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Abstract

  A technique for the optimization of stability constrained geometrically nonlinear 
shallow trusses with snap through behavior is demonstrated using the arc length method 
and a strain energy density approach within a discrete finite element formulation.  The 
optimization method uses an iterative scheme that evaluates the design variables' 
performance and then updates them according to a recursive formula controlled by the 
arc length method.  A minimum weight design is achieved when a uniform nonlinear 
strain energy density is found in all members. This minimal condition places the design 
load just below the critical limit load causing snap through of the structure.  The 
optimization scheme is programmed into a nonlinear finite element algorithm to find the 
large strain energy at critical limit loads.  Examples of highly nonlinear trusses found in 
literature are presented to verify the method.
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Optimization of Stability Constrained Geometrically 
Nonlinear Shallow Trusses Using an Arc Length Sparse

Method with a Strain Energy Density Approach

Abstract

  A technique for the optimization of stability constrained geometrically nonlinear shallow 
trusses with snap through behavior is demonstrated using the arc length method and a strain 
energy density approach within a discrete finite element formulation.  The optimization method 
uses an iterative scheme that evaluates the design variables' performance and then updates 
them according to a recursive formula controlled by the arc length method.  A minimum 
weight design is achieved when a uniform nonlinear strain energy density is found in all 
members. This minimal condition places the design load just below the critical limit load 
causing snap through of the structure.  The optimization scheme is programmed into a 
nonlinear finite element algorithm to find the large strain energy at critical limit loads.  
Examples of highly nonlinear trusses found in literature are presented to verify the method.

1. Introduction

  Modern design of light weight truss structures have been achieved through analysis 
techniques developed to investigate nonlinear instabilities. Appling loads to a truss system that 
produce non-proportional displacements is a nonlinear behavior.  Increases in loading will 
make the structure unstable or buckle.  In [13], these systems are called highly flexible 
structures (HFS) that are designed for large elastic displacements and without any plastic 
deformation.  These HFS may either show bifurcation or limit point instability.  Bifurcation 
instability occurs when the structure has a sudden geometric change and is characterized by an 
abrupt equilibrium path change along the load path.  Strain energy from a compressive force is 
converted to bending strain energy without a large force increase.  This can best be visualized 
as the typical Euler buckling of a slender column.  The second type of nonlinear structural 
response is limit point instability.  This behavior is displayed by a gradually changing 
equilibrium path without any sudden changes.  Increasing the load beyond the limit point will 
cause a release of strain energy as the stiffness becomes negative.  

  Light weight truss structures are often highly flexible with unpredictable nonlinear responses 
and may become unstable before a bifurcation point is reached.  An understanding of elastic 
stability behavior in nonlinear structures can be gained by graphically representing the load and 
displacement called the equilibrium path of the structure.

  Methods that overcome the challenges of accurately identifying nonlinear equilibrium paths 
have been improving and also have developed to include optimization at limit points.  A 
growing number of methods have been attempted to optimize a structure at a limit load with 
varying success.  The challenge is to design a flexible structure undergoing large displacements 
that can still remain functional without a loss of stability.

* Manuscript
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  Large aerospace truss systems have been proposed over the years to support future on orbit 
space technologies.  An example, that started in the 1960's, has been the repeated support for 
deploying space based solar power from various research organizations.  The United States 
Department of Defense is currently studying how to demonstrate a deployed solar power 
constellation to supply power to remote bases or on the battlefield.  Also during the 1960's,  
Rockwell International began studying large space truss structures for supporting microwave 
antennas and mirrors [5].  Another example of space trusses is today's International Space 
Station that makes use of deployable trusses to support its solar array panels.  All of these 
space based concepts rely on the truss system to support their mission goals because a truss is 
the easiest to assemble in micro gravity and offers a minimum weight design.  The lighter and 
more efficient these structural systems become with very slender members, the more likely 
they will have nonlinear stability problems.  The analysis challenge is to find effective 
techniques that go beyond finding Euler type bifurcation points and find the optimal truss to 
carry applied limit loads without becoming unstable and releasing stored strain energy.

  Weight optimization of slender truss members with stability constraints has been investigated 
by other researchers using various analytical techniques.  Prager [14] discusses a general 
method of optimality subject to a single design constraint set of displacement, critical buckling 
load or natural frequency.  Prager and Taylor [15] investigated columns under linear buckling 
constraints.  Other investigators followed with schemes to optimize columns with multiple 
eigenvalues and design sensitivities with constraints on buckling.  Some of the earliest finite 
element optimization investigations started in the 1970's with linear buckling that ignored any 
large deformations.  Khot, Venkayya and Berke in [9] presented an optimality criterion for 
minimizing weight to structures with stability requirements using a linear eigenvalue buckling 
solution within a finite element analysis.  Several other published works have studied nonlinear 
buckling of shallow trusses.  Kamat and Ruangsilasingha [6] addressed the problem of 
maximizing the critical load of shallow three dimensional trusses.  They developed sensitivity 
derivatives of the critical load with respect to design variables.  Many case studies used in 
previous published works were taken from Crisfield [3, 4].  The case examples he used 
challenged many nonlinear solvers to correctly follow a nonlinear snap through load path.  
Crisfield used these problems to test nonlinear behavior in truss structures and demonstrate the 
importance of identifying the critical limit load along the equilibrium path. In [8] Kamat, Khot 
and Venkayya offer exact closed form solutions to simple shallow truss problems optimized for 
weight.  They make use of the minimization of total potential energy that maximizes the load 
carrying capability without instability.  Optimizations of geometrically nonlinear trusses 
similar to those used by Crisfield were attempted later by Khot and Kamat in [7].  These 
examples highlighted the challenges many analysis techniques have in following a nonlinear 
response path up to a critical limit load.  The example problems also fully exposed the short 
comings of modern finite element programs through their lack of any optimization scheme for 
stability constrained problems.  Sedaghati [16] developed an optimization technique using the 
Group Theoretic Approach.  The method had stability constraints that used a strain energy 
density recurrence relationship for updating design variables.  The technique centers around 
obtaining a uniform strain energy density in all members to establish a minimum weight 
design.  They further made use of shallow type flexible truss structures to test and verify their 
methods.  
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  The method used in this paper achieves an optimal design using the principal of strain energy 
density and parameters in the arc length method to trace the nonlinear equilibrium path up to 
an instability point.  A stable structural system exists when deformations are increasing as the 
applied load is increased and unstable when deformations are still increasing but the loads are 
decreasing.

