
September 2005

NASA/CP–2005–212788

IEEE/NASA ISoLA 2005

IEEE/NASA Workshop on Leveraging Applications of Formal 
Methods, Verification, and Validation

Tiziana Margaria, Bernhard Steffen, and Michael G. Hinchey, Editors

Proceedings of a workshop held at the
Loyola College Graduate Center
Columbia, Maryland, USA
23–24 September 2005



The NASA STI Program Offi ce … in Profi le

Since its founding, NASA has been ded i cat ed to the 
ad vance ment of aeronautics and space science. The 
NASA Sci en tifi  c and Technical Information (STI) 
Pro gram Offi ce plays a key part in helping NASA 
maintain this im por tant role.

The NASA STI Program Offi ce is operated by 
Langley Re search Center, the lead center for 
NASA’s scientifi c and technical in for ma tion. The 
NASA STI Program Offi ce pro vides ac cess to 
the NASA STI Database, the largest col lec tion of 
aero nau ti cal and space science STI in the world. 
The Pro gram Offi ce is also NASA’s in sti tu tion al 
mech a nism for dis sem i nat ing the results of its 
research and de vel op ment ac tiv i ties. These results 
are published by NASA in the NASA STI Report 
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of 
com plet ed research or a major signifi cant phase 
of research that present the results of NASA pro-
grams and include ex ten sive data or the o ret i cal 
analysis. Includes com pi la tions of sig nifi   cant 
scientifi c and technical data and in for ma tion 
deemed to be of con tinu ing ref er ence value. 
NASA’s counterpart of peer-re viewed formal 
pro fes sion al papers but has less stringent lim i ta -
tions on manuscript length and ex tent of graphic 
pre sen ta tions.

• TECHNICAL MEMORANDUM. Scientifi c 
and tech ni cal fi ndings that are pre lim i nary or of 
spe cial ized interest, e.g., quick re lease reports, 
working papers, and bib li og ra phies that contain 
minimal annotation. Does not contain extensive 
analysis.

• CONTRACTOR REPORT. Scientifi c and techni-
cal fi ndings by NASA-sponsored con trac tors and 
grantees.

•   CONFERENCE PUBLICATION. Collected 
pa pers from scientifi c and technical  conferences, 
symposia, sem i nars, or other meet ings spon sored 
or co spon sored by NASA.

•   SPECIAL PUBLICATION. Scientifi c, tech ni cal, 
or historical information from NASA pro grams, 
projects, and mission, often con cerned with sub-
jects having sub stan tial public interest.

•   TECHNICAL TRANSLATION. En glish-language 
trans la tions of foreign sci en tifi  c and tech ni cal ma-
terial pertinent to NASA’s mis sion.

Specialized services that complement the STI Pro-
gram Offi ce’s diverse offerings include cre at ing 
custom the sau ri, building customized da ta bas es, 
organizing and pub lish ing research results . . . even 
pro vid ing videos.

For more information about the NASA STI Pro gram 
Offi ce, see the following:

•   Access the NASA STI Program Home Page at 
http://www.sti.nasa.gov/STI-homepage.html

•   E-mail your question via the Internet to 
help@sti.nasa.gov

•   Fax your question to the NASA Access Help Desk 
at (301) 621-0134

•   Telephone the NASA Access Help Desk at
(301) 621-0390

•   Write to:
    NASA Access Help Desk
    NASA Center for AeroSpace In for ma tion
    7121 Standard Drive
    Hanover, MD 21076–1320



National Aeronautics and  
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

September 2005

NASA/CP–2005–212788

IEEE/NASA ISoLA 2005

IEEE/NASA Workshop on Leveraging Applications of Formal 
Methods, Verification, and Validation

Proceedings of a workshop held at the
Loyola College Graduate Center
Columbia, Maryland, USA
23–24 September 2005

Editors:

Tiziana Margaria
University of Göttingen, Göttingen, Germany

Bernhard Steffen
University of Dortmund, Dortmund, Germany

Michael G. Hinchey
NASA Goddard Space Flight Center, Greenbelt, Maryland



Available from:

NASA Center for AeroSpace Information National Technical Information Service
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161
Price Code: A17 Price Code: A10



iii

T. Margaria, B. Steffen, and M.G. Hinchey

Preface

This volume contains the Preliminary Proceedings of the 2005 IEEE ISoLA Workshop on Leverag-
ing Applications of Formal Methods, Verification, and Validation, with a special track on the theme 
of  Formal Methods in Human and Robotic Space Exploration. The workshop was held on 23–24 
September 2005 at the Loyola College Graduate Center, Columbia, Maryland, USA.

The idea behind the Workshop arose from the experience and feedback of ISoLA 2004—the 1st Inter-
national Symposium on Leveraging Applications of Formal Methods—held in Paphos (Cyprus) held 
during October–November. ISoLA 2004 served the need of providing a forum for developers, users, 
and researchers to discuss issues related to the adoption and use of rigorous tools and methods for 
the specification, analysis, verification, certification, construction, test, and maintenance of systems 
from the point of view of their different application domains.

The ISoLA series of events serves the purpose of bridging the gap between designers and developers 
of rigorous tools, and users in engineering and in other disciplines, and to foster and exploit synergetic 
relationships among scientists, engineers, software developers, decision makers, and other critical 
thinkers in companies and organizations. In particular, by providing a venue for the discussion of 
common problems, requirements, algorithms, methodologies, and practices, ISoLA aims at support-
ing researchers in their quest to improve the utility, reliability, flexibility, and efficiency of tools for 
building systems, and users in their search for adequate solutions to their problems.

This Workshop has a particular focus on Formal Methods in Human and Robotic Space Exploration. 
It concentrates on application domains relevant to the use of rigorous and/or provable techniques in 
several aspects of space exploration, as well as on the enabling technologies and infrastructure.

The workshop program consisted of one keynote lecture by John Knight (University of Virginia, 
USA); two invited talks by Ramesh Bharadwaj (Naval Research Laboratory, Washington, DC) and 
by César A. Muñoz (National Institute of Aerospace, Hampton, VA); and three thematic sessions 
composed of nine regular papers, and a panel. Additionally, two doctoral symposium sessions offered 
students the possibility to orally present and demonstrate their ongoing research in the course of their 
graduate and advanced undergraduate studies.

We thank the members of the Program committee and their sub-referees for selecting the papers to 
be presented. Our thanks also goes to Ben Benokraitis and Binod Rai of Loyola College in Maryland 
for the excellent local organization. Special thanks are due to the following organizations for their 
sponsorship: the IEEE-CS TC on Complexity in Computing, NASA Goddard Space Flight Center, 
Loyola College in Maryland (who provided extremely comfortable premises at their Graduate Center 
in Columbia), the University of Dortmund, and the University of Göttingen. We are also very grateful 
to the IFIP TC10 on Computer Systems Technology for the support granted to the doctoral students. 
Finally, we thank EASST for its endorsement of the workshop.

 — Tiziana Margaria, Bernhard Steffen, and Michael Hinchey
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HYBRID VERIFICATION OF AN AIR TRAFFIC
OPERATIONAL CONCEPT∗

César A. Muñoz†

National Institute of Aerospace, USA
Gilles Dowek‡

École polytechnique, France

ABSTRACT

A concept of operations for air traffic management consists of a set of flight rules and procedures aimed to keep
aircraft safely separated. This paper reports on the formal verification of separation properties of the NASA̓ s Small Aircraft
Transportation System, Higher Volume Operations (SATS HVO) concept for non-towered, non-radar airports. Based on
a geometric description of the SATS HVO air space, we derive analytical formulas to compute spacing requirements on
nominal approaches. Then, we model the operational concept by a hybrid non-deterministic asynchronous state transition
system. Using an explicit state exploration technique, we show that the spacing requirements are always satisfied on
nominal approaches. All the mathematical development presented in this paper has been formally verified in the Prototype
Verification System (PVS).

Keywords. Formal verification, hybrid systems, air traffic management, theorem proving

INTRODUCTION

The safety objective of air traffic management is to provide aircraft separation. This objective is achieved trough
air/ground equipment and a set of flight rules and procedures, usually called concept of operations. Emerging and more
reliable surveillance and communication technologies have enabled new concepts where pilots and air traffic controllers
share the responsibility for traffic separation. One of such concepts is NASA̓ s Small Aircraft Transportation System (SATS),
Higher Volume Operation (SATS HVO) [Ref. 1].

The SATS program [Ref. 6] aims to increase access to small airports in the US during instrument approach operations.
Currently, under poor weather conditions, small airports are restricted to one-in/one-out operations. The SATS HVO
concept enables up to four simultaneous arrival approaches and multiple departures. A key aspect of the concept is that,
under nominal operations, aircraft are self-separated, i.e., pilots are responsible for separation without assistance of an air
traffic controller. To this end, the SATS HVO concept designs the airspace surrounding the airport as a Self-Controlled Area
(SCA). A centralized, automated system, called the Airport Management Module (AMM), serves as an arbiter to aircraft
entering the SCA. In this concept, aircraft constantly broadcast their locations and, therefore, they have an updated view of
the SCA.

The SATS HVO operational concept is a collection of rules and procedures to be followed by aircraft operating or
transitioning in/out the SCA. For instance the concept of operations states when and how an aircraft is allowed to enter (or
leave) the SCA, when an aircraft is allowed to initiate the approach, and how to perform a missed approach. In order to
alleviate pilot workload and increase situation awareness, on board navigation tools provide advisories that assist pilots in
following these procedures.

Because the operational concept is a safety critical element of the SATS program, the task of showing that it satisfies
safety requirements is acomplished using formal mathematical analysis. A discrete mathematical model of the SATS HVO
operational concept is described in [Ref. 5]. That model was mechanically checked for safety and liveness properties. As
result of this research, several modification were incorporated to the concept [Ref. 2].

∗This work was supported by the National Aeronautics and Space Administration under NASA Cooperative Agreement NCC-1-02043.
†munoz@nianet.org
‡Gilles.Dowek@polytechnique.fr
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Figure 1: Top and side view of SCA

The discrete model in [Ref. 2, 5] is not precise enough to enable verification of spacing properties. In this paper, we
described a hybrid model that extends the discrete model to take into account the geometry of the SCA and the aircraft
speed performances. Using this new model, we formally verified that the SATS HVO operational concept effectively
achieves self-separation, i.e., aircraft performing nominal approaches are safely separated according to minimum spacing
criteria.

HIGHER VOLUME OPERATIONS

In the SATS HVO concept, pilots operating within the Self-Controlled Area (SCA) are required to fly by latitude/longitude
points in the space, called fixes. Similar to a GPS-T approach [Ref. 3], fixes are arranged as a T (see Figure 1).1 The fixes at
the extremes of the T are called initial approach fixes (IAFʼs) and they are the entry points to the SCA. The IAFʼs also serve
as missed approach holding fixes (MAHFʼs), i.e., fixes where aircraft will proceed in case they have to perform a missed
approach. The holding areas are located at 2000 feet and 3000 feet at the IAFʼs.

There are two types of entry procedures: vertical entry and lateral entry. In a vertical entry, an aircraft holds at 3000
feet until it is enabled to descend to 2000 feet. In a lateral entry an aircraft flies directly to its IAF at 2000 feet. When the
aircraft is enabled to initiate the approach, it flies to the intermediate fix (IF), from there to the final approach fix (FAF), and
finally to the runway threshold. In case of a missed approach, the aircraft flies to its assigned missed approach holding fix
at the lowest available altitude (2000 or 3000 feet). Then, it re-initiates the approach and either follows a normal landing
procedure or leaves the SCA. The linear segments between the IAFs and the IF are called base segments and the segment
between the IF and the runway threshold is called final segment. Henceforth, we say that an aircraft is on final approach if
it is in the base of final segments.

The Airport Management Module (AMM) is an automated centralized system that resides at the airport grounds. It
receives state information from aircraft in the vicinity of the airport and communicates with aircraft via data link. The AMM
provides entry clearances (vertical or lateral) and assigns missed approach holding fixes. When an entry is granted by the
AMM, the aircraft receives a follow notification and a missed approach holding fix assignment. The follow notification is
either none, if it is the first aircraft in the landing sequence, or the identification of a lead aircraft. Missed approach holding
fixes are assigned by the AMM on an alternating basis. This technique ensures that consecutive aircraft on missed approach
are not flying to the same MAHF.

1As it is usually depicted, right and left are relative to the pilot facing the runway, i.e., opposite from the readerʼs point of view.
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Figure 2: Discrete view of SCA

For nominal arrival operations, self-separation is achieved by requiring an aircraft to hold at its IAF until it meets a
spacing safety threshold with respect to its lead aircraft. The threshold shall guarantee a minimum separation during the
approach and during a missed approach, in case of this eventuality.

The concept of operations also describes nominal departure operations. However, for simplicity, the analysis presented
in this paper only considers arrival operations. This simplification does not affect the result of the formal verification as
arriving aircraft are geographically separated from departing aircraft and an aircraft cannot depart if there is an aircraft on
final approach. The fact that departing aircraft are also separated can be verified using the techniques presented in this
paper.

DISCRETE MODEL AND ITS LIMITATIONS

The discrete model described in [Ref. 2, 5] is a mathematical abstraction of the SATS HVO concept. A simple way to
visualize that model is via an analogy with a board game where the board is a discretized SCA, the pieces that move across
the board are the aircraft, and the rules of the game are given by the concept of operations. This analogy is illustrated in
Figure 2. The places where an aircraft can be during an arrival operation are called zones. There are 12 zones:

• holding3 (left, right): Holding patterns at 3000 feet.

• holding2 (left, right): Holding patterns at 2000 feet.

