{\gamma} = 0.137 \pm 0.029$$

This value, obtained at the liquid-vapor critical point of xenon, agrees with Oxtoby’s mode-coupling result of 0.121. A remaining challenge is to explain the disagreement between the computational fluid dynamics and experimental results at the large shear rates shown in Figure 4. Further measurements as well as theoretical work will be needed before Equation (2) can be replaced by a constitutive equation that is accurate at large shear rates.

Concluding Remarks

Shear thinning, a viscosity decrease common in complex liquids, was observed for the first time in a simple monatomic fluid. The measurements were made possible by conducting the Critical Viscosity of Xenon – 2 experiment on the Space Shuttle Columbia. The measured shear-rate scale factor of 0.137 ± 0.029 is in agreement with Oxtoby’s mode-coupling result of 0.121.
Appendix—Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_γ</td>
<td>shear-rate scale factor</td>
</tr>
<tr>
<td>$C_{\gamma}(\dot{\gamma})$</td>
<td>shear-thinning force ratio</td>
</tr>
<tr>
<td>$C_{\gamma}^{magFit}(\dot{\gamma})$</td>
<td>empirical analytical representation of the real part of $C_{\gamma}(\dot{\gamma})$</td>
</tr>
<tr>
<td>F</td>
<td>hydrodynamic drag force</td>
</tr>
<tr>
<td>f</td>
<td>frequency</td>
</tr>
<tr>
<td>\dot{f}</td>
<td>dimensionless frequency</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>T_c</td>
<td>critical temperature</td>
</tr>
<tr>
<td>x_n</td>
<td>universal critical exponent for viscosity</td>
</tr>
<tr>
<td>x_{small}</td>
<td>small amplitude oscillation</td>
</tr>
<tr>
<td>x_0</td>
<td>linear tip wire displacement</td>
</tr>
<tr>
<td>α_{mag}</td>
<td>empirical fitting parameter</td>
</tr>
<tr>
<td>β_{mag}</td>
<td>empirical fitting parameter</td>
</tr>
<tr>
<td>$\dot{\gamma}$</td>
<td>shear rate</td>
</tr>
<tr>
<td>η</td>
<td>viscosity</td>
</tr>
<tr>
<td>ρ_c</td>
<td>critical density</td>
</tr>
<tr>
<td>τ</td>
<td>relaxation time of critical fluctuations</td>
</tr>
<tr>
<td>τ_0</td>
<td>time-constant amplitude</td>
</tr>
<tr>
<td>ξ</td>
<td>fluctuation length</td>
</tr>
</tbody>
</table>
References

Glenn Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, January 16, 2009
We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate; the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth’s gravity.