  An approach combining the arc length method with a design variable update scheme that 
finds a uniform nonlinear strain energy density in all members is programmed into a finite 
element algorithm.  The optimization method uses an iterative scheme that evaluates the design 
variables' performance and then updates them according to a recursive formula controlled by 
the arc length method.  Examples of highly nonlinear trusses found in literature are presented 
to verify the method.  Only conservative systems that adhere to the theorem of minimum 
potential energy are considered.  These are stable systems subjected to quasi-static proportional 
loads where the equations of equilibrium make the potential energy stationary under small 
displacements [18].

2. Review of Arc Length Formulas

  Various versions of the arc length method have been presented by many researchers [2-4, 13, 
17, 19] and incorporated into the finite element analysis procedures.  For convenience to the 
readers and to facilitate the discussion in subsequent sections, the Riks-Wempner arc length 
method is reviewed in the following paragraphs.  The Riks-Wempner method is considered a 
partial arc length method because it relies on a normal to the tangent rather than the circular 
path to search for an equilibrium point [13].  The method traces the nonlinear equilibrium path 
using an iterative process that begins with computing initial displacements, 0q due to a user 

defined load increment 0 , as shown in figure 1.  The linear stiffness,
0TK , is used to start the 

process and is replaced with the tangent stiffness,
iTK , in further iterations.  

The initial displacements 0q  are found using

0

0 totq q

 


 
             (2.1)

where 1   and totq is found from the expression

0T totK q Q               (2.2)

with Q being the total applied loading.  The notations given here for the displacements and 
loads are vector quantities with the stiffness notation understood as a matrix.  Substituting into 
(2.1) gives

0

0 0

1

( )totq q

 


 
 

          (2.3)

that is solved for the initial displacement of

0 0 0( )totq q             (2.4)
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Figure 1.  Starting the arc length

The method proceeds to find the next equilibrium point from the initial point 0 using the 
tangent stiffness,

1TK , as shown in figure 2.  The tangent stiffness matrix is assembled using 

the nonlinear truss given in (3.28) of section 3 and is defined as the elastic linear stiffness 
given by (3.6) added to the nonlinear stiffness in (3.26).  The sum of the linear elastic and 
nonlinear matrices produce the global tangent stiffness at point i along the load displacement 
path of the single-degree-of-freedom system.  A new displacement,

itotq is calculated from 

i iT totK q Q               (2.5)

with 1   as before.
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Figure 2.  Next iteration

  
The arc length used by Riks-Wempner is the straight line is and is either constant or scaled by 

the user input using the following
1
2

1
1

des
i i

i

I
s s

I


 
    

 
(2.6)

The user decides on the required number of iterations, 1iI  , and on the number of desired 

iterations, desI .  The arc length, is , is the tangent vector along the equilibrium path and can 

be calculated as
2

0 0 0
T Ts q q      (2.7)

or using

0 0 1 T
tot tots q q      (2.8)

  The length of the next tangent vector 1s can now be written as
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2
1 1 11 ( )tots q    (2.9)

In this equation the unknown is 1 but can be solved using

2

1
1

11 ( )tot

s

q
 







           (2.10)

and the incremental displacement found by

1 1 1( )totq q              (2.11)

The next step is a test for convergence that first obtains the internal force, 1F .   The residual 

forces can be calculated as:  

1 1 1RF Q F             (2.12)

Here the residual forces are the differences in the internal forces calculated from the 
equilibrium path and are shown in figure 3.

Figure 3.  Convergence tests.
The following is used to test for loads convergence:
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1 11
1

1 1

T

T

R RF s F
Q f

Q s Q



              (2.13)

where f is a user defined tolerance value.  If the statement is true then the loads test is 
successful.

A convergence for displacements is also performed using the ratio

1

1
d

q

q
         (2.14)

with d also a tolerance defined by the user.  Once again, if the statement is true then the 

displacement test is passed.

If both convergence tests are passed then another load step is started with the same procedure 
being followed as outlined above.  If, however, one of the tests fail, then iteration on the 
normal begins as shown in figure 4.  The objective is to find 2q and 2 by iterating down the 

normal from the tangent vector 1s .  Figure 4 shows the necessary geometry required to start 

the iteration.  A portion of the figure is magnified to help show how the variables are defined. 

Figure 4.  Iteration on a normal.

The normal vector 2n is tangent to 1s if
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1 2

1 2

q

q





 
 

                 (2.15)

from similar triangles shown in figure 5.  This may also be written as

1 2 1 2 0q q                 (2.16)

A new tangent stiffness,
2TK   is calculated and used in the following

2 12
II

T RqK F                           (2.17)

where all variables are defined by figure 5.

Figure 5.  Details of iterating on a normal.

Equation (2.17) may be rewritten as
1

2 12
II

T Rq K F


                (2.18)

The incremental displacement shown in figure 5 can be expressed as
*

2 2 2
IIq q q               (2.19)

Now, from similar triangles the following is obtained
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*
2 2

2 ( 1)
Iq q

 


 

 
           (2.20)

Rearranging terms to obtain

* 2 2
2 2 2( 1)

I
Iq

q q
 


 
 

  


           (2.21)

Combining equations (2.19) and (2.21) will create 

2 2 2 2
II Iq q q                (2.22)

Now equation (2.16) is combined with (2.22) to obtain

 1 2 2 2 1 2 0II Iq q q         

that may be reduced to 

 
1 2

2
1 2 1

II

I

q q

q q







 


  
           (2.23)

which is added to the previous load increments as follows

2 0 1 2                   (2.24)

Likewise, the displacements increments are summed using (2.22) to give

2 0 1 2q q q q                (2.25)

Equations (2.24) and (2.25) represent the load and displacement at location 2 along the 
equilibrium path.  A convergence check is performed similar to figure 3 and equations (2.12) 
through (2.14).  If the test is passed then a new load increment starts using the tangent vector of 
equation (2.9).  If the tests fail then iteration down the normal vector n is started as shown in 
figure 6.  The process continues until the convergence tests for load and displacements are both 
passed.
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Figure 6.  Continuing iteration on normal