• lez (left, right): Lateral entry zones.2

• base (left, right): Base segments.

• maz (left, right): Missed approach zones.

• final and runway: Final segment and runway.

An aircraft is always in one and only one zone, but several aircraft may be in the same zone. Aircraft leave the zones in the
same order as they arrive. The arrows in Figure 2 are the valid moves and they represent 15 flight rules and procedures:

• Vertical entry (left, right): Initial move to holding3.

• Lateral entry (left, right): Initial move to lez.

• Descend (left, right): Move from holding3 to holding2.
2Lateral entry zones start outside the SCA.
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Figure 3: Indistinguishable discrete states

• Approach initiation (left, right): Move from holding2 to base.

• Final approach (left, right): Move from base to final.

• Landing: Move from final to runway.

• Missed approach initiation (left, right): Move from final to maz.

• Transition to lowest available altitude (left, right). Move from maz to either holding3 or holding2.

In this model, each aircraft is represented by its initial approach fix (left or right), landing sequence (natural number),
and missed approach holding fix assignment (left or right). Aircraft identifications are implicit as aircraft can be distin-
guished from each other by their landing sequence. The AMM is modeled by the next available landing sequence (natural
number) and the next alternating missed approach holding fix (left or right).

The discrete model is conservative in the sense that it abstracts away the SCA geometry and physical performance
parameters of the aircraft. Hence, it includes scenarios that may no physically occur in the real world. We argue that the
model is complete, i.e., it includes all nominal operations. Of course, this cannot be proved formally. However, the model
has been extensively reviewed by the developers of the SATS HVO concept as it was used as a designing tool of the final
concept [Ref. 2].

From a mathematical point of view, the discrete model is a state transition system where the states are snapshots of
the zones at discrete times and the transitions describe how the states evolve when the flight procedures are applied. A
priori, there are no bounds on the number of aircraft in each zone; therefore, the transition system is potentially infinite.
However, it turns out that the transition system is finite. Indeed, it was exhaustively explored [Ref. 5] using the verification
system PVS [Ref. 7]. Among several other properties, it was formally verified that the model of the SATS HVO concept
allows up to four simultaneous arrival approaches, which is better than the current one-in/one-out mode of operation, and
that eventually all aircraft land or depart, i.e., there are no deadlocks.

The discrete model does not support verification of spacing properties. In particular, the two states depicted in Figure 3
are indistinguishable by the discrete model, although they do not satisfy the same separation requirements. This behavior is
due to the way the approach initiation procedure was written in the discrete model. Indeed, the concept of operations states
that an aircraft may initiate the approach if (a) it is the first aircraft in the landing sequence or (b) it meets a safety threshold
with respect to the lead aircraft, which is already on approach [Ref. 1]. There are several ways a pilot can check whether the
safety threshold is satisfied or not. In the most conservative case, the pilot has to delay the approach initiation until the lead
aircraft is within 6 nautical miles from the runway. The value 6 is for a nominal SCA where the base segments are 5 nautical
miles and the final segment is 10 nautical miles. In the general case, this value is configurable according to the geometry of
the SCA. Since the geometry of the aircraft is not considered in the discrete model, the approach initiation procedure has to
be modified. The condition (a) rests the same. However, the discrete model uses a weaker condition (b) where an aircraft
can initiate the approach as soon as the lead aircraft is already on the final approach (base or final segments). As the safety
threshold is not checked, spacing properties cannot be verified using the discrete model.

In order to verify spacing properties, we need a more accurate modeling of the approach initiation procedure. To this
end, we extend the discrete model of the SATS HVO concept with continuous variables that encode the geometry of the
SCA and the aircraft speed performances. Before that, we formally specify the spacing requirements.
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SPACING REQUIREMENTS

The term spacing refers to linear separation of an aircraft with respect to a lead aircraft. If both aircraft are not flying
the same approach, spacing is usually computed relative the merging point of their linear trajectories. For instance, in a
symmetric SCA, if the trail and lead aircraft are on opposite initial approach fixes their spacing is 0, although their Euclidean
distance is twice the length of the of the base segments. Note that, independently of the initial Euclidean distance, if both
aircraft start the approach at roughly the same time and speed, they will have a conflict at the merging point.

Assume that the geometry of the SCA is described by base(left), base(right), final , maz (left), and maz (right), which
are the lengths of the left and right base segments, final segment, and left and right missed approach zones, respectively.
We define DA(t) as the linear distance at time t of an aircraft A from its initial approach fix. For instance, in Figure 4,

DA(t) = base(right) + final + 2. (1)

In a symmetric SCA, i.e., base(left) = base(right) and maz (left) = maz (right), the spacing at time t between an
aircraft A and its lead aircraft B is simply defined as DB(t)−DA(t). However, in the general case, we must consider the
difference in length of the base segments. Hence, if B is before A in the landing sequence, the spacing between A and B
is defined as

SA→B(t) ≡ DB(t)−DA(t) + base(iafA)− base(iafB). (2)

Now, we specify the spacing requirements to be formally verified.

Proposition 1. Under nominal operations, aircraft A and B on final approach at time t, such that B is the lead aircraft of
A, satisfy the following spacing requirement:

ST ≤ SA→B(t). (3)

Proposition 2. Under nominal operations, A and B on final approach, on missed approach at the same fix at time t, such
that B is before A in the landing sequence, satisfy the following spacing requirement:

SMAZ ≤ SA→B(t). (4)

The constants ST and SMAZ are the theoretical spacing that the concept guarantees on final approach and missed
approach, respectively. These constants are determined by the geometry of the SCA, the minimum and maximum speed of
the aircraft, i.e., vmin and vmax, and the initial spacing between the aircraft, i.e., S0, as follows:

ST ≡ S0 − (Lmax + final − S0)∆v, (5)
SMAZ ≡ min(Lmin + final − Lmaz∆v, 2S0 − (Lmax + final + Lmaz − S0)∆v), (6)
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where

Lmin ≡ min(base(left), base(right)), (7)
Lmax ≡ max(base(left), base(right)), (8)
Lmaz ≡ max(maz (left), base(right)), (9)

∆v ≡ vmax − vmin

vmin
. (10)

HYBRID MODEL

The hybrid model of the SATS HVO concept extends the discrete state of the original model with the following
continuous variables:

• A current time t that evolves in a continuous way.

• For each aircraft A on final approach or missed approach, the linear distance from its IAF, i.e., DA(t). We assume
that the speed of an aircraft may vary with time in the interval [vmin, vmax]. Therefore, the value of DA(t) is
constrained by

(t1 − t0)vmin ≤ DA(t1)−DA(t0) ≤ (t1 − t0)vmax, (11)

if t0 ≤ t1 (t0 and t1 are measured in the same approach operation).

These continuous variables allow us to state the approach initiation rule in a more precise way:

• Approach initiation for vertical and lateral entry (left and right): An aircraft A may initiate the approach when (a)
it is the first aircraft in the landing sequence or (b) its lead aircraft B is already on the final approach (base or final
segments) and

S0 ≤ SA→B(t). (12)

Other transitions have to be modified as well to handle the new variables:

• Merging: An aircraft A in the base segment turns to the final segment when

DA(t) = base(iafA). (13)

• Missed approach initiation: An aircraft A in the final segment may go to the missed approach zone when it is the
first aircraft in the landing sequence and

DA(t) = base(iafA) + final . (14)

• Landing: An aircraft A in the final segment may land if it is the first aircraft in the landing sequence, there is no
other aircraft in the runway, and

DA(t) = base(iafA) + final . (15)

• Determination of lowest available altitude (left and right): An aircraft A on missed approach may go to the holding
fix at the lowest available altitude when

DA(t) = base(iafA) + final +maz (mahfA). (16)

In the next section, we show how Propositions 1 and 2 can be mechanically verified on this hybrid transition system.
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MECHANICAL VERIFICATION

The discrete model of the SATS HVO concept was written in PVS and verified using a state exploration PVS tool
called Besc [Ref. 5]. Roughly speaking, Besc is a basic explicit model checker, written and formally verified in PVS.3 Early
attempts to analyze the hybrid transition system described in this paper, using a hybrid model checker, e.g., HyTech [Ref. 4],
were unsuccessful due to the complexity of the SATS HVO model. We tried a different approach: we encoded the hybrid
transition system as a discrete one and explored it using Besc.

We first note that the discrete system is a valid abstraction of the SATS HVO concept. From a high level, all the
reachable states in the hybrid system are reachable in the discrete system (modulo the common discrete variables). Of
course, the converse is not true: not all the reachable states of the discrete system are reachable in the hybrid system; in
particular, those states violating the spacing requirements should not be reachable in the hybrid system. Therefore, if we
take all the reachable states in the discrete system and eliminate those that do not satisfy the continuous behavior expressed
by Formulas (12)–(16), we should still have a valid abstraction of the SATS HVO concept.

Instead of eliminating states, we simply add the continuous behavior as constraints to the reachable states in the discrete
system at the same time as the transitions take place. For instance, after aMerging rule, according to Formula (13), it should
hold that

base(iafA) ≤ DA(t) ≤ base(iafA) + final . (17)

The semantics of a constrained state is that it is a valid reachable state if it is reachable in the discrete system and, moreover,
all its constraints hold. The verification objective is to show that for each one of these hybrid reachable states, Propositions 1
and 2 hold.

Hybrid System as a Constrained Discrete System

In order to write the hybrid system as a discrete transition system, the continuous behaviors is encoded using symbolic
constraints. A PVS data type, called Constraint, is inductively defined according to the following grammar:

A, B ::= 1, 2, . . . (18)
s ::= left | right | iafA | mahfA (19)
T ::= t | TA (20)

e, f ::= T | DA(T ) | base(s) | final |maz (s) | S0 | Lmin | Lmax | Lmaz | SA→B(T ) | e + f (21)
Constraint ::= e ≤ f (22)

We use the variable TA to denote the time when aircraft A initiates the approach.

The global state of the SCA is extended with a new field constraints, which is a list of Constraints that hold
at a particular state. The hybrid transition system described before is encoded as follows:

• Approach initiation for vertical and lateral entry (left and right): Let A be the aircraft that initiates the approach.
The following symbolic constraints are added to constraints:

– The fact that A is in the base segment, i.e,

TA ≤ t, (23)
DA(t) ≤ base(iafA). (24)

– If B is the lead aircraft of A, the fact that the aircraft are spaced at time TA, i.e.,

TB ≤ TA, (25)
S0 ≤ SA→B(TA). (26)

– For all aircraft C on missed approach, the fact that C was ahead of A:

base(iafA) + final ≤ DC(TA). (27)

3Besc is available from http://research.nianet.org/˜munoz/Besc.
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• Merging: Let A be that aircraft that goes into the final segment. Constraint (24) is removed from constraints.
Moreover, the fact that A is in the final segment is added to constraints:

DA(t) ≤ base(iafA) + final . (28)

• Missed approach initiation: Let A be the aircraft that initiates the missed approach. Constraint (28) is removed from
constraints. Moreover, the fact that A is on missed approach is added to constraints:

DA(t) ≤ base(iafA) + final +maz (mahfA). (29)

• Landing: Let A be the aircraft that is landing. All constraints related to A are removed from constraints except
instances of Constraints (25) and(26) when B, the previous lead aircraft of A, is on missed approach.

• Determination of lowest available altitude (left and right): Let A be the aircraft that goes to the lowest available
altitude. All constraints related to A are removed from constraints.

State Exploration

To verify Propositions 1 and 2, we have to prove the following invariant properties for every reachable state s.

Invariant 1. For each pair of aircraft A and B in s such that A and B are on final approach at time t, and B is the lead
of aircraft A,

constraints(s) =⇒ ST ≤ SA→B(t). (30)

Invariant 2. For each pair of aircraft A and B in s such that they are on missed approach to the same fix at time t, and B
is before A in the landing sequence,

constraints(s) =⇒ SMAZ ≤ SA→B(t). (31)

We remark that the constraints are just data without any logical meaning. Thus, the invariant properties cannot be
checked on the fly during the state exploration process. The mechanical verification proceeds in three different stages. In
the first stage, the transition system is fully explored in PVS using the explicit model checker Besc. In order to get a finite
system, the constraints are implemented as a set rather than a list to avoid repetitions. Besc reports a total of 2768 reachable
states and a diameter, maximum length of a path, of 27 states.

In the second stage, we process the set of reachable states using an external tool called PVSio4 and generate a PVS
file where there is a lemma for each possible instance of Invariant 1 or Invariant 2. Without counting repetitions, 117
spacing lemmas were generated. From those, 73 lemmas are instances of the first invariant and the remaining 44 lemmas
are instances of the second one.

In addition to the spacing lemmas, proof scripts, which automatically discharge these lemmas, are also generated. In
the final stage of the mechanical verification task, the proof scripts are checked in batch mode via the utilities provided by
ProofLite.5 After a couple of minutes, ProofLite reports that all 117 lemmas are proved in PVS.

The proof scripts that are automatically generated are based on three lemmas. One lemma, called T, takes care of
instances of Invariant 1. The other two lemmas, called Maz1 and Maz2, handle particular cases of Invariant 2. The rest of
this section sketches the proof of these lemmas.

Three Lemmas

The lemmas described here were mechanically checked in PVS. Afterward, they were integrated into a PVS strategy
that mechanically discharges the automatically generated spacing lemmas.

First, we present some auxiliary properties. The time when an aircraft A initiates the final approach, i.e., when it enters
the base segment, is denoted TA. Hence, by definition,

DA(TA) = 0. (32)

4PVSio enhances the PVS ground evaluator with input/output operations. It is available from http://research.nianet.org/
˜munoz/PVSio.