3.  Derivation of 3-D Geometrically Nonlinear Truss Element Stiffness

  Trusses undergoing large deflections must be analyzed for the deformed geometry of the 
structure.  The linear equation

               F K u                                  (3.1)

that relates the applied force F  with the truss element stiffness  K  and displacements u must 

be modified to account for changes in nodal geometry as the load is applied.  The standard 
stiffness elastic stiffness matrix  EK will be modified by the addition of a geometric stiffness 

matrix  GK that depends on the geometry and initial internal forces. The elastic and 

geometric matrices can be written as:

     E G
K K K  (3.2)

  It should be noted here that efficient sparse assembly procedures [12] have been employed in
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Eq. (3.2), while efficient sparse reordering algorithms (to minimize fill-in terms, during 
factorization phase) and sparse solver (with unrolling strategies [12] have been utilized in Eq. 
(3.1)  

  Nonlinear analysis is usually divided into a sequence of load steps with the displacements 
being solved after each load increment.  The nonlinear stiffness is then updated with the 
displacement and internal force values from the previous step.  A discussion of the nonlinear 
truss element used in the finite element program in this study follows.

  The following definitions are used to derive the elastic truss stiffness with the variables 

defined in figure 7.  The change in displacements for an thi  truss can be written as
( )

2 1 2 1
iX x x x x      (3.3)

( )
2 1 2 1

iY y y y y      (3.4)

( )
2 1 2 1

iZ z z z z                  (3.5)   

where 1 1 1, ,x y z    are the displacements at end 1 and 2 2 2, ,x y z   are the 

displacements at end 2.  The global nodal coordinates are given as 1 1 1, ,x y z  at end 1 and 

2 2 2, ,x y z for end 2. The original length is ( )iL  and the new length is given as ( )iL .

Figure 7.  Nonlinear 3d Truss variables
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  The matrix  esm  shown below is the normal elastic stiffness matrix for a three dimensional 

truss defined using variables for easier computer programming.  

 

(1) (1) (1) (2) (1) (3) (1) (4) (1) (5) (1) (6)

(2) (2) (2) (3) (2) (4) (2) (5) (2) (6)

(3) (3) (3) (4) (3) (5) (3) (6)
1

(4) (4) (4) (5) (4) (6)

(5) (5) (5) (6)

(6) (6)

C C C C C C C C C C C C

C C C C C C C C C C

C C C C C C C C
esm CON

C C C C C C

C C C C

C C

 
 
 
 

  
 
 
 
 

       (3.6)

where the following are defined as:
21 iX D deltax             (3.7)

21 iY D deltay    (3.8)

21 iZ D deltaz    (3.9)

(1) 21C x D                (3.10)
(2) 21C Y D                            (3.11)
(3) 21C Z D                        (3.12)
(4) (1)C C                       (3.13)
(5) (2)C C                        (3.14)
(6) (3)C C                        (3.15)

3
1

EA
CON

xl
                               (3.16)

with EA  being Young's modulus multiplied with the bar cross section.  The nonlinear 
geometric stiffness will now be defined and added to the elastic stiffness (3.6).  

Element internal force

  The internal forces in the truss element are required for the geometric stiffness and will be 
defined using matrix notation.  The element strain formulation uses a constant cross sectional 
area and assumes the length/area of the truss will remain large.  The strain energy or work done 
is 1/2 the nodal forces multiplied by the corresponding deflections. 

  The internal force in the truss will now be defined to include nonlinear effects.
The force will be axial and is needed in updating the nonlinear stiffness matrix.
Defining the force in matrix notation is necessary for efficient computer programming.
The truss length from incremental displacements may be written as

2
21 21 21 21( ) ( )Txli x p x p  
   

                                                                                   (3.17)

where
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2 1

21 2 1

2 1

( )

( )

( )

ux ux

p uy uy

uz uz

 
   

  


   and                

2 1

21 2 1

2 1

( )

( )

( )

x x

xl y y

z z

 
   

  


                            (3.18)

with

21 2 1ux ux ux                                                                                                             (3.19)

21 2 1uy uy uy                                                                                                           (3.20)

21 2 1uz uz uz                                                                                                            (3.21)

Now using the strain equation
2 2

22

xli xl

xl
 
                                                                                                                  (3.22)

and substituting in the original and new truss lengths in matrix form will give

21 21 2121 21 21

21 21

( ) ( ) ( )

2

TT

T

xl p xl p xl x

xl xl
   


    

                                                                         (3.23)

This may be simplified in matrix notation written as

1
21 21 21 212

T Txl p p p  
   

                                     (3.24)

The first portion of (3.24) represents the linear strain and the last part is the nonlinear 
contribution.  The internal force in the truss is then:

AN EA                          (3.25)

and the geometric stiffness can now be defined as:

0 0 0 0

0 0 0

0 0

0 0
G

AN AN

xl xl
AN AN

xl xl
AN AN

xl xlK
AN

xl
AN AN

xl xl
AN

xl

  
 
 
 
 
 
   
 
 
  
 
 
  

                           (3.26)
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where

2 2 2
2 1 2 1 2 1 2 1 2 1 2 1

2 2 2

( ) ( ) ( ) ( ) ( ) ( )

2 2 2
AN EA
xl xl

ux ux uy uy uz uz ux ux uy uy uz uz

xl xl xl xl xl xl

      
      

  
       (3.27)

The total nonlinear 3D truss element stiffness can now be written by adding the corresponding 
members of 3.27 with 3.16 that reduces until the final tangent stiffness becomes:

           2 2 2
2 1 2 1 2 12 1 2 1 2 1

2 2 2

3 ( ) 3 ( ) 3 ( )3( ) 3( ) 3( )
1

2 2 2
EA

T xl

ux ux uy uy uz uzux ux uy uy uz uz
K

xl xl xl xl xl xl

            
 
 

  (3.28)

This is the tangent stiffness used for a nonlinear truss element in the developed finite element 
algorithm.  The truss element's performance was tested against snap through and snap back 
problems found in Crisfield [2, 3].  Criteria for a well behaved element were its ability to 
accurately trace an equilibrium path and to reach and pass critical limit points within an arc 
length solution.  

4. Derivations of Optimum Nonlinear Strain Energy Density Formulas

  Optimizing the weight of truss structures undergoing large displacements requires analysis 
methods that accurately trace the equilibrium path and identifies critical limit points.  Most 
"shallow type" space truss designs will have snap through response curves similar to figure 8.  
Depending on the geometry of the design, the structure may have a snap back path or may 
respond with bifurcation buckling.  These stability response types are due to the level of 
nonlinearity of the geometry in the design and the applied loading.  Imperfections in the truss 
geometry can also contribute to a reduced load carrying ability of a system.  The investigation 
of random initial imperfections for frame-type structures that exhibit instability at limit points 
was discussed by Warren in [17].  He used an arc length approach to trace the nonlinear 
equilibrium paths of simple benchmark examples.  Khot [7] explains the reduction in load 
capacity is primarily from the nonlinear response of a system and secondary from geometry 
imperfections.  Verification problems from Crisfield [2, 3] show the snap through and snap-
back behavior of several shallow truss designs.  Achieving a minimum weight design of 
shallow trusses similar the design examples from Crisfield will require limit point stability 
constraints that can maximize critical load.

  The discussion of using the strain energy density as an indicator of an optimal design starts 
with explaining strain and potential energy in truss elements.  The optimization problem can 
then be defined with a recurrence formula developed to update the design variable, in this case 
the cross sectional area of the member.

Strain Energy Density                        

The strain in a truss element can be expressed as
xli xl

xl
 
                                                                                                               (4.1)
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where xl is the original length and xli is the new length as used in chapter 2.  The element's 
length change may be large, however, the strains are considered small enough to allow a linear 
stress strain relationship.  The work done by external forces causing deformation is stored 
within the truss in the form of strain energy.  In a load displacement profile, the area under the 
curve is the strain energy (SE) and can be written as 

1

2
SE P                                                                                                                     (4.2)

where P  is the internal load and  is the axial displacement.

Substituting 
AE

P
xl


  for a truss element will give 

21

2

AE
SE

xl
                                                                                                               (4.3)

Here A is the truss cross sectional area and E is Young's modulus.

Upon further manipulation with 
2 2

2
2 2

( )xli xl

xl xl
  

  , the strain energy for an ith element 

can be expressed as  
21

2i i i i iSE E A xl                                                                                                         (4.4)

Strain energy density (SED) is the amount of strain energy per unit volume.  It can be found by 
dividing the strain energy by the volume of an element and can be written as 

i
i

i i

SE
SED

xl A
                                                                                                               (4.5)

This relationship is modified for use in an optimum criterion by dividing the strain energy by 
the mass density i  for an ith element that gives

i
i

i i i

SE
SED

xl A
              (4.6)

In order to further develop an optimality criterion for stability, a discussion of potential energy 
follows.

Optimality Criterion

The minimum weight optimization of a truss system is defined as:

1

n

i i i
i

W A L


                                                                                                                (4.7)

where i  is the material density of the ith element, iA  is the ith element cross sectional area 

and iL is the new deformed length of the ith element with n number of elements.  



16

The formal optimization problem can be defined as: 

This minimum weight equation is subject to the equality constraint

0g PE PE                                                                                                         (4.8)

where PE  is the total potential energy of a truss system and PE  is the target total potential 
energy of the optimal design at the critical nonlinear limit load.  This equality constraint has 
the smallest cross sectional area capable of sustaining an applied load just before the structure 
becomes unstable.  This places a constraint on the limit load that is the same as constraining 
the total potential energy of the structure.  For multiple members the potential energy may be 
written as

1 1

ele nodes

i j
i j

PE SE W
 

     (4.9)

where iSE is the strain energy in the ith element and jW  is the work produced from an external 

force.  The relationship can also be written for a structural system consisting of n number of 
truss elements as: 

1

n
T

i
i

PE SE u F


 


                                                                                                             (4.10)

with iSE identifying the strain energy in the ith element, Tu


a vector transpose of the global 

displacements and F


being the applied design load vector.  

The constrained minimization of equation (4.7) with the equality constraint is summarized as:

Find  { iA }                              (4.11)

to minimize 
1

n

i i i
i

A xl

                            (4.12)

subject to 0PE PE                             (4.13)

  The first step to solving the nonlinear constrained optimal problem and deriving an
update scheme for the area is to form the Lagrangian.  The method will answer the question 
"How do I minimize the strain energy density while making sure the structure will support a 

subject to 

Find { }iA

to minimize
1

n

i i i
i

A L



0PE PE 
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load without becoming unstable?"  It is the basic tool used in nonlinear constrained 
optimization problems.

  Lagrange developed the tool for solving optimality problems by developing the Lagrangian 
function written as

 
1

( )
m

j j
j

L f x h x


                                      (4.14)

for finding  nx R                                    (4.15)

to minimize  f x                                    (4.16)

subject to   0jh x         1, 2,...,j m                                   (4.17)

where j is called the Lagrange multiplier for the solution (x) that lies in some domain.  

Lagrange multipliers find the largest maximum or smallest minimum of a function of several 
variables subject to one or more constraints. This method reduces a problem in n variables 
with k constraints to a solvable problem in n + k variables with no constraints. The method 
introduces a new unknown scalar variable, the Lagrange multiplier, for each constraint and 
forms a linear combination involving the multipliers as coefficients.  The Lagrange multiplier 
can be thought of as how strong the constraint is working to get a point to a maximum or 
minimum.  The objective is to find the conditions, for some implicit function, so that the 
derivative in terms of the independent variables of a function equals zero for some set of 
inputs.  The point x is stationary in space if

 
1

0
m

j
j

i i ij

h xL f

x x x

  
  

                1, 2,...,i n                                    (4.18)

and

  0jh x         1, 2,...,j m                                    (4.19)

A stationary point merely means that the solution (x) causes the derivative of a function to 
equal zero.  This is equivalent to saying it's where the function stops increasing or decreasing.  
In the case presented in this paper, the solution (x) is the value of the load that causes the 
tangent at that point to be parallel to the x-axis.  This is also the point of minimum strain 
energy density for all members along their equilibrium path.  Using this formulation and 
applying it to minimizing weight in trusses, the Lagrangian becomes

 
1

n

i i i
i

L A xl PE PE 


                                     (4.20)

where   is the Lagrange multiplier and  PE PE  is the difference between the total 

potential energy of the system PE  and the target potential energy PE  of the optimal design at 
the critical limit load.  We desire this difference in potential energy to be a minimum.  
Differentiating with respect to iA  gives 

http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Constraint_%28mathematics%29
http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Independent_variable
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1
1

dof
j

i i
i j ij

uPE PE
xl

A u A
 



    
    