5ProofLite is a PVS tool for non-interactive proof checking. It is available from http://research.nianet.org/˜munoz/
ProofLite.
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Therefore, Constraint (26) is equivalent to

S0 + base(iafB)− base(iafA) ≤ DB(TA). (33)

Furthermore, if A is on final approach at time t, Constraint (24) and Constraint (28) yield

DA(t) ≤ base(iafA) + final . (34)

Lemma 1 (T). Let A and B be aircraft on final approach at time t such that B is the lead of aircraft A. It holds

S0 − (Lmax + final − S0)∆v ≤ SA→B(t), (35)

under the hypotheses

TA ≤ t (36)
S0 + base(iafB)− base(iafA) ≤ DB(TA), (37)

DB(t) ≤ base(iafB) + final . (38)

(Formula (36) is the Constraint (23), Formula (37) is the spacing constraint from Formula (33), and Formula (38) is the
instantiation of Formula (34) on aircraft B, which is on final approach.)

Proof. Subtracting Formula (37) from Formula (38), we get

DB(t)−DB(TA) ≤ base(iafA) + final − S0. (39)

Using Formula (11) on A and B,

(t− TA)vmin ≤ DB(t)−DB(TA), (40)
DA(t)−DA(TA) ≤ (t− TA)vmax. (41)

Formula 41 yields

DA(t) ≤ (t− TA)vmax. (42)

From Formulas (39) and (40),

t− TA ≤ base(iafA) + final − S0

vmin
. (43)

Hence,

SA→B(t) = DB(t)−DA(t) + base(iafA)− base(iafB)
= DB(TA) + (DB(t)−DB(TA))−DA(t) + base(iafA)− base(iafB)
≥ S0 + (DB(t)−DB(TA))−DA(t), by Formula (37),
≥ S0 + (t− TA)vmin − (t− TA)vmax, by Formulas (40) and (42),

≥ S0 − (base(iafA) + final − S0)
vmax − vmin

vmin
, by Formula (43),

≥ S0 − (Lmax + final − S0)∆v, by Formulas (8) and (10).

Lemma 2 (Maz1). Let A and B be aircraft on missed approach at time t such that B is before A in the landing sequence.
Furthermore, assume that when A initiated the approach, B was on missed approach. It holds

Lmin + final − Lmaz∆v ≤ SA→B(t), (44)

under the hypotheses

TA ≤ t (45)
DB(t) ≤ base(iafB) + final +maz (mahfB), (46)

base(iafB) + final ≤ DB(TA). (47)

(Formula (45) is the Constraint (23), Formula (46) is the instantiation of Constraint (29) on aircraft B, and Formula (47)
is the additional assumption about aircraft A and B.)
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Proof. Subtracting Formula (47) from Formula (46), we get

DB(t)−DB(TA) ≤ maz (mahfB). (48)

Formulas (40)–(42) are derived as in Lemma 1. From Formulas (40) and (48),

t− TA ≤ maz (mahfB)
vmin

. (49)

Hence,

SA→B(t) = DB(t)−DA(t) + base(iafA)− base(iafB)
= DB(TA) + (DB(t)−DB(TA))−DA(t) + base(iafA)− base(iafB)
≥ base(iafA) + final + (DB(t)−DB(TA))−DA(t), by Formula (47),
≥ base(iafA) + final + (t− TA)vmin − (t− TA)vmax, by Formulas (40) and (42),

≥ base(iafA) + final −maz (mahfB)
vmax − vmin

vmin
, by Formula (49),

≥ Lmin + final − Lmaz∆v, by Formulas (7), (9), and (10).

Lemma 3 (Maz2). Let A and B be aircraft on missed approach at time t such that B is before A in the landing sequence.
Furthermore, assume that when A initiated the approach, aircraft B and X where on final approach, B was the lead of
aircraftX , andX was the lead aircraft of A. It holds

2S0 − (Lmax + final + Lmaz − S0)∆v ≤ SA→B(t), (50)

under the hypotheses

TA ≤ t (51)
TX ≤ TA (52)

DB(t) ≤ base(iafB) + final +maz (mahfB), (53)
S0 + base(iafB)− base(iafX) ≤ DB(TX), (54)
S0 + base(iafX)− base(iafA) ≤ DX(TA). (55)

(Formula (51) is the Constraint (23), Formula (52) is the instantiation of Constraint (25) on aircraftX andA, Formula (53)
is the instantiation of Constraint (29) on aircraft B, and Formulas (54) and (55) are the additional assumptions about
aircraft A, B, andX .)

Proof. Subtracting Formula (54) from Formulas (53), we get

DB(t)−DB(TX) ≤ base(iafX) + final +maz (mahfB)− S0. (56)

Formula (42) is derived as in Lemma 1. From Formula (32), DX(TX) = 0. Therefore, using Formula (11) on X ,

DX(TA) ≤ (TA − TX)vmax. (57)

From Formulas (51) and (52), TX ≤ t. Using Formula (11) on B,

(t− TX)vmin ≤ DB(t)−DB(TX). (58)

From Formulas (56) and (58),

t− TX ≤ base(iafX) + final +maz (mahfB)− S0

vmin
. (59)
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Hence,

SA→B(t) = DB(t)−DA(t) + base(iafA)− base(iafB)
= DB(TX) + (DB(t)−DB(TX))−DA(t) + base(iafA)− base(iafB)
≥ S0 + base(iafA)− base(iafX) + (DB(t)−DB(TX))−DA(t),

by Formula (54),
≥ S0 + base(iafA)− base(iafX) + (t− TX)vmin − (t− TA)vmax,

by Formulas (42) and (58),
= S0 + base(iafA)− base(iafX)− (t− Tx)(vmax − vmin) + (TA − TX)vmax

≥ S0 + base(iafA)− base(iafX)− (t− Tx)(vmax − vmin) +DX(TA),

by Formula (57),
≥ 2S0 − (t− Tx)(vmax − vmin), by Formula (55),

≥ 2S0 − (base(iafX) + final +maz (mahfB)− S0)
vmax − vmin

vmin
,

by Formula (59),
≥ 2S0 − (Lmax + final + Lmaz − S0)∆v, by Formulas (8), (9), and (10).

Note that the conclusions of Lemmas 2 and 3 could be replaced by

min(Lmin + final − Lmaz∆v, 2S0 − (Lmax + final + Lmaz − S0)∆v) ≤ SA→B(t). (60)

Furthermore,

SMAZ = 2S0 − (Lmax + final + Lmaz − S0)∆v, (61)

when

1 +
vmin

vmax
≤ Lmin + final

S0
, (62)

and

St ≤ SMAZ , (63)

when

Lmaz∆v ≤ S0. (64)

CONCLUSION

This papers proposes a hybrid model that extends the discrete model presented in [Ref. 2]. In contrast to the original
model, the proposed model enables the verification of safety spacing requirements of SATS HVO operations. To this
end, aircraft performances, such as ground speed ranges, and information about the SCA geometry, such as length of
the approach segments, were integrated into the original model. Thus, in the hybrid model, the concept of operations is
described by the continuous dynamics of aircraft and the discrete events within the SCA. Using theorem proving and model
checking techniques, we have exhaustively explored the hybrid model and mechanically verified spacing requirements over
all nominal operations.

The SATS HVO development, excluding the PVS tools Besc, PVSio and ProofLite, is about 2800 lines of PVS specifi-
cation and lemmas and 6500 lines of proofs. From these, 1600 lines of lemmas and 5900 lines of proofs were automatically
generated using the PVS tools.

From a practical point of view, the analytical formulas presented in this paper, e.g., Formulas (5) and (6), can be used
to configure a nominal SCA and the parameters of the baseline procedure for self-separation. For instance, consider a
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Figure 5: Nominal SCA

symmetric nominal SCA where base(left) = base(right) = 5 nm, final = 10 nm, and maz (left) = maz (right) = 13 nm.
If the initial separation S0 is 6 nm and vmin = 90 kt, vmax = 120 kt, then

Lmin = Lmax = 5 nm, (65)
Lmaz = 13 nm, and (66)

∆v =
120− 90
90

=
1

3
. (67)

The value of ST is computed using Formula (5):

ST = 6−
5 + 10− 6

3
= 3 nm. (68)

This configuration of the SCA satisfies Formula (62). Therefore, the value of SMAZ can computed using Formula (61):

SMAZ = 12−
5 + 10 + 13− 6

3
= 4.66 nm. (69)

Hence, if the initial spacing of the trail aircraft with respect to the lead aircraft is 6 nm, the SATS HVO concept of operations
guarantees a minimum spacing of 3 nm on final approach and 4.66 nm on missed approach.

The analysis used in this paper can be extended to study Euclidean separation of aircraft on final approach and missed
approach. Figure 5 illustrates a nominal SCA where aircraft on missed approach turn toward their missed approach zone α
degrees with respect to the runway, fly a straight trajectory of M nautical miles, and then turn to their MAHF. A geometric
analysis reveals that

M =
min(ST , SMAZ )

2
(70)

achieves maximum separation for an arbitrary α. In this case, the minimum Euclidean distance Dα that the concept
guarantees for an aircraft on final approach and an aircraft on missed approach is given by

Dα = M

2(1− cosα). (71)

In the example above, the optimal value of M , given by Formula (70), is 1.5 nm. The minimum Euclidean distance
between an aircraft on final approach and an aircraft on missed approach, for different values of α, is computed using
Formula (71):

• D60o = 1.5 nm.

• D90o = 2.12 nm.

• D120o = 2.59 nm.
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Increasing the initial spacing S0 to 7 nm yields the following values: ST = 4.33 nm, SMAZ = 7 nm, M = 2.16 nm,
D60o = 2.16 nm, D90o = 3.06 nm, and D120o = 3.75 nm.

The mechanical verification is necessary to make sure that no cases were forgotten. For instance, the fact that Lem-
mas 1, 2, and 3 are sufficient to prove the spacing requirements for all nominal scenarios is shown by enumerating all the
possibilities (in this case 117) and mechanically proving all of them using these 3 lemmas. Formal proofs are the ultimate
guarantee that the mathematical development presented here is correct.
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ABSTRACT

Systems on Chip, or shortly SoCs, and SoC architectures denote a challenging set of problems of spec-
ification, modelling techniques, security issues and structuring questions. Our methodology, for designing
models of (SoC) system from requirements, leads to formally justify hints on the future architectural choices
of that system; it is based on the B event-based method, which integrates the incremental development of
models using a theorem prover to validate each step of development called refinement. The target system is
generally expressed using a programming language notation like SystemC; the SystemC language is used
by electronic designers to describe different parts of the system (hardware and software); SystemC consti-
tutes a general framework for simulating and validating the design of the system under construction. The
semantics of SystemC is based on its scheduling algorithm described in the language reference manual and
we develop a B model of the scheduling. The B schedulingmodel left unspecified parameters depending on
the simulated SystemC program and those parameters are instantiated from the operational semantics of the
developed SystemC program. By instantiation, we obtain a B abstract model of the simulated program and
we can study properties of the SystemC program by simulation. B models are completely validated by the
proof assistant of the event-B method. Finally, our models provide a sound framework for understanding
the scheduling process.

Keywords. Event B method, refinement, scheduler, operational semantics, systemC
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INTRODUCTION

Modelling the SystemC Scheduler

The refinement of events-based models provides a general framework for developing systems from
requirements and for expressing the semantical relationship between views of a system; the main idea is to
begin the development by a very abstract view or model and to state the fundamental properties required
by the system. The goal of the refinement-based development is to produce a formal validated model of
the system in an incremental way. Benefits of refinement are numerous and first we underline the control
of proof complexity by diffusion through the refined models. Second, the refinement process should start
from a very abstract view of the system that leads to the possibility to tackle non trivial systems. The
main objective is to write a B event-based model [3] of the SystemC [19] scheduler; the modelling is
the part of a general refinement-based methodology for developing systems on chip from requirements to
SystemC-like systems. First, we develop a B event-based model of the scheduler defined in the reference
manual of SystemC and we let informations on the simulated program in parameters; the refinement makes
possible the production of a precise model for the scheduler. Second, since the scheduler’s model has
parameters left unspecified, we can instantiate the scheduler for a specific SystemC program. Subsequently,
the resulting B event-based model is a formal model of the global system made up of the scheduler and the
particular program; the resulting model can be used in further developments and can be compared to another
instantiated model. It means that the generic model provides a framework for defining the operational
semantics for the simulation process, as defined in the reference manual. Since the scheduler is modelled
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as a generic model, it is defined and developed only once and the user should only define the parameters
specific to the give SystemC program. Moreover, the resulting model is completely validated by the proof
process. Objectives of the paper can be summarized as follows:

• To provide an (formal) operational semantics for the SystemC scheduler and hence for the simulation
of each SystemC program.

• To use the refinement for capturing the semantics of the scheduler.

• To validate the correctness of the translation of B models into SystemC modules.

Proof-based incremental modelling

Proof-based development methods [4, 2] integrate formal proof techniques in the development of soft-
ware systems. The main idea is to start with a very abstract model of the system under development. Details
are gradually added to this first model by building a sequence of more concrete ones. The relationship be-
tween two successive models in this sequence is that of refinement [4, 2]. The essence of the refinement
relationship is that it preserves already proved system properties including safety properties and termination.

A development gives rise to a number of, so-called, proof obligations, which guarantee its correctness.
Such proof obligations are discharged by the proof tool using automatic and interactive proof procedures
supported by a proof engine [8].