           1, 2,...,i n                                                              (4.21)

The potential energy is a function of the set of displacements.  If these displacements behave to 
place the structure in stable equilibrium then the total potential energy has a "stationary" value 
and the following can be written

0
PE SE

F
u u

 
  

 
                      (4.22)

This is the partial of the potential energy from (4.10).  Using the zero statement of (4.22) with 
(4.21) the following simplified form is achieved:  

1 0i i
i

PE
xl

A
 

 
   

                                                                                                            (4.23)

Consider now that the potential energy in (4.10) as function of the area of the section.  A 
change in the potential energy with respect to a change in the area can be written as

i i

i i i

SE u FPE

A A A

 
 

  
                       (4.24)

This is equal to

i

i i

SEPE

A A





                      (4.25)

This is possible because of the definition of strain energy in (4.4)
Placing (4.25) into (4.23) yields

1 0i
i i

i

SE
xl

A
 

 
  

 
                                               (4.26)

This can be rewritten as 

1 1i

i i i

SE

xl A




 
 

 
                                   (4.27)

Using the definition of strain energy density this equation can be given as the strain energy 
density optimality criterion of

 1 1iSED                        (4.28)

A recurrence formula for updating the area design variable is found by multiplying this 

formula by  iA


to give

       1i i iA A SED
                       (4.29)

where   is a parameter that controls the step size and convergence rate.
Now taking the  th root on each side

       1/
11i i iiter iter

A A SED
                       (4.30)

gives the updated area for the next iteration.  The use of this equation within the arc length 
method will set 1/   equal to the load increment multiplier i  as shown in figure 1.  The 

Lagrange multiplier   in equation (4.30) is set equal to 
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1
1

2

1

n

i
n

i

SED

SED

 







                 (4.31)

and is placed into equation (4.30) along with i to obtain

     1
1

2

1

n

i
i i iiter iter n

i

SED

A A SED

SED






 
 
   
  
 




                                                                         (4.32)      

  This is the recurrence relation used to update the design variable iA at the end of each 

converged arc length iteration.  This is a type of difference equation that defines each term of 
the sequence as a function of the preceding terms.  Equation (4.32) gives a new iA  based on 

the strain energy density difference in all the members.  As an optimal solution is approached 
the SED's will become equal within a user specified difference allowable.

5. Design Variable Scaling

  The arc length method is used to both solve the nonlinear structural system and also as an 
update indicator used in monitoring the SED in the system's truss elements.  As the equilibrium 
path is defined, parameters of the arc length are monitored and used to update the recurrence 
equation.  The approach allows for updating the truss stiffness after each run through the arc 
length solver.  As a critical limit point is approached, the slope of the tangent to the equilibrium 
path will approach zero.  The ideal solution would place the critical limit load when the slope
goes to zero and all the member strain energy densities become equal. 

  A recurrence relation is used to update the design variables, in this case the cross sectional 
areas of the truss members.  Recurrence equations are used in iterative processes to keep track 
and adjust variables in optimizations.  Formulation of the updating recurrence relation relies on 
information from the arc length parameters.  One of those parameters is the incremental 
external load multiplier.  The multiplier picked to update the recurrence equation depends on 
what phase the arc length solver is processing.  The solver has three phases with each checking
the difference between the present total external load multiplier and the next load multiplier.  
This is shown beside the "call rikarc" in the flowchart of figure 9.  The checks indicate how 
close the load is to reaching a limit point and if the arc length is becoming horizontal with 
decreasing slope.  

  A new parameter, called the scale strain parameter (SSP), was developed that used the size of 
the incremental external load at the end of each arc length iteration.  The value of the SSP 
depends on the checks performed above and shown in figure 9. The three possible values of 
the scale strain parameter are

SSP= 0 0   , i i    or k k             (5.1)
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where 0 , i  or k  are the incremental load multipliers used along the load path.  The 

initial load increment is 0 = dl0 and is supplied by the user at the start of the arc length 

procedure as shown in figure 1.  The value 0  is a preload placed on the structure but is zero 

for the problems used in this paper.  Figure 8 shows the other two incremental multipliers as:

i = dli ....the incremental external multiplier at step i

k = dlk....the incremental external multiplier at step k

  
Figure 8.  Riks-Wempner arc length method on a normal plane for a single-degree-of-freedom 
system. 

The new recurrence formula for scaling the design variable is taken from (4.32) and can be 
written using the SSP as:

SEDscale=((SEDtotal/SEDtotal2)*SED(i))**SSP (5.2)

where:

SEDscale is the strain energy density scaling factor (5.3)
SEDtotal is the total strain energy density (5.4)
SEDtotal2 is SEDtotal^2 (5.5)
SED(i) is the strain energy density in the ith member and (5.6)
SSP is the new scale strain parameter (5.7)
dSEDtol = 1.0d-3 user given differences between all elements SED             (5.8)

  The flowchart shown in figure 9 outlines the updating scheme of the area design variable, 
propsect.  Immediately after a solution is found in the arc length solver, the elemental strain 
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energies are calculated and compared with the strain energy density tolerance, dSEDtol.  If all 
members are within the tolerance then the solution is the optimal.  If one member fails the 
tolerance test then a new SSP is calculated from the initial multiplier, dl0, or the incremental 
external multipliers dli and dlk.

  The strain energy density check is shown in the flowchart of figure 9 and graphically 
explained in figure 8.  Each user defined tolerance depends on the type of model, level of 
fidelity of the user wishes in weight reduction and how the structure was initially modeled.  
The whole structure can be optimized for weight or truss members may be grouped together for 
sizing.  If the absolute SED difference is below the tolerance, then the solution is considered at 
optimum.  A minimum area is used to avoid zero area trusses.  A zero area indicates a truss 
member that is necessary for a stable structure but carries no load.  The minimum area check is 
made to assure member sizes are greater than a user provided area.  

  Another check of all the SED's is made using the user provided dSEDtol.  Only solid rods are 
used in this work but any section could be used.  The new strain energy densities are then 
computed using the updated areas.  