At the most abstract level it is obligatory to describe the static properties of a model’s data by means of
an “invariant” predicate. This gives rise to proof obligations relating to the consistency of the model. They
are required to ensure that data properties which are claimed to be invariant are preserved by the events
or operations of the model. Each refinement step is associated with a further invariant which relates the
data of the more concrete model to that of the abstract model and states any additional invariant properties
of the (possibly richer) concrete data model. These invariants, so-called gluing invariants are used in the
formulation of proof obligations related to the refinement.

The goal of a B development is to obtain a proved model. Since the development process leads to a
large number of proof obligations, the mastering of proof complexity is a crucial issue. Even if a proof tool
is available, its effective power is limited by classical results over logical theories and we must distribute the
complexity of proofs over the components of the current development, e.g. by refinement. Refinement has
the potential to decrease the complexity of the proof process whilst allowing for traceability of requirements.

B models rarely need to make assumptions about the size of a system being modelled, e.g. the number of
nodes in a network. This is in contrast to model checking approaches [7]. The price to pay is to face possibly
complex mathematical theories and difficult proofs. The re-use of developed models and the structuring
mechanisms available in B help in decreasing the complexity. Where B has been exercised on known
difficult problems, the result has often been a simpler proof development than has been achieved by users
of other more monolithic techniques.

A short introduction to B event-based notations

The B event language is based on substitutions; a substitution states the transformation of state vari-
ables from a possible pre-state to a possible post-state. In our B models, we use specific substitutions; the
substitution x := E(x) denotes the transformation leading to the updating of the state variable x according
to the value of E(x) and the substitution x :∈ A(x) denotes the updating of the state variable x according
to a value of A(x) (a set depending on the pre-value of x).The Before-After predicate of a substitution
P (x, x�) defines the relation between values of variables before substitution (x) and values of variables af-
ter substitution (x�). For the substitution x := E(x), the predicate P (x, x�) is x� = E(x) whereas for the
substitution x :∈ A(x), the predicate is x� ∈ A(x). Each event has a guard controlling the substitution and
the occurrence of the event. A Before-After predicate of event is defined from Before-After predicate of
substitution and guard of event. We denote by S(x) any substitution form and an event is built with respect
to three schemata recalled in the figure 1.

Finally, the B model language provides the way to define a B event-based model. A (abstract) model is
made up of a part defining mathematical structures related to the problem to solve and a part containing el-
ements on state variables, transitions and (safety and invariance) properties of the model. Proof obligations
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Event : E Guard Before-After Predicate

begin S(x) end true P (x, x�)

select G(x) then S(x) end G(x) G(x) ∧ P (x, x�)

any t where G(t, x) then S(x) end ∃ t· ( G(t, x)) ∃ t· ( G(t, x) ∧ P (x, x�, t) )

Figure 1: Definition of events and before-after predicates of events

Name Syntax Definition
Binary Relation s ↔ t P(s × t)

Domain dom(r) {a |a ∈ s ∧ ∃b.(b ∈ t ∧ a �→ b ∈ r)}
Codomain ran(r) dom(r−1)

Co-restriction r � t r; id(s)
Anti-co-restriction r �− t r � (ran(r) − t)

Image r[w] ran(w � r)
Overwrite q �− r (dom(r) �− q) ∪ r

Partial Function s �→ t {r | r ∈ s ↔ t ∧ (r−1; r) ⊆id(t)}
Total Function s → t {f | f ∈ s �→ t ∧ dom(f) = s}

Figure 2: B set notations

are generated from the model to ensure that properties are effectively holding: it is called internal consis-
tency of the model. A model is assumed to be closed and it means that every possible change over state
variables is defined by transitions; transitions correspond to events observed by the specifier. A model m is
defined as follows. A model has a name m; the clause sets contains definitions of sets of the problem; the
clause constants allows one to introduce information related to the mathematical structure of the problem
to solve and the clause properties contains the effective definitions of constants: it is very important to list
carefully properties of constants in a way that can be easily used by the tool. Another point is the fact that
sets and constants can be considered like parameters and extensions of the B method exploit this aspect
to introduce parameterization techniques in the development process of B models. The second part of the
model defines dynamic aspects of state variables and properties over variables using the invariant called
generally inductive invariant and using assertions called generally safety properties. The invariant I(x)
types the variable x, which is assumed to be initialized with respect to the initial conditions and which is
preserved by events (or transitions) of the list of events. Conditions of verification called proof obligations
are generated from the text of the model using the first part for defining the mathematical theory and the
second part is used to generate proof obligations for the preservation of the invariant and proof obligations
stating the correctness of safety properties with respect to the invariant.

The B event-based method includes the B data modelling language, the B events language and the
B models language. The figure 2 gives set-theoretical notations of the B data modelling language and it
borrows notations and concepts of Bourbaki’s group. If f is a function then the substitution f(x) := E is
equivalent to f := f �−{x �→ E}.

Due to the lack of space, we do not introduce formally the refinement models and they will be effectively
used later. A complete introduction of B can be found in [6].

Applications to SoC development

The scheduler model was developed for validating a system on chip produced for measuring the service
performance (TS level) in a DVB environment. Formal modelling techniques [12, 1, 5] provide hints on
the architecture of the future system and the formal model has been developed using the B event-based
method; the resulting B model provides an invariant, which is incrementally built and validated through the
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refinement process and the details are extracted from the documentation [9]. However, the resulting B model
should be translated into an equivalent code and the question of the adequacy of the resulting code with the
B model should be solved by defining a semantical framework for asserting the semantical relationship. It
is why we have developed the B model for the SystemC scheduler. Our case study is a monitoring tool for
measurement in Digital Video Broadcasting Television (DVB-T) and problems are related to the number of
computations and real-time constraints. The implementation of this tool is driven by the hierarchy derived
from invariant of models. The refinement allows us to classify parameters into a consistent hierarchy; the
hierarchy has properties for deriving a so-called abstract architecture for the system. The hierarchy of the
abstract model is not falsified by the hierarchy of the concrete one, thanks to the refinement. Obviously,
events of the model can be used to derive algorithmic methods for computing the value of each parameters.
Explanations to non specialists of refinement are given through graphs, which capture the relation between
parameters. The project includes colleagues of the electrical engineering department and three industrial
partners; the project leads to the effective design of a tool correct with respect to the hierarchy among
parameters and the B event-based method helps in validating the final choice of implementation. However,
it is out of the scope of the current paper which focuses on the model of the scheduler.

Related works

The definition of an operational semantics is not new [15, 17]; the main fact is that we use the B event-
based methodology for writing the abstract scheduler; for instance, the ASM language is used to define the
simulation semantics of SystemC [15, 10] as the semantics of SpecC [13], an equivalent language of Sys-
temC, or semantics of VHDL [11]. Unfortunately, these works [15, 10] consider the scheduler of SystemC
V1.0 which is really different of the actual version (V2.0). The major goals of these works are the definition
of precise specifications for future implementation of a scheduler or to investigate SystemC interoperability
with Verilog, SpecC and VHDL. Our goal is to provide a formal semantics to the SystemC scheduler and we
use the B framework for expressing the semantics. A second difference is that we write incrementally the
operational semantics and the incremental process improve the understanding of the scheduler. Finally, the
resulting B event-model for the simulation semantics can be used as a parametric framework for analysing a
specific SystemC program and this point is not addressed elsewhere in the literature. Others works [18, 16]
aim to develop abstract models of SystemC programs and use model checking techniques; those approaches
are verification-oriented and we are dealing mainly with design-oriented ones.

Summary

Section 2 describes the SystemC programming language and its concepts; the principles of simulation
are sketched by the simulation algorithm. Section 3 reports the incremental development of the SystemC
scheduler using the refinement process; the section is the main technical aspect of the paper. A simple
example illustrates the technique of model instantiation in the section 4. Section 5 concludes the work.

SYSTEMATIC B MODELS FOR SYSTEMC SIMULATION

Requirements for the SystemC Simulation

SystemC [19, 14] is a set of C++ class definitions with hints for using these classes. The SystemC
library of classes and simulation kernel extend C++ to enable the modelling of systems. Extensions include
handling for concurrent behavior, time sequenced operations, data types for describing hardware, structure
hierarchy and simulation support. The core language consists of an event-driven simulator as the base
(scheduler). The scheduler uses events and processes.

SystemC: Quick Overview

A SystemC system consists of a set of modules. A module is a container class and provides the ability
to describe structure. Module is a hierarchical entity that can have other modules or processes inside it.
Modules typically contain processes, ports, internal data channels and possibly instances of other modules.
Ports are used to describe structure, while channels are used to represent communication. Processes are
concurrent and are used to model the functionality of the module. Processes are contained inside modules
and are particular methods of modules. SystemC provides different process abstractions for hardware and
software designers. Channels or signals handle communications between processes but communications
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between processes inside different modules is supported by ports, interfaces and channels. The port of a
module is the object through which the process accesses a channel. Events are the basic synchronization
objects for processes. Processes are triggered with respect to sensitivity on events. Concretely, an event is
used to represent a condition that may occur during the simulation and to control the triggering of processes.
Static sensitivity is defined before simulation starts but dynamic sensitivity is defined after simulation starts
and can be altered during simulation.

SystemC: Execution Semantics

The function sc main() is the entry point from the library to the user’s code (as the function main()
in C++ programs). Elaboration is defined as the execution of the sc main() function from the start of
sc main to the first invocation of scheduler. During elaboration, the structural elements of the system
are created and connected throughout the system hierarchy. The structure of the system is created during
elaboration time and does not change during simulation.

Before first invocation of scheduler, initialization is the first step of simulation. Each process is executed
(you can turn off initialization for particular processes with calls of methoddont initialize()) during
initialization. The order of execution of processes is unspecified but two simulations run using the same
version by the same simulator must yield identical results. The next figure presents an example of SystemC
modules with concurrent processes, channels and events.
# inc lude ‘ ‘ sys temc . h ’ ’

SC MODULE( my module ) {
s c i n<bool > p o r t 1 ;
s c ou t<bool > p o r t 2 ;
e v en t e2 , e3 ; / / e v e n t s d e c l a r a t i o n
s c s i g n a l<in t > coun t ; / / i n t e r n channe l

vo id proc1 ( ) {
i f ( c oun t . r e a d ( ) < 1 0 ) {

coun t . w r i t e ( c oun t . r e a d ( ) + 1 ) ;
e2 . n o t i f y ( ) ; / / immed ia te n o t i f i c a t i o n

} e l s e {
e3 . n o t i f y (5 , SC NS ) ; / / t imed n o t i f i c a t i o n

}
}

vo id proc2 ( ) {
i f ( c oun t . r e a d ( ) < 1 1 ) {

coun t . w r i t e ( c oun t . r e a d ( ) + 2 ) ;
} e l s e {

e3 . n o t i f y (4 , SC NS ) ; / / t imed n o t i f i c a t i o n
}

}

vo id proc3 ( ) { coun t . w r i t e ( 0 ) ;}
}

SC CTOR( my module ) {
coun t . w r i t e ( 0 ) ;
SC METHOD( proc1 ) ; s e n s i t i v e << coun t ;
SC METHOD( proc2 ) ; s e n s i t i v e << e2 ;
d o n t i n i t i a l i z e ( ) ;
SC METHOD( proc3 ) ; s e n s i t i v e << e3 ;
d o n t i n i t i a l i z e ( ) ;

}
} ;

The SystemC scheduler controls the timing and order of process execution, handles event notifications
and manages updates to channels. It supports δ-cycles. A δ-cycle consists of the execution of evaluate
and update phases. There may be a variable number of δ-cycles for every simulation time. SystemC
processes are non-preemptive. It means that for thread processes, code delimited by two wait statements
will execute without any other process interrupt and a method process completes its execution without
interrupt by another process. The scheduler may be invoked such that it will run indefinitely. Once started
the scheduler continues until either there are no more events, or a process explicitly stops it, or an exception
condition occurs.
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Event Notification

Events can be notified in three ways: immediate, δ-cycle delayed and timed. Immediate notification
means that the event is triggered in the current evaluation phase of the current δ-cycle. A δ-cycle delayed
notification means that the event will be triggered during the evaluate phase of the next δ-cycle, the event
is scheduled for the next δ-cycle. Timed notification means that the event will be triggered at the specified
time in the future.

Events can have only one pending notification, and retain no “memory” of past notifications. Multiple
notifications to the same event, without an intermediate trigger are resolved according to the following rule:

timed ≺ δ ≺ immediate

An earlier notification will always override a scheduled one to occur later, and an immediate notification
is always earlier than any δ-cycle delayed or timed notification, rules imply non determinism.

Complete Algorithm of Scheduler

The semantics of the SystemC simulation scheduler is defined by the following eight steps in [14]. A
δ-cycle consists of steps 2 through 4.

1. Initialization Phase:

2. Evaluate Phase: From the set of processes that are ready to run, select a process and resume its
execution. The order in which processes are selected for execution from the set of processes that are
ready to run is unspecified.
The execution of a process may cause immediate event notifications to occur, possibly resulting in
additional processes becoming ready to run in the same evaluate phase.

3. Repeat step 2 for any other processes that are ready to run.

4. Update Phase: Execute any pending calls to update() from calls to the request update()
function executed in the evaluate phase.

5. If there are pending delta-delay notifications, determine which processes are ready to run and go to
step 2.

6. If there are no more timed event notifications, the simulation is finished.

7. Else, advance the current simulation time to the time of the earliest (next) pending timed event noti-
fication.

8. Determine which processes become ready to run due to the events that have pending notifications at
the current time. Go to the step 2.

We propose to develop the algorithm by refinement from the description of the language reference
manual. By this way, we provide an abstract simulation framework which can be instantiated later for a
given SystemC program. By instantiation of abstract scheduling model, we define operational semantics of
SystemC programs.