  The strategies explained in using the recurrence formula will be demonstrated using example 
problems that are solved using a nonlinear solution in Nastran.  Results of nonlinear structures 
published in numerous references will also be used to verify the Hrinda algorithm using the 
strain energy density and arc length procedure.
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Input model 
data & 

parameters

Call rikarc

If iexlk=0, SSP=1.0
If iexlk=1, SSP=exlkdl0
If iexlk=2, SSP=exlkdli
If iexlk=3, SSP=exlkdlk

SEDtotal=Σ(strainD)
SEDtotal2=Σ(strainD^2)

If(exlk>exlk+dl0)
exlkdl0=exlk+dl0

iexlk=1

If(exlk>exlk+dli)
exlkdli=exlk+dli

iexlk=2

If(exlk<exlk-dlk)
exlkdlk=exlk-dlk

iexlk=3

Optimizer Flowchart

exlk>.99 
& <1.0

Yes

No

SEDscale=((SEDtotal/SEDtotal2)*SED(i)^SSP
propsect(iprop)=propsect(iprop)*SEDscale

propsect(iprop)
<Amin

Amin=.1

propsect(iprop)=Amin
Yes

No

dSEDtol=1.0

dSED=abs{SED(i)-SED(j)}

dSED<
dSEDtol

Yes

No

iSEDchk(i)=1

propsect(iprop)=propsect(iprop)/exlk

propsect(iprop)
<Amin

propsect(iprop)
=Amin

Yes

No

reset counters
N=N+1
iopt=1
iexlk=0

Return

SEDtotal=sum of all strain energy densities 

SSP=scale strain parameter 

propsect(iprop)=area of 

Amin=min area of element 

SEDscale=strain energy density scale 

delta strain energy density 
tolerance

check strain energy densities
between elements 

Figure 9.  Flowchart for the Hrinda optimizer program.



23

6.  Verification Examples of Optimized Trusses 

  The following example problems are used to verify the proposed nonlinear optimization 
method.  All of the examples attempt to find the minimum weight of truss areas to support an 
applied load without buckling.  The problems are shallow trusses that have critical limit points 
and are take from Khot [7].  The first two problems solve a two element, 2D system.  A 
vertical load is applied at the mid point with pinned end conditions.  The next problem is a four 
element system that has four different lengths with four cross sections to be optimized.  A 
larger star dome problem is then presented similar to the Crisfield star dome in volume two [4].  
This problem was minimized using four cross sectional area groups related to the layout of the 
design.  The last problem is a large shallow truss that is more practical to space trusses.  The 
problem allows for each of the members to be solved for a unique design variable.  Here the 
system has 13 cross sections sized to support a vertical load without snapping through.  The 
solutions found in all examples were compared to those published by Khot as well as with 
Nastran fea.  The areas found by the proposed technique were used in the Nastran models. 
Here the displacements of the Nastran solutions were checked against those found by the 
proposed algorithm.     

Example 1.  Two Member Symmetric Truss

  The first example used to help verify the Hrinda optimization algorithm is a two member
symmetric shallow truss with a 200. lb. concentrated load as shown in figure 10.  The problem 
is taken from Khot [7] and is optimized to find the minimum sectional area that could support 
the 200. lb. load without a sudden strain energy release and the structure snapping through.  All 
degree-of-freedoms were constrained except at the center node.

  Two different initial areas of 3.0 sq. inch and 5.0 sq. inch were chosen to test the algorithms
ability to find unique areas for each member.  Figure 11 shows the initial and final strain 
energy density distributions in the two elements.  The SED in the members became equal at 
.88199 making their final relative SED equal to 1.0 indicating an optimal design.  Both 
members were sized to equal areas of 6.499 sq. inch. that was slightly larger then the results 
found by Khot [7] of 6.4977 sq. inch for both members.  The total weight summary of the 
members after each iteration is given in figure 12. 

Figure 10.  Two element symmetric truss with 200 lbs. apex load.

Element Initial Area

( 2in )

Initial SED Initial Relative
SED

Final 
SED

Final Relative 
SED

Final Area

( 2in )
1 3.00 1.38806 1.00000 0.88199 1.00000 6.4989
2 5.00 0.49960 0.35993 0.88199 1.00000 6.4989

Figure 11. Strain energy density distribution of two element symmetric truss.
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Iteration Weight (lbs.)
1 0.100020E+03
2 0.803313E+02
3 0.799023E+02
4 0.162505E+03

Figure 12.  Iteration weight history of two element symmetric truss.

Figure 13.  Khot load displacement curve for two member symmetric truss with cross section 
areas equal to 6.4977 sq. inch.

The published results in [7] used an area of 6.4977 sq. inch and are close to optimal however 
according to the Nastran results as well as the Hrinda solution they will not support the 200 lb. 
load with snap through buckling still occurring.  A Nastran analysis used the smaller area of 
6.4977 sq. inch from [7] with the results plotted in figure 13. The equilibrium path shows two 
critical limit points with the first at a load increment of .99959 or an applied load of 200 lbs. 
times .99959 that equals 199.9180 lbs.  The first limit point is reached and then the structure 
responds with a snap through before reaching the intended design load.
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Figure 14.  Hrinda load displacement curve for two member symmetric truss with cross section 
areas equal to 6.4999 sq. inch.

  The areas obtained from the Hrinda algorithm were substituted into the nastran model of the 
two element symmetric truss used in figure 10.  The areas for both elements were the same as 
one expects from symmetry and was 6.4999 sq. inch.  This optimal cross section produces a 
maximum displacement of -1.0354 inch at the maximum load increment of 1.0 as shown in 
figure 10.  The Hrinda obtained area was slightly higher then in [7] and did not cause an 
instability snap through.  The difference between the Hrinda and Khot/Kammat results are 
practically zero.  The two results show the sensitivity of the optimal solution to the number of 
significant digits used in the design and solution parameters. If a larger load increment were 
used during the arc length solution then the design area may be slightly smaller as in [7].  The 
two designs are practically identical but also show how a slight imperfection could affect the 
design as stated by Bruns[1], Khot and Kammat [7] and Sedaghati [16].