INCREMENTAL CONSTRUCTION OF THE SYSTEMC SCHEDULEr

Our B models models the SystemC scheduling and different parts of algorithm are introduced by re-
finement. Dynamic sensitivity is not considered in our models for simplifications reasons.
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Initialisation

Evaluate

Update

runnable ≠ ∅

HALT

runnable = ∅

runnable ≠ ∅

runnable ≠ ∅

runnable = ∅

runnable = ∅

runnable = ∅

model
Abstract Scheduler

sets
PROCESSES;
STATE = {init, run, stop}

variables
runnable

invariant
runnable ⊆ PROCESSES ∧
phase ∈ STATE ∧
(phase = stop ⇒ runnable = ∅)

initialisation
runnable :∈ P(PROCESSES) �
phase := init

Figure 3: Automaton and header of abstract model

Abstract Model

The first abstract model describes, in a very abstract way, SystemC scheduler during simulation of
program. As shown in previous algorithm, scheduler has two important phases: during the evaluate phase,
runnable processes are executed and are removed from list of runnable processes. During the update phase,
a new list of runnable processes is built. In particular cases, processes are adding to the list in evaluate
phase. The abstract model captures the essence of scheduler and an automaton presented in figure 3 shows
the different states of our model. Only processes are considered and there are no clocks, signals and events.
The abstraction plays with processes of abstract program. Our abstract model contains three distinct events
to animate variables and represent SystemC scheduler reactions. The three events are represented by the
three states of figure 3. Because of the abstraction level, the automaton is not deterministic, from particular
state (Update for instance), many transitions are possible with the same conditions. As shown figure 3,
initialization, δ-cycle and, possibly stop are modelled in the system. Remember that, when refining models,
the main idea is to reduce non-determinism but we should start by a very abstract model.

More precisely, abstraction is built very simply: PROCESSES is the set of processes defined in an
abstract SystemC program. The abstract model uses a variable runnable which is a sub-set of PROCESSES,
runnable processes at the current time. Last, a variable phase is introduced. This variable is used to separate
different states of the system. Header of model with constants, properties of constants, variables, invariant
and initialization of system are presented in figure 3. First, set ST AT E and value of variable phase model
three different states of the system:

• phase = init, means than system is in initialization phase.

• phase = run, means than system is in execution phase i.e. in evaluate phase or update phase.

• phase = stop, means than system is halting and simulation finished.

A first interesting safety property about runnable is phase = stop ⇒ runnable = ∅. It means
than simulation is finished only, when there is no more runnable process. This is an important property of
simulation presented in the language reference manual. The invariant property is preserved by events of
abstract model. The runnable variable is updated during evaluate phase, after executions of processes:

• when a process p is executed, it is suppressed from set runnable.

• execution of p could add new processes in the same current evaluate phase.
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proc1

proc2

exe
cutio

n1 execution2

if (count < 10) {
   count.write(count.read()+1);
   e2.notify();
} else {
   e3.notify(5,SC_NS);
}

Figure 4: Possible executions of same process

In general case, a same process can have different executions between context of its current execution.
For example, figure 4 shows a process with an if then else instruction. The process proc1 is con-
sidered as runnable and different executions are produced by different activations of the process. Figure
4 presents the two subsets of processes generated by executions of proc1. These two subsets are very
simple: only one process for the first and the second is empty.

The two next events model the dynamic of system and scheduling of SystemC design during simula-
tion. Event Evaluate represents a non-deterministic choice of process p in runnable (see guard of event:
runnable �= ∅) and resulting consequences of its execution. Event Evaluate suppresses processes in
runnable and builds a new set of runnable processes. In this abstract level, details of the list construction
are not presented but the main information is stated: after each process execution a new list of processes is
built.

After one or more activations of event Evaluate, value of variable runnable can be the empty set (∅).
In the SystemC point of view, it means than all runnable processes have been executed and scheduler must
begin its update phase. EventUpdatemodels the update phase of scheduler. Its abstracts level of modelling
can not express how the new list is built but our model shows that a new list of runnable processes is built
in update phase. Details of new list built will be presented in the first refinement.

Evaluate =
select
phase �= stop

then
runnable :∈ P(PROCESSES) �
phase := run

end

Update =
select
phase = run ∧
runnable = ∅

then
runnable :∈ P(PROCESSES)

end

At last, event HALT models the ending of simulation. In the ab-
stract model, without SystemC event notion, simulation can halt,
when variable runnable is empty. The invariant properties are
preserved and event is consistent with invariant and requirement
of SystemC scheduler. After ending of simulation (modelled by
B event HALT), system is deadlocked and no event can be acti-
vated.

HALT =
select
phase �= stop ∧
runnable = ∅

then
phase := stop

end

Finally, our first model sketches the core of SystemC scheduler and simulation principles. Our ab-
straction presents evolution of processes (runnable thereafter not) during simulation but does not explain
scheduling algorithm. Next refinement add details of SystemC simulation principles and the role of sched-
uler.

First Refinement: SystemC Events

The first refinement introduces SystemC events and notifications of SystemC events. Addition of Sys-
temC events notion implies to split B event Update to specify algorithm of scheduling. Splitting concrete
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Initialisation

Evaluate

runnable ≠ ∅

runnable = ∅

runnable ≠ ∅

runnable ≠ ∅

ProgressTime DeltaCycle

delta ≠ ∅

delta = ∅
timed ≠ ∅

time ≠ EOS

noEvent

EndingSimulation

delta = ∅
timed = ∅

time = EOS
delta = ∅

runnable = ∅

UpdateValue

runnable = ∅

Figure 5: Concrete automaton of the scheduler

events refines abstract event Update. In the same way, abstract B event is refined by two concrete events
to model different terminations. The figure 5 shows the new concrete automaton produced from the refined
model. The non-deterministic transitions of abstract model (see figure 3) are now deterministic because the
new refined model introduces more details. New set and constants are introduced:

• SC EV ENT S is the set of events used during execution of abstract SystemC program.

• sensitivity is a relation from PROCESSES to SC EV ENT S which models the static sensitiv-
ity list of each processes defined in program. Because a process can be sensitive on many events,
sensitivity is a relation. The relation sensitivity is constant because our models do not consider
dynamic sensitivity.

• EOS is a number which represents the ending-of-simulation time. Scheduler can be invoked with a
integer parameter which represents the total time of simulation.

• trigger is a relation from PROCESSES to P(SC EV ENT S). The relation represents events
produce by execution of processes. Because of the code structure, trigger is a relation; a conditional
instruction can produce two different executions as presented in figure 4.

SystemC event and sensitivity of processes notions are introduced, we must model different kinds of
event notification. To represent notifications, time must be considered in the refined model. Header of
refined model is presented below:
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refi nement
Event Scheduler

refi nes
Abstract Scheduler

sets
SC EV ENTS

constants
sensitivity, trigger,EOS

properties
sensitivity ∈

PROCESSES ↔ SC EV ENTS ∧
trigger ∈

PROCESSES ↔ P(SC EV ENTS) ∧
EOS ∈ N

variables
runnable, time, phase,

timed, δ

invariant
time ∈ N ∧
EOS ≥ time ∧
timed ∈ SC EV ENTS �→ N ∧
∀t.(t ∈ ran(timed) ⇒ t > time) ∧
δ ⊆ SC EV ENTS ∧
dom(timed)∩ δ = ∅ ∧
(phase = stop ⇒ δ = ∅) ∧
(phase = stop ⇒ time = EOS ∨

timed = ∅)
initialisation
time := 0 �
phase := init �
runnable :∈ P(PROCESSES) �
timed := ∅ �
δ := ∅

New concrete variables help to model scheduling algorithm. The two variables timed and δ correspond
to different kinds of event notifications. δ is the subset of SystemC events which have a pending delta-delay
notification whereas timed is a function from SC EV ENT S to N which models the subset of pending time
notification events. An important invariant predicate is the disjunction of the two subsets: SystemC events
can have only one pending notification and multiple notifications of the same event are resolved by priority
rule. New natural variable time models the current time of the system. The variable is very important and a
new invariant predicate ∀t.(t ∈ ran(timed) ⇒ t > time) translates that timed notifications indicate future
occurrences of events.

The new concrete version of B eventEvaluatemust now precise behaviors of SystemC events triggered
by execution of process p selected in runnable. First, the set E models the set of events triggered by an
execution of process p (E ∈ trigger[{p}]). We must partition the set E:

• let i, a subset of E, the set of SystemC events related to immediate notification.

• let d, a subset of E, the set of SystemC events related to δ-delay notification.

• let t, a subset of E, the set of SystemC events related to timed notification.

These subsets are only composed of explicit invoked events. At
this abstract level, the model uses only explicit SystemC events
and not events produced by channels updates. These three sub-
sets partition E as defined in the guard of B eventEvaluate. The
next box presents a part of B event Evaluate guard:

E ∈ trigger[{p}] ∧
t ∈ SC EV ENTS �→ N ∧
dom(t) ⊆ E ∧ d ⊆ E ∧ i ⊆ E ∧
dom(t) ∩ d = ∅ ∧ dom(t) ∩ i = ∅ ∧
d ∩ i = ∅ ∧ dom(t) ∪ d ∪ i = E ∧

Rules of priority about multiple event notifications imply important properties on function t and on the
new subset of events with pending timed notifications represented by domain of the function newT imed.
The function is built with the function timed (old set of timed notification events) and the function t which
represents events with timed notifications triggered by execution of process p. Because of priority rules
presented in section* , we establish these properties:

newT imed ∈ SC EV ENTS �→ N ∧
dom(newT imed) = dom(timed �− t) − (d ∪ i) ∧
∀e.(e ∈ (dom(timed) ∩ dom(t)) ⇒ newT imed(e) = min({timed(e), t(e)})) ∧
∀e.(e ∈ dom(newT imed) ∧ e �∈ dom(t) ⇒ newT imed(e) = timed(e)) ∧
∀e.(e ∈ dom(newT imed) ∧ e �∈ dom(timed) ⇒ newT imed(e) = t(e))
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In the same way, variable δ is updated by rules of scheduler; immediate notifications are more prioritary
than δ-notifications (δ := δ∪d−i). In another hand, the set runnable is updated by suppression of executed
process p and by addition of the set of processes sensitive to immediate notifications of events of i subset.
The new concrete version of B event Evaluate is finally:

Evaluate =
any
p,E, t, d, i, newT imed

where
p ∈ runnable ∧
E ∈ trigger[{p}] ∧
t ∈ SC EV ENTS �→ N ∧
dom(t) ⊆ E ∧ d ⊆ E ∧ i ⊆ E ∧
dom(t) ∩ d = ∅ ∧ dom(t) ∩ i = ∅ ∧
d ∩ i = ∅ ∧ dom(t) ∪ d ∪ i = E ∧
newT imed ∈ SC EV ENTS �→ N ∧
dom(newT imed) = dom(timed �− t) − (d ∪ i) ∧
∀e.(e ∈ (dom(timed) ∩ dom(t)) ⇒ newT imed(e) = min({timed(e), t(e)})) ∧
∀e.(e ∈ dom(newT imed) ∧ e �∈ dom(t) ⇒ newT imed(e) = timed(e)) ∧
∀e.(e ∈ dom(newT imed) ∧ e �∈ dom(timed) ⇒ newT imed(e) = t(e)) ∧
dom(t) ∩ δ = ∅ ∧ ∀x.(x ∈ ran(newT imed) ⇒ time < x)

then
runnable := (runnable− {p}) ∪ sensitivity−1[i] �
timed := newT imed �
δ := δ ∪ d− i �
phase := run

end

Now, we detail the update phase of SystemC simulation. Because of different kind of notifications,
update phase is more complex. The update phase begins when the set runnable is empty. It means that
all runnable processes have been executed in the previous evaluate phase. This important precondition was
present in the guard of first abstract B event Update. The splitting of abstract B event Update produces
three concrete events, updateValue, DeltaCycle, ProgressTime.
The concrete event updateValue is a non-
deterministic event which adds a subset S to the
set δ of events with δ-notifications. It means that
sometimes, in update phase, SystemC scheduler pro-
duces new events notifications. Details will be added
in the second refinement. Invariant properties are
preserved by activation of this event. New concrete
event DeltaCycle models the update phase due to
pending δ-notifications (see guard of event:δ �= ∅
). At this abstract level, the model explains the
construction of new list of runnable processes: this is
the set of processes sensitive to events with pending
δ notification.

updateValue=
any
S

where
S ⊆ SC EV ENTS ∧
runnable = ∅ ∧
S ∩ dom(timed) = ∅ ∧
phase = run

then
δ := δ ∪ S

end

In the other hand, B event ProgressTime represents the update phase due to pending timed event
notification. The event is activated only when there is no more δ-delay notifications. B eventProgressTime
advances the current simulation time to the time of the earliest (next) pending time event notification. New
list of runnable processes is built with sensitivity relation and events which occur at new current simulation
time.
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DeltaCycle =
select
runnable = ∅ ∧
δ �= ∅ ∧
phase = run

then
runnable := sensitivity−1[δ] �
δ := ∅

end

ProgressTime =
select
runnable = ∅ ∧
δ = ∅ ∧
timed �= ∅ ∧
EOS ≥ min(ran(timed)) ∧
phase = run

then
runnable :=
sensitivity−1[timed−1[{min(ran(timed))}]] �

time := min(ran(timed)) �
timed := timed −� {min(ran(timed))}

end

Finally, the abstract event HALT is refined into two more concrete events. First, the event noEvent
models the ending of simulation, because of lack of event notifications. The simulation stops because
of lack of activities: no more event notifications implies no more runnable processes. Second, the event
EndingSimulation models ending simulation, because of the simulation time is the ending-of-simulation
time and no more events notifications can occur.