Example 2.  Two Member Unsymmetric Truss

  The next verification problem is an unsymmetric two element truss as shown in figure 15 and 
has the same 200 lb. applied load and support conditions as the first example.  The problem is 
also taken from [7].  A summary of the SED results obtained by the Hrinda algorithm is given 
in figure 16.  The optimal area is achieved after the difference between the SED in both 
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members fell within the user defined parameter dSEDtol.  The final optimal areas were 2.6658
sq. inch and 2.6646 sq. inch or for a practical design they were the same in both members.  The 
weight history shown in figure 17 for each iteration with the final design weight of 66.64 lbs.  
This compared very closely with the results in [7] that where 66.53 lbs.

Figure 15.  Two element unsymmetric truss.

Elemen
t

Initial SED Initial Relative
SED

Final SED Final Relative 
SED

1 1.50354 .24968 2.15244 .99961
2 6.02195 1.00000 2.15159 1.00000

Figure 16. Strain energy density distribution of two element unsymmetric truss.

Iteration Weight (lbs.)
1 0.4501E+02
2 0.2414E+02
3 0.2461E+02
4 0.2483E+02
5 0.2490E+02
6 0.2492E+02
7 0.2493E+02
8 0.6664E+02

Figure 17.  Iteration weight history of two element unsymmetric truss.

Example 3.  Four member unsymmetric truss

  The next problem investigated was an optimized unsymmetric four element truss with 
stability constraints presented by Khot and Kammat [7] and analyzed using the Hrinda 
optimization approach in this paper.  The model is shown in figure 18 with a vertical loading of 
200 lbs. at the center node.  The first part of the analysis was to create a nonlinear Nastran 
model and test the results in [7] for possible snap through behavior.  The areas used in the 
Nastran analysis were the final design areas in [7] and are shown in figure 20.  The load 
deflection plot of the center node is displayed in figure 22 and shows a critical limit point is 
reached before the design load of 200. lbs.  A critical limit point is reached at a load increment 
of .9174 with a displacement equal to -1.2597 inches.  Strain energy stored in the structure is 
released and the load decreases with increasing load.  The load goes to zero at about -3.00 
inches and switches direction until another limit point is reached at a maximum load increment 
of -.9174 at a displacement equal to -4.7217 inches.  The curve given in figure 22 shows how 
the structure is only able to support a load of .9174 x 200 lbs. or 183.48 lbs.  Figure 19 is a plot 
of the deflected shape after snap through.
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Figure 18.  Plan view of the four member 
unsymmetric truss example. 

Figure 19.  Four member truss at snap 
through.                     

Element Area ( 2in )

1 2.1555
2 1.6668
3 1.7202
4 2.0894

Figure 20.  Nastran element properties from [7].

  Now the proposed Hrinda method is used to solve and optimize the same problem in [7]. The 
initial areas for all the members were 2.20 sq. inch with the final areas shown in figure 21.
This equals an optimized weight of 114.934 lbs. as shown in the iteration history in figure 25.
The final Hrinda derived results were used in a Nastran nonlinear analysis with the results for 
the center node plotted in figure 23.  

Element Area ( 2in )

1 2.1613
2 1.6596
3 1.7269
4 2.8940

Figure 21.  Hrinda final design.
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  The load increment in figure 23 goes to 1.0 with a displacement of -1.248 inches.  This plot 
shows the structure is able to support the 200 lbs. load without snap through buckling.  The 
maximum load increment is reached at 1.0 and is multiplied by the applied load of 200 lbs.  
The strain energy density distribution results found by Hrinda are summarized in figure 24 and 
show that the SED in all members are nearly equal.

Figure 22.  Four member unsymmetric truss equilibrium path during snap through. 
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Figure 23. Load displacement results for center node of four member truss using Hrinda 
results in Nastran.

Element Initial Area

( 2in )

Initial SED Initial Relative
SED

Final Area

( 2in )

Final SED Final Relative 
SED

1 2.20 0.105498E+01 0.558117 0.217240E+01 0.150140E+01 0.983680
2 2.20 0.620698E+00 0.328368 0.163832E+01 0.152631E+01 1.000000
3 2.20 0.673578E+00 0.356343 0.172547E+01 0.152479E+01 0.999004
4 2.20 0.189025E+01 1.000000 0.292330E+01 0.147108E+01 0.963815

Figure 24.  Strain energy density distribution in four member truss.

Iteration Weight (lbs.)
1 0.126822E+03
2 0.121775E+03
3 0.118580E+03
4 0.116549E+03
5 0.115251E+03
6 0.114934E+03

Figure 25.  Iteration weight history of four member truss.
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Example 4.  Star Dome Truss

  The next problem presented is the shallow star dome truss example by Khot and Kammat [7]
and is shown in figure 26. The design has thirty members with pin supports at the outer nodes
and one vertical load at the center.  The design sizing is preformed on four optimization groups 
that are listed in figure 27.  The minimum area for all elements is 0.1 inch sq. 

Figure 26.  Star dome truss
example.                                                                                             

Figure 27. Star dome optimization 
groups.

Element Initial 
SED

Initial 
Relative

SED

Final SED Final 
Relative 

SED

Final Area

( 2in )

1 19.428600 1.000000 15.493200 0.964167 1.69407
2 19.428600 1.000000 15.493200 0.964167 1.69407
3 19.428600 1.000000 15.493200 0.964167 1.69407
4 19.428600 1.000000 15.493200 0.964167 1.69407
5 19.428600 1.000000 15.493200 0.964167 1.69407
6 19.428600 1.000000 15.493200 0.964167 1.69407
7 12.605600 0.648817 15.475700 0.963078 1.37499
8 12.605600 0.648817 15.475700 0.963078 1.37499
9 12.605600 0.648817 15.475700 0.963078 1.37499

10 12.605600 0.648817 15.475700 0.963078 1.37499
11 12.605600 0.648817 15.475700 0.963078 1.37499
12 12.605600 0.648817 15.475700 0.963078 1.37499
13 0.740568 0.038117 16.069000 1.000000 0.263468
14 0.000002 0.000000 4.293670 0.267202 0.100379
15 0.000002 0.000000 4.293670 0.267202 0.100379
16 0.740568 0.038117 16.069000 1.000000 0.263468
17 0.000002 0.000000 4.293670 0.267202 0.100379
18 0.000002 0.000000 4.293680 0.267203 0.100379
19 0.740566 0.038117 16.069000 1.000000 0.263468
20 0.000002 0.000000 4.293680 0.267203 0.100379
21 0.000002 0.000000 4.293670 0.267202 0.100379
22 0.740568 0.038117 16.069000 1.000000 0.263468

Group I 1-6
Group II 7-12
Group III 13,16,19,22,25,28
Group IV 14,15,17,18,20,21,

23,24,26,27,29,30



31

23 0.000002 0.000000 4.293670 0.267202 0.100379
24 0.000002 0.000000 4.293670 0.267202 0.100379
25 0.740568 0.038117 16.069000 1.000000 0.263468
26 0.000002 0.000000 4.293670 0.267202 0.100379
27 0.000002 0.000000 4.293680 0.267203 0.100379
28 0.740566 0.038117 16.069000 1.000000 0.263468
29 0.000002 0.000000 4.293680 0.267203 0.100379
30 0.000002 0.000000 4.293670 0.267202 0.100379

Figure 28.  Star dome strain energy density 
and truss area design. 