EndingSimulation=
select
runnable = ∅ ∧
δ = ∅ ∧
time = EOS ∧
phase �= stop

then
phase := stop

end

noEvent =
select
runnable = ∅ ∧
δ = ∅ ∧
timed = ∅ ∧
phase �= stop

then
phase := stop

end

Second Refinement: Complete Model

Channels are introduced in this final refinement. New automaton is not presented because only some
transitions (ie guards of events) are strengthened to consider adding of channels and values of them.

New constants are introduced in this final refinement. First, a new set CHANNELS models the set
of used channels in a SystemC program. Another set is V ALUE which represents the set of abstract values
of considered channels. Our model introduces a subset C EV ENT S which represents the set of implicit
events of the program. The implicit event is an event used by system to indicate a modification of channel’s
value. SystemC users can not access directly to this kind of events. Our model introduces the next properties
which translate previous remarks:

C EV ENTS ⊆ SC EV ENTS ∧
∀S.(S ∈ ran(trigger) ⇒ S ∩ C EV ENTS = ∅)

Another constants are introduced in this model. The function produce is a total function from CHANNELS

to C EV ENT S and represents implicit events triggered by modifications of channel. The current model
deals with abstract channels and does not detail generation of implicit events for positive and negative sen-
sitivity lists ( keywords sensitive pos and sensitive neg). These kinds of sensitivity lists are only
used with particular (boolean) channels and, in the same way, we could model these lists.

A new variable value is introduced to represent the current values of channels. A second new variable
newV alue is introduced to construct the new valuation of channels after update phase. The two variables
value and newV alue are total functions from CHANNELS to V ALUE.

New concrete version of event Evaluate considers channels. A partial function f is introduced to
represent modifications of channels made by process p. The variable function newV alue is built with the
partial function f during the evaluate phase. It is easy to prove that the new version of event Evaluate
refined the oldest abstract version.
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Evaluate =
any
p,E, t, d, i, newT imed, f

where
p ∈ runnable ∧
t ∈ EV ENTS �→ NATURAL ∧
E ∈ trigger[p] ∧
dom(t) ⊆ E ∧
newT imed ∈ EV ENTS �→ NATURAL ∧
d ⊆ E ∧ i ⊆ E ∧
...

f ∈ CHANNELS �→ V ALUE

then
runnable := (runnable− p) ∪ sensitivity−1[i] �
timed := newT imed �
δ := δ ∪ d− i �
newV alue := newV alue �− f �
phase := run

end

The new concrete version of event updateValue
is deterministic and explain the adding of δ-
delay notification during update phase. When
values of channels are updated, δ-delay events
notifications occur, when the new value is dif-
ferent from old value. The set δ is updated with
these new δ-delay notifications. The event ex-
plains the behavior of scheduler when multiple
channels modifications: only the last modifica-
tion is considered.

updateValue=
select
runnable = ∅ ∧
value �= newV alue ∧
phase = run

then
value := newV alue �

δ := δ ∪ produce

»

c | c ∈ CHANNELS ∧
value(c) �= newV alue(c)

ff–

end

The new concrete versions of other events are not too different from abstract versions and for limited
size reasons we do not present the concrete versions of B events.

Producing a B model from a SystemC program

From a particular SystemC program or design, we can produce a B event model which represents the
simulation of the program by the scheduler. The new B model must be a particular instantiation of abstracts
models of scheduler. For each process of SystemC program we produce events (one at least) which represent
execution of process. The set of events produced must refine event Evaluate from abstract models, which
represent abstract executions of abstract processes.

Abstract sets and constants are concretized with particular values of program. Sets and constants
of instantiated model must preserve properties of abstract sets and constants. For example, concrete set
CHANNELS is composed by the channels used in Systemc programs modelled. In the same way, ab-
stract set PROCESSES is the set of particular processes of current SystemC program.

EXAMPLE

Our abstract models can be instantiated to simulate execution of particular program by the SystemC
scheduler. Instantiation of abstract scheduler for particular program is very easy: sets, constants and vari-
ables are specified for particular SystemC program studied. Abstract event Evaluate is split into particular
events, which model execution processes of particular SystemC program. As previously announced, other
abstract events are unchanged: algorithm of SystemC scheduler did not evolve with programs simulations.

Sets and constants

We use a toy example presented in section page 5. Instantiation is made with the concrete sets:
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Abstract set PROCESSES is instantiated by three processes
(proc1, proc2, proc3) of the toy example. Abstract set
SC EV ENT S is instantiated by SystemC events e2 and e3, de-
fined by user, and by SystemC event e which is an implicit event.
In the same way, abstract set CHANNELS is instantiated by
only one element, count channel. Event e is gluing to channel
count in relation produce. Abstract set V ALUE is instantiated
by the integer set.

PROCESSES = {proc1 , proc2 , proc3}
SC EVENTS = {e, e2 , e3}
CHANNELS = {count}
VALUE == N

Concrete constants are defined for the particular SystemC program considered. It is easy to show that
concrete constants satisfy abstract properties of abstract constants. The major part of properties is type-
checking and concrete constants trivially preserve these properties.

C EVENTS = {e}
produce = {count �→ e}
trigger = {proc1 �→ {e2},

proc1 �→ {e3},
proc2 �→ ∅,
proc2 �→ {e3},
proc3 �→ ∅}

sensitivity = {proc1 �→ e, proc2 �→ e2 , proc3 �→ e3}

variables
runnable, time, phase,

δ, timed , value, newValue

invariant
dom(timed) ⊆ {e3} ∧ e3 �∈ δ ∧ e2 �∈ δ

initialisation
time := 0 �
runnable := {proc1} �
phase := init �
timed := ∅ �δ := ∅ �
value := {count �→ 0} �
newValue := {count �→ 0}

The invariant predicates of model precise relations between concrete instantiated variables. In the
current SystemC program, only event e3 is concerned by time event notifications. This fact is translated
into an invariant predicate dom(timed) ⊆ {e3}.

Instantiation: concrete event EvaluateXXX

From structure of the three processes of listing page 5 we derive five B events:

• Process proc1 contains conditional statement and it implies that two different executions can occur.
Two different events model the process. Guards of events are disjunctive.

• As process proc1, process proc2 uses a conditional statement. Equivalently, two B event simulate
behaviors of process proc2.

• Process proc3 does not contain conditional statement. Only one event is needed to represent its
execution.

EvaluateProc1Then=
select
proc1 ∈ runnable ∧
value(count) < 10

then
runnable := runnable − {proc1}∪
sensitivity−1 [{e2}] �
newValue := newValue �−
{count �→ value(count) + 1} �
phase := run

end

EvaluateProc1Else =
select
proc1 ∈ runnable ∧
value(count) ≥ 10

then
runnable := runnable − {proc1} �
timed := {e3 �→

min(ran(timed) ∪ {time + 5})} �
phase := run

end

Finally, the two previous B events simulate executions of process proc1 during SystemC simulation.
All instructions of each block of conditional statement are translated/considered in the corresponding event.
Guards of B events represent test of conditional instruction and context of simulation.

As previously, two next events are built and model behavior of process proc2 during SystemC simu-
lation. This two events give operationnal semantics of process proc2.
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EvaluateProc2Then=
select
proc2 ∈ runnable ∧
value(count) < 15

then
runnable := runnable − {proc2} �
newValue := newValue �−
{count �→ value(count) + 2} �
phase := run

end

EvaluateProc2Else =
select
proc2 ∈ runnable ∧
value(count) ≥ 15

then
runnable := runnable − {proc2} �
timed := {e3 �→

min(ran(timed) ∪ {time + 4})} �
phase := run

end

The next event represents executions of process proc3.

EvaluateProc3 =
select
proc3 ∈ runnable

then
runnable := runnable − {proc3} �
newValue := newValue �−{count �→ 0} �
phase := run

end

CONCLUSION AND OPEN ISSUES

The refinement is the key concept for developing complex systems, since it starts by a very abstract
model and incrementally adds new details of the set of requirements; the main result of our work is the
production of a formal model for the SystemC scheduler with proved invariant properties correct with
respect to the properties required by the scheduling process; the incremental proof-based construction of
the formal model allows us to produce a understandable and well structured documentation for the SystemC
simulation. The complexity of the proof process is indicated by the assessment:

B Models Automatic Proofs Interactive Proofs %automatic/interactive P.
AbstractScheduler 4 0 100/0

Scheduler1 22 5 82/18
Scheduler2 10 2 84/16

Instanciation 20 10 66/34
Total 56 17 77/23

The SystemC scheduler allows us to instantiate parameters according to the current SystemC program
to simulate and hence we obtain an instance of the scheduler that can be used for simulation and for further
studies of the current instantiated SystemC program. Another result is directly related to the methodology
for producing an operational semantics for a given algorithm and the refinement proves that the definition
of an operational semantics can be incrementally written and can be proved by checking proof obligations.
However, the result is applied to our case study which is an effective tool for measuring the quality of
audio/video signals in the Digital Video Broadcasting (DVB) [9]; the tool is built from the B modelling
and the SystemC code is certified by the use of a proof assistant. Further works should implement a tool
for helping the manipulation of abstract scheduler and for checking conditions over the instantiation for a
given SystemC program; the tool should integrate a function for defining the parameters to instantiate in the
scheduler model. New case studies should be developed, as well as others properties over SoC should be
taken into account like confidentiality, access control, . . . .
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[1] Abraham, D., Cansell, D., Ditsch, P., Méry, D., and Proch, C. Synthesis of the QoS for digital TV
services. In IBCʼ05, The Netherlands (2005).

[2] Abrial, J. The B Book - Assigning Programs to Meanings. Cambridge University Press, 1996. ISBN
0-521-49619-5.



30

IEEE/NASA ISoLA 2005

[3] Abrial, J.-R. B# : Toward a synthesis between Z and B. In ZBʼ2003 - Formal Specification and
Development in Z and B (Turku, Finland, June 2003), D. Bert, J. P. Bowen, S. King, and M. Waldén,
Eds., vol. 2651 of Lecture Notes in Computer Science (Springer-Verlag), Springer, pp. 168 – 177.

[4] Back, R. J. R. On correct refinement of programs. Journal of Computer and System Sciences 23, 1
(1979), 49–68.
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REAL-IT: MODEL-BASED INTERFACE DEVELOPMENT ENVIRONMENT1

Alexander N. Ivanov and Dmitrij V. Koznov 
Saint-Petersburg State University 

ABSTRACT

 We present REAL-IT – model-based interface development environment with powerful support of source code 
generation from declarative interface models. REAL-IT provides some special modeling technique based on UML 
collaboration diagrams to specify data dependencies. This information is actively used for generation of advanced 
user interface features. REAL-IT supports iterative development process and provides guarantied consistency 
between different models and also between models and source code. REAL-IT development environment is 
integrated with UML CASE-tools (IBM Rational Rose and REAL) and development environment Microsoft Visual 
Studio/Visual Basic. It provides code generation for MS Visual Basic/Java and MS Access/MS SQL Server/Oracle. 
REAL-IT is intensively used in industry, and we analyze two industrial projects where it was successfully used. 

INTRODUCTION 

 The model-based user interface development environment (MBUIDE) aims to provide a context in which 
developers can design and implement user interfaces (UIs) constructing declarative models (ref. 1). These models 
give the following advantages: 

� They can provide more high-level description of the UI than UI descriptions provided by the other UI 
development tools (ref.2). 

� They support the infrastructure for automating the processes of design and implementation of the UI (ref. 
3). 

� They facilitate the creation of methods to design and implement the UI in a systematic way (ref.1). 

There are numerous MBUIDEs, for example, GENIUS (ref. 4), TEALLACH (ref. 5), MASTERMIND 
(ref.3)2. Model-based user interface development facilities are embedded into various CASE-tools, for example, 
ERwin3.  Data Base Management Systems (DBMSs) – MS Access, Oracle, etc. – also have a partial support for 
model-based development of the UI. The model-based user interface development approach is adopted for Web-
applications (ref. 7, 8).  

However, MBUIDEs are not widely used since some essential problems that are related to this approach are 
not completely solved (ref. 1): 

� There is no consensus about the set of models that is the most suitable for describing user interfaces. 
� It is not easy to integrate generated UI code together with other software components.  
� It is hard to estimate the quality of UI models without demonstrating the execution of UI code.  

 In this paper we present REAL-IT, which is a MBUIDE with powerful support of source code generation 
from declarative interface models. REAL-IT provides some special modeling technique, which is based on UML 
collaboration diagrams. The diagrams are used to specify data dependencies for future generation of advanced UI 
features. REAL-IT supports iterative development process and provides consistency between different models and 
between models and source code. REAL-IT toolset is integrated together with UML CASE-tools (IBM Rational 
Rose and REAL (ref. 9)) and Microsoft Visual Studio/Visual Basic. It provides code generation for MS Visual 
Basic/Java and MS Access/MS SQL Server/Oracle. We discuss also perspectives of applying REAL-IT for Web-
applications development. Lastly, we analyze two industrial projects where REAL-IT was successfully used. 