Figure 29.  Star dome 
weight summary 

Figure 30.  Final optimized group truss areas comparison.

  The strain energy density summary and final member areas are shown in figure 28. The 
relative strain energy densities are also given and show group IV being sized to the minimum 
0.10 inch sq.  Group IV members have been sized to the minimum area so their relative SED 
will not approach unity.  Figure 29 shows the total design weights after each iteration with a 
final weight of 765.0 lbs.  This compares well with the final optimized design weight of 
766.188 lbs. given by Khot/Kammet [7]. The group sizing results are shown in figure 30 and 
also show a very close comparison with results from Khot/Kammet.  

Example 5.  Large Shallow Truss
  The next problem is a large symmetric shallow truss that is presented by Khot and Kammet in
[7].  The design is shown in figure 31 and includes 23 members sized for two applied loads of 
300 lbs. and 600 lbs. with symmetric boundary conditions at the apex and pinned at node 1.  

Figure 31.  Shallow truss half symmetry model with two point loads.

Iteration Weight(lbs.)
1 0.1087E+04
2 0.4963E+03
3 0.5165E+03
4 0.5520E+03
5 0.5913E+03
6 0.6384E+03
7 0.6942E+03
8 0.7622E+03
9 0.7650E+03

Group
Area ( 2in )

Hrinda
Area ( 2in )

 Khot/Kammet
I 1.69407 1.6926
II 1.37499 1.3754
III 0.263468 0.2693
IV 0.100379 0.1000
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Figure 32.  Shallow truss strain energy 
density and final design areas.

Figure 33.  Shallow 
truss weight summary.

  The strain energy density summary and final member areas are shown in figure 32.  A 
dSEDtol = 0.10 is imposed for all elements.  The Hrinda derived member areas are listed next 
to Khot [7] results for comparison.  All the members are in close agreement except member 20.  
This is because the Hrinda results imposed a .1 inch sq. minimum area so the optimizer was 
forced to size accordingly.  The Hrinda weight summary is shown in figure 33 with the final 
weight of 119.85 lbs.  Doubling this value to account for symmetry, gives the final shallow 
truss weight of 239.70 lbs.  This is close to the final weight of 234.13 lbs. found in [7].
  
Conclusions

  The optimization of stability constrained truss structures exhibiting highly nonlinear snap 
through behavior has been accomplished using the arc length method and the principal of strain 
energy density.  The iterative design variable updating scheme was used in a finite element 
approach that also used the critical buckling load at snap through as the design load.  The 
problems executed had very close agreement with previous truss examples found in literature 
and verify the use of the arc length parameters as performance indicators in updating the design 
variables.  The technique was applied to design problems with highly nonlinear trusses prone
to global instability failures but has also been tested on linear optimization problems.  Initial 

Element Initial 
SED

Initial 
Relative

SED

Final 
SED

Final 
Relative 

SED

Final Area

( 2in ) 
Hrinda

Final Area 

( 2in ) 
Khot

1 2.65769 2.65769 1.59397 0.99744 2.5794 2.4747
2 2.30213 2.30213 1.59178 0.99607 2.4089 2.3695
3 5.75174 .575174 1.56639 0.98018 1.2110 1.1837
4 2.09883 .020988 1.50676 0.94287 0.2307 0.2609
5 2.38905 2.38905 1.59195 0.99618 2.4434 2.3694
6 1.72627 1.72627 1.58652 0.99278 2.0888 2.0551
7 2.07244 .020724 1.50816 0.94375 0.2306 0.2259
8 1.99700 .019970 1.50975 0.94474 0.2292 0.2227
9 3.27302 3.27302 1.59805 1.00000      2.8546 2.7512

10 1.09653 1.09653 1.57834 0.98766 1.6750 1.6353
11 1.93285 .019328 1.50944 0.94455 0.2264 0.1945
12 1.92360 .019236 1.50927 0.94444 0.2258 0.1941
13 3.23698 3.23698 1.59784 0.99986 2.8390 2.7463
14 6.21472 .621472 1.56710 0.98063 1.2654 1.2751
15 1.96688 .019668 1.50947 0.94457 0.2274 0.2230
16 2.02073 .020207 1.50774 0.94348 0.2277 0.2249
17 2.36631 2.36631 1.59177 0.99607 2.4319 2.3649
18 1.09379 1.09379 1.57828 0.98762 1.6728 1.6351
19 2.06643 .020664 1.50650 0.94271 0.2289 0.2590
20 1.71562 1.71562 1.58640 0.99271 2.0824 0.0524
21 5.64525 .564525 1.56604 0.97996 1.1998 1.1756
22 2.28075 2.28075 1.59160 0.99596 2.3978 2.3626
23 2.62850 2.62850 1.59375 0.99730 2.5653 2.4687

Iteration Weight (lbs.)
1 0.156524E+03
2 0.134545E+03
3 0.123092E+03
4 0.116857E+03
5 0.113505E+03
6 0.111891E+03
7 0.111382E+03
8 0.111581E+03
9 0.112211E+03

10 0.113076E+03
11 0.114034E+03
12 0.114992E+03
13 0.115892E+03
14 0.116704E+03
15 0.117415E+03
16 0.118024E+03
17 0.118539E+03
18 0.118968E+03
19 0.119322E+03
20 0.119612E+03
21 0.119849E+03
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results show that the arc length and SED parameters can be used for finding the lightest truss 
under linear behavior.  
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