1 This work is partially supported by RFBR grant 05-0951/07. 
2 Detailed surveys on MBUIDEs can be found in references 1 and 6. 
3 AllFusion® ERwin Data Modeler 4.1.1, http://www3.ca.com/
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REAL LIFE CHALLENGES FOR MBUIDEs 

In this section we highlight the technologic challenges for MBUIDEs. They are the following: 

� Support of the UI iterative development process. The development of the UI is an iterative process. It 
means that the models should be intensively refined and MBUIDE must support their consistency 
through the whole refinement process. Moreover if MBUIDE provides code generation it should also 
provide the support of consistency for models and source code. This is because, first, models can be 
changed after generation has been performed and we have to regenerate the UI. Second, the generated 
code can be modified manually and since these modifications are not described in the models they are 
obviously not regenerated in the new version of the UI. This leads to the classical roundtrip problem as 
described in reference 10. If the model-based approach does not solve this problem it is hard to apply 
such approach in real practice (ref. 11). 

� Balance between poor/rich models and simple/complex development process. There are two wide 
MBUIDEs groups. MBUIDEs of the first group implement simple process development but provide poor 
modeling facilities. The UI that has been modeled in these environments can be used only as a prototype. 
Examples of the first group of MBUIDEs are GENIUS (ref. 4), MS Access and ERwin. MBUIDEs of the 
second group provide rich modeling facilities but their development processes are extremely 
complicated. The cost of constructing model descriptions can be higher than the benefits provided by 
such environments. Examples of the second group of MBUIDEs are TEALLACH (ref. 5) and 
MASTERMIND (ref. 3).

� Integration between modeling toolset and development environment. It is not easy to split real software 
development process into design and implementation, as well as into designs of the UI and other 
software components (database, business logic, etc.). All process activities are tightly integrated together 
because of the iterative nature of software development process. So it is not effective isolating one of the 
process activity (in this case, the development of the UI) providing it with any standalone tool. For UI 
modeling tools it is necessary to be deeply integrated together with the development environment.  

Many researches ignore the above mentioned aspects and concentrate their attention only on models 
(structure, notation, etc.) and modeling techniques.  

REAL-IT OVERVIEW 

Today there is no general software development process (ref. 12). Therefore, if we want to shift from 
general principles of the software development to the real approaches and toolsets we have to introduce some 
constraints and restrictions for our development process as well as the target software.  

REAL-IT is oriented on the development of data intensive systems with database business logic – such 
operations as input, modify, browse of data, etc. These systems should not support complicated business 
functionality. The structure of the system’s user actions is typical and very simple. Therefore, the corresponding part 
of the UI has also a typical structure.  

There is a large number of industrial applications that are such systems or have corresponding subsystems. 
The size of code for such applications is significantly large and their development process is an unwanted routine.  

We introduce the following types of windows for data intensive systems: 

� Card. It is for editing information about one database object. Figure 1 (a) shows an example for this 
window type.  
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� Data browser. It is for browsing database objects. Figure 2 (c) is an example of this window type. Data 
browser can contain a number of different browse filters that can depend on each other.  

� Relation. It is for linking database objects, which are instances of two classes connected by n:n 
association4. An example is shown in Figure 1 (b): Classes District and Street connected by n:n 
association, i.e. one district may be linked with many streets and one streets may be linked with many 
districts. If we select one district from the combo box named “District” we will see all the available 
streets in the left list (streets that can be linked with the district). In the right list we will see those streets 
that have been already linked to this district. We are able to link or unlink streets selected for this district.  

Windows of these types can be combined together with a different manner: card can be invoked from the 
data browser and can contain other data browsers and relation windows, etc.  

For these types of windows REAL-IT provides a mature UI development framework: model-based design 
of the user interface, generation of source code, supporting iterative development process, toolset integration with 
other development tools. 

We can summarize three dimensions of REAL-IT following reference 1:  

� Declarative models that are used for development of the UI; 
� Development process of the UI; 
� Environment that supports the development process. 

DECLARATIVE MODELS  

In terms of reference 6 REAL-IT supports domain and dialog models. We don’t support user model and 
task model because we want to reduce the problem of model consistency. REAL-IT does not have separate 
presentation model because MS Visual Studio, Delphi, Power Builder and other software environments have it. We 
think MBUIDE has to integrate with such software environments but not duplicate them. REAL-IT is integrated 
with MS Developer Studio/Visual Basic.     

Domain model   

We use UML for creating domain model, i.e. class diagrams to model data base schema, and collaboration 
diagrams to capture data dependencies. We apply UML class diagrams for modeling rational database schema. 
Classes denote tables, attributes are columns, associations express foreign keys, and objects are table records. We 
will name classes and objects in the context of data modeling as “data class” and “data object”. 

There are a lot of dependencies in data that can not be specified in terms of class diagrams. But these 
dependencies are very impotent because they capture some essential properties of UI, for example, connected combo 
box filters in data browsers, connected combo boxes in card windows for restriction of user inputs and so on. 
Collaboration diagrams are very useful to specify the data dependencies.  

Figure 2 (a) shows a fragment of a database schema of a business company. But this fragment does not 
answer to the following question: is it possible for employee to be connected with computer of another department 
or not? Figure 2 (b) shows a collaboration diagram, which is expressed the negative answer to this question. For 
Employee-card two related combo boxes will be generated to specify department and computer. Computers will be 
presented for selection depending on department.  

REAL-IT provides the ability for more complicated modeling of data dependencies as it is presented in 
reference 13. 

4 Actually REAL-IT is able to work not only with binary n:n associations but also with k-ary ones where k > 2.  
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  Dialog model 

This model provides a conceptual description of the structure and behavior of the visual parts of the UI in 
terms of abstract objects while omitting the visual details (ref. 1).  

The structure of each window designed in REAL-IT is typical. The developer is able to do one of the 
following: 

� In case if window is Card, developer selects data class which properties (attributes and associates) she/he 
want to place on the window. Class attributes selected will be presented as input controls, its associates 
selected will be presented as list/combo box controls. The developer creates property pages and arranges 
window elements on them. 

� In case if window is Data browser, developer selects data class or view5, which objects will be presented 
on the window, creates and tunes browse filters.   

� In case if window is Relations, developer selects two data classes, which are connected by n:n 
association; defines one of them to be presented as combo box; creates and tunes browse filters. 

The developer can also connect designed windows with each other.  

The dialog model is saved in terms of UML class diagrams, and developer can analyze these diagrams in 
CASE-tool. Actually, the developer very rear works with these UML diagrams. The main aim of UML 
representation of dialog model is to provide the storage for all REAL-IT models in one UML-repository. It 
simplifies the support of model consistency.      

PROCESS  

In this section we present the user interface development process that is supported by REAL-IT. We briefly 
describe the baseline of the process emphasizing on the code generation and iterative development additionally 
provided by REAL-IT.  

Baseline 

REAL-IT user interface development process starts from creating a domain model. The developer models a 
database schema by means of class diagrams and specifies data dependencies using UML collaboration diagrams. 
The domain model is developed using UML CASE-tool.  

The next step is creating a dialog model. It should be stressed that the firstly created domain model serves 
as a foundation for building the dialog model. During the development of the dialog model the developer creates 
views, elaborates windows for separated data-classes and views, and links these windows with each other. He/she 
does this work using a special dialog wizard (not UML CASE-tool) provided by REAL-IT. From this model REAL-
IT generates UML class diagrams and system source code. Generated code is later refined and integrated with other 
system components. This can be performed using any conventional and commonly used development environment 
such as MS Visual Studio, IntelliJ IDEA, etc. The next step is linking system code together with REAL-IT runtime 
library resulting in the target application. Figure 3 illustrates the user interface development process with REAL-IT.

Code generation 

Beside the ability to generate the programming code for the user interface, REAL-IT can also produce a 
database schema (SQL/DDL), code for the connection of the database and the UI, and the main application window.  

5 Besides data classes we used SQL-views to as a skeleton for data browser windows. 
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REAL-IT bases its source code generation on a set of manually predefined templates. Such templates can 
be easily modified in order to meet the needs of a particular software project. 

Supporting iterative development process 

Because REAL-IT has only a few types of UML diagrams and stores all models in a one repository it can 
easily guarantee the model consistency. However, the synchronization between models and system code is more 
complicated.  

It is impossible that a MBUIDE addresses all numerous specific features for every software project. These 
features should be implemented manually, in particular, by means of   making modifications of generated code. 
REAL-IT allows save such modifications during regeneration process by providing support for the following 
roundtrip approaches: 

� Inheritance with polymorphism. Code modifications are specified as subclasses and original classes 
containing generated code become superclasses. The subclasses redefine properties of superclasses using 
polymorphism. During the code regeneration REAL-IT replaces only superclasses, and subclasses 
remain unchanged that insures safety of previously made code modifications. The approach is quite 
suitable for Java since this language has a built in inheritance. However, if we apply this approach to 
Visual Basic (VB) we have to emulate inheritance. Moreover, the user interface controls in VB are not 
represented as VB-code but specified in some special format. Therefore, a totally different mechanism 
needs to support manual changes of controls’ properties. 

� Supporting mechanism of window controls’ changes. The manual changes of a window control 
properties are possible to localize automatically in the generated code. In REAL-IT a special algorithm 
analyzes the previous version of the generated code and insures the presence of the found manual 
changes in the newly regenerated code.

� Registration modifications of the user in the log. When the developer modifies generated code than all 
his actions are saved in a special log. After regeneration these actions are automatically reproduced for 
the regenerated code.

The above described mechanisms are not fully automated. The developer still has to do some additional 
work. For example he/she provides for REAL-IT toolset an extra data that can not be extracted automatically. It 
should be noted that the above described approaches do not work when the volume of manual code modifications is 
comparable with the volume of the automatically generated code. Otherwise, synchronization algorithms may work 
incorrectly or add a great computational overhead to the synchronization. 

ENVIRONMENT  

REAL-IT is integrated with UML CASE-tool (IBM Rational Rose, REAL (ref. 9)) and MS Visual 
Studio/Visual Basic, as Figure 4 shows.  

REAL-IT toolset is deeply integrated with MS Visual Studio/VB because this development environment 
has a special format for storing information related to the UI. MS Visual Studio/VB provides a special program 
interface to support the integration with user applications. On the contrary, when we use Java environments all we 
need to support integration is to generate a plain Java-code. For REAL-IT/Java we use IntelliJ IDEA. However, it is 
possible to use any other Java development environment.  

INDUSTRIAL APPLICATIONS  

REAL-IT was successfully used in the development of two industrial systems.  
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The first one was the information system STUDENT designed to support a faculty level business processes 
of Saint-Petersburg State University.  This project was developed by Information Institute of Saint-Petersburg State 
University. The system was developed on the base of MS VB/Access/MS SQL Server by 10 employees during 3 
years.

The second system was the pilot application of a government system for network management of 
telecommunication equipment. This project was developed by LANIT-TERCOM Ltd. (Russia) on the base of 
Java/CORBA/Oracle by 5 employees during 1.5 years. 

Results of applying REAL-IT in these projects are presented in tables 1 and 2. The rows of these tables 
indicate different window types of the UI, the columns specify the manner in which the code for these widows was 
developed. Captions of the tables can be clarified as follows:   

� “Fully generated” means that windows were fully generated by REAL-IT. 
� “Manually modified” means that windows were generated by REAL-IT, changed manually and 

supported by roundtrip REAL-IT facilities. 
� “Generated, but manually supported” means that generated windows were manually changed, but after 

that were developed outside of REAL-IT.  
� “Manually developed” means that windows from the very beginning were developed outside of REAL-

IT.

For the first project 95% of the UI has been developed in REAL-IT, about 60% has been fully generated. 
For the second project 87% of the UI has been developed in REAL-IT and 20% has been fully generated. In the 
second case REAL-IT was not so effective because this system had specific business logic (for network monitoring). 
This specificity makes the volume of manual changes to the generated code higher. Many windows were unique and 
were developed outside  REAL-IT.  

FOCUS ON WEB-APPLICATIONS  

Widely spreading Web-applications stimulate creation of advance development environments. There are 
several model-based approaches in this area (ref. 7, 8).  

REAL-IT is quite suitable for Web-application development because a large number of Web-systems are 
data intensive systems. It should be noted that WebML approach (ref. 8) and WebRatio toolset6 are very similar to 
REAL-IT, but they do not support iterative development process, usage of collaboration diagrams, and other REAL-
IT advantages. 

At the present moment we have done the following work in order to orient REAL-IT for Web-application 
modeling: 

� We have designed the REAL-IT runtime library for J2EE. 
� We have partially ported the generator and the runtime into J2EE platform. 
� We have developed the web-prototype of STUDENT system using REAL-IT. 

CONCLUSIONS  

The orientation of REAL-IT to the defined type of information systems allows us to find out the balance 
between poor/rich models and simple/complex development process. REAL-IT provides generation of non-trivial 
target code and quite simple development process. In STUDENT project the level of professional skills of REAL-
IT/VB developers needed was significantly less than the usual VB developers. 

6 http://www.webratio.com
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Industrial projects that are presented in this paper were developed in collaboration with authors of REAL-
IT. In present days, the independent development team of Information Technologies Institute of Saint-Petersburg 
State University successfully uses REAL-IT to develop and support various information systems. 

TABLES

Table 1: REAL-IT in STUDENT-project. 

Window 
type 

Fully 
generated 

Manually 
modified  

Generated, 
but manually 

supported 

Manually 
developed 

Total 

Data browser  69 16 6 0 91
Card 37 21 16 0 74
Relation 17 1 4 0 22
Others  0 0 0 6 6
Total 123 38 26 6 193 

Table 2: REAL-IT in development of the pilot application of a government system for network management. 

Window 
type 

Fully 
generated 

Manually 
modified 

Generated, 
but manually 

supported 

Manually 
developed 

Total 

Data
browser 

12 27 5 0 44

Card 9 22 7 0 38
Relation 0 0 1 0 1
Others 0 0 0 13 13
Total 21 49 13 13 96
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PICTURES

(a) (b)

(c)

Figure. 1: REAL-IT window types: (a) card; (b) relation; (c) data browser.
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Figure 2: (a) a fragment of a database schema of a business company;
(b) a data dependence for this fragment.
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Figure 3: Baseline of user interface development process with REAL-IT.
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Figure 4: REAL-IT and its environment.
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ABSTRACT

 In model-based development, the software development effort is centered around a formal description of the 
proposed software system; a description that can be subjected to various types of analysis and code generation. 
Based on years of experience with model-based development and formal modeling we believe that the following 
conjectures describe fundamental obstacles to wide adoption of formal modeling and the potential for automation 
that comes with it; (1) no single modeling notation will suit all, or even most, modeling needs, (2) no analysis tool 
will fit all, or even most, analysis tasks, and (3) flexible and stable tools must be made available for realistic 
evaluations and technology transfer.  These conjectures form the basis for the call to arms outlined in this report. 

 To make automated software engineering techniques more useful for more types of developers and allow us to 
move forward as a community it is crucial that we develop the foundation for building extensible and flexible 
modeling language processing tools. New common-infrastructure-based approaches are needed as traditional 
approaches based in file-based processing of intermediate language representations are not adequate. In this report 
we outline and illustrate the problem and discuss a possible solution. To initiate the discussions in the community, 
we hypothesize that languages and tools built using higher-order attribute grammars with forwarding can serve as a 
basis for such flexible language processing tools; tools that will allow us to unify our efforts and help bring our 
collective work to a broader audience. 

INTRODUCTION

 Traditionally, software development has been largely a manual endeavor. Informal natural language 
requirements have been manually captured, a design satisfying the requirements has been manually derived, and 
code implementing the design has been manually coded. Recently, there has been a move away from such manual 
techniques to a new paradigm commonly called model-based development. In this paradigm, the development effort 
is centered around a formal description of the proposed software system—the `model' in model-based development. 
For validation and verification purposes, this formal model can then be subjected to various types of analysis, for 
example, completeness and consistency analysis, e.g., [1], model checking, e.g., [2], theorem proving, e.g., [3], and 
test case generation, e.g., [4]. There are currently several commercial and research tools that attempt to provide these 
capabilities—for example, the commercial tools Esterel Studio (with its graphical notation Safe State Machines) and 
SCADE Studio from Esterel Technologies [5], Statemate from i-Logix [6], Simulink and Stateflow from The 
Mathworks Inc. [7], and SpecTRM from Safeware Engineering [8]; examples of research tool are SCR [9] and 
RSML-e [10]. 

 Our goal has for the last decade been to dramatically increase the quality and productivity of software 
development for critical control systems by centering the development around fully formal models extensively 
supported by tools.  These tools must allow engineers to specify system requirements in an appropriate and familiar 
notation and to effectively analyze the specifications to ensure that safety critical properties are satisfied.  In the 
course of our work we developed an approach to simulation and validation of formal specifications for process-

1 This work was partially funded by NSF CAREER Award #0347860 and NSF CCF Award #0429640. 
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control systems called specification-based prototyping [10]. Specification-based prototyping combines the 
advantages of traditional formal specifications (e.g., preciseness and analyzability) with the advantages of rapid 
prototyping (e.g., risk management and early end-user involvement)—goals that are now shared in the move 
towards model-based development. To enable specification-based prototyping, we developed the fully formal 
specification language RSML-e  (Requirements State Machine Language, without events) [11] and its execution and 
analysis environment NIMBUS [12]. We have successfully evaluated the capabilities on various case studies from the 
avionics, transportation, and mobile robotics domains [10, 11], and the environment has been used for several years 
in industrial research projects [12, 13, 14].  Note that our experience is primarily in the critical embedded systems 
domain, but we believe our observations and proposed solutions are applicable to other domains as well. Based on 
our years of experience, we believe that the following conjectures describe the fundamental obstacles that must be 
overcome for model-based development to have the dramatic real-world impact we, and many others in the 
community, envision.  These conjectures form the basis for our call to arms outlined in this report. 

Conjecture 1: No modeling language will be universally accepted, nor universally applicable.  Even closely related 
domains, such as avionics and medical technology, have justifiably different and entrenched views of what notations 
and features a modeling language should have to be suitable for their domains.  Nevertheless, certain classes of 
languages do have wide appeal, for example synchronous languages such as, Safe State Machines [5], SCADE [5], 
and SCR [9]. 

Conjecture 2: No verification and validation tool will satisfy all of a user’s analysis needs. Analysis tools are quite 
specialized and new sophisticated analysis tools are constantly emerging.  Somehow mating a wide and growing 
collection of analysis tools with a variety of modeling languages (Conjecture 1) is inevitable. 

Conjecture 3: To make progress in model-based development, practicing engineers must evaluate proposed 
solutions on practical problems; if proposed theories, methods, and tools do not solve real problems they are of little 
or no value. Therefore, the methods and tools must be flexible enough to easily adapt and be improved based on 
what is learned from using the tools on real-world problems. 

 The goal with this report is to generate awareness of what we perceive to be a serious problem and attempt to 
build a community around an effort to develop the foundation for building extensible and flexible modeling 
language processing tools that can satisfy the following three goals derived from the above conjectures—successful 
modeling tools must (1) allow easy extension and modification of formal modeling notations to meet the domain 
specific needs of a class of users, (2) allow easy construction of high-quality translations from the modeling 
notations to a wide variety of analysis tools, and (3) enable controlled reuse of tool infrastructure to make tools 
extensions cost effective. 

 Currently, we are aware of no tools that support the easy customization (or complete redefinition) of a modeling 
language necessary to accommodate the needs and likes of stake-holders in different domains.  Some modeling 
notations, notably UML [15], attempt to appeal to different domains by incorporating a wide variety of rich 
constructs. The richness of such languages, however, makes them unsuitable for most formal analysis.  In another 
approach, an intermediate model notation is used to accommodate the integration of a wide variety of analysis 
tools—various modeling formalisms are translated to the intermediate notation that can in turn be mapped into 
suitable analysis tools. Nevertheless, with an intermediate notation valuable information from the source language, 
for example, model structure, may be lost in the translation to the intermediate notation and there is a risk for 
exponential growth in model size during translation.  We believe other techniques are needed to satisfactorily solve 
this problem. 

BACKGROUND AND RELATED WORK 

 There has been an immense amount of research done in formal modeling tools, mappings from modeling 
notations to analysis tools, and translation technology.  The coverage in this section is by necessity cursory, but we 
will discuss our previous experiences and the core problem, and then present a short overview of efforts related to 
our research agenda. 
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The Problem

 Our conjectures are based on extensive experience in this domain and they have a large impact on how 
languages and tools are adopted in industry (or not adopted as is often the case). In any larger project there will be a 
need to use several different modeling notations. For example, notations such as Simulink [7] or SCADE [5] are 
suitable for the control oriented aspect of a system design whereas Safe State Machines [5] or Statecharts [6] are 
more suited for the discrete aspect of a system. Other notations, for example, SCR [16] and RSML-e [10] are 
considered better suited for high-level models used in the requirements domain. Thus, there must be the flexibility to 
select the right notation for the right task without having to “retool” the entire organization. In addition, after 
working on numerous projects in collaboration with industry, we have noticed that the adoption of new modeling 
tools is often hampered for nontechnical reasons. Typical obstacles to tools adoption are seen in comments such as 
“We like what you are doing, but you do not have internal events like Esterel—we find events essential”, “We like 
SCR, can you work with that?”, and “We think the guard-conditions in Statecharts are messy, could you provide the 
nice tables we saw in RSML?”.  These obstacles apply to both academic and commercial tools, and attempting to 
accommodate these wishes is typically economically infeasible—modifying tools and languages is simply too 
costly.  Furthermore, as formal modeling techniques are slowly being adopted in industry, the need for powerful 
analysis tools becomes acute. As would be expected, no analysis tool is suitable for all tasks.  Given the rapid 
change in verification and analysis technology, we will most likely see a steady stream of new exciting analysis 
tools that need to be incorporated into tools in the future. 

 To summarize, there is a critical need to accommodate numerous notations (and to modify these notations to the 
customers individual problems and taste) and a multitude of analysis tools. Because tool vendors and research 
groups cannot currently support these needs, promising tools and techniques are not adopted for superficial reasons 
and useful new analysis techniques are not adopted because of cost and technical difficulties. Therefore, we have 
come to the conclusion that we need a catalytic infrastructure for the design, development, and deployment of 
formal modeling tools that will serve two purposes; (1) it will allow the research community to evaluate and quickly 
deploy new ideas in a stable environment and (2) provide a blueprint for tool vendors for how to build tools that can 
be customized to meet the customers’ needs. We hope this paper will serve as a catalyst and start of a community-
wide initiative that will dramatically improve the penetration of formal modeling and recent analysis research results 
in industry. 

From Models to Analysis Tools

 The most common current solution to get from modeling tools to analysis tools is to develop separate translators 
from each modeling notation to each analysis tool. As the numbers of notations and analysis tools grow, this is an 
unsustainable solution since we may need n× m translators to map n modeling notations to m analysis tools. 
Providing such a collection of high-quality translators is not economically feasible. 

 To address this problem, an intermediate notation can be used as an interchange format between modeling 
notations and the analysis tools; for example, DC for synchronous languages [17], IF for the exchange of models 
between model checkers [18], and SAL for general purpose applications [19]. An intermediate language sitting 
between the modeling notations and the analysis tools reduces the number of translators needed to map n notations 
to m analysis tools to n+m translators. There are, however, problems with this approach. For example, it is quite 
difficult to choose the right level of abstraction for the intermediate language, even when one knows all of the 
modeling-languages and target-languages.  Consider choosing a low-level intermediate language, for example, 
Lustre, that does not have template types. If we have a modeling-language that has template types, such as SCADE, 
the translator must instantiate the template type for each of its uses. Since these template types can be immensely 
useful to model, for example, generic communications channels in a systems architecture, we may have dozens of 
occurrences to instantiate (possibly one for each connector in the architecture). This may be appropriate when 
translating to an analysis tool such as NuSMV which does not allow template types, but it may be wholly 
inappropriate when targeting an analysis tools such as PVS which does allow template types.  Because of this 
information loss, the translation through an intermediate language to PVS can not take advantage of all of the 
capabilities of the target language thus making verification in PVS more difficult and time consuming than strictly 
needed. On the other hand, if the intermediate language has many high-level constructs, such as template types, the 
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translations to the different target languages becomes much more difficult. Since we believe that new notations will 
constantly evolve and new analysis tools will become available in a constant stream (as an example, consider the 
dramatic evolution of SAT based model checkers the last few years), the selection of an appropriate intermediate 
notation will become impossibly difficult and we do not see this as a feasible long term solution. 

Extensible Language Techniques

 Our stated goal of allowing domain specific language features to be added to a modeling language has been 
studied in the area of programming languages and there are many tools and techniques that attempt to solve this 
problem.  Besides adding new syntactic forms to a modeling language, we also require that these new constructs be 
able to specify some semantic analysis so that they can generate domain specific error messages, debugging 
behavior, as well as specify their direct translations to target languages when appropriate.  Although these 
requirements are addressed by some of the many tools and techniques for language extensibility in the literature, no 
single approach addresses all of them.  Traditional syntactic, hygienic [20], and programmable [21] macros systems 
and embedded domain specific languages [22] do allow new language constructs to be added to a language.  
However, they lack an effective way perform the necessary static analysis.  On the other hand, meta-object protocol 
systems, e.g., [23], provide limited opportunities to add new language constructs but can perform the static analyses 
needed to, for example, check for domain specific errors.  

 Attribute grammars [24] provide the foundation for what we believe will be a successful direction of inquiry. 
Language constructs are specified by productions and their explicit semantics can be defined by attribute definitions.  
The problem of modular language definition and extensibility has received much attention from the attribute 
grammar community, e.g., [25, 26].  Some systems are guided by functional programming ideas and use, in essence, 
higher order functions as attributes in their quest for modular specifications, e.g., [27].  Others are inspired by the 
object-oriented paradigm and employ inheritance to achieve a separation of concerns [28].  Of most use to us are 
higher-order attributes [29] that allow abstract syntax trees to be attribute values and reference attributes [30] that 
point to possibly remote nodes in the abstract syntax tree. 

 Most closely related to the extensible language framework described below is Microsoft's Intentional 
Programming system (IP) [31, 32, 33 Chapter 11].  This system allowed programmers to add domain specific 
features, called intentions, to their programming language in a style similar to attribute grammars.  Although not as 
crisply defined in IP as in attribute grammars, IP did contain the essence of reference attributes and higher order 
attributes.  The main innovative feature of IP was forwarding, a technique used to define new constructs in terms of 
host language constructs.  In [34], we showed how forwarding can be used in attribute grammars to modularly 
specify languages and how the absence of forwarding hinders the modularity we seek and makes the addition of new 
language features more difficult.  Our main criticism of IP [32] was its ad-hoc nature that prevented any static 
analysis of language extensions to test their compatibility.   

A PROPOSED FRAMEWORK 

 In this section we will illustrate how attribute grammars extended with forwarding [34] can be use to define 
language extensions on top of a host-language. Note here that we do not categorically state that we believe this is the 
best solution to the problem outlined in the previous section, we simply outline what we see as a promising direction 
to start a community-wide dialogue with the goal to establish a tools architecture that will satisfy our need for 
flexibility and extensibility. 

 We hypothesize that an extensible language implemented using attribute grammars with forwarding [34] can 
serve as a host-language for (1) a plethora of domain specific language-extensions that can be combined to construct 
new modeling-languages suitable for different audiences and domains, (2) the translation of these extension 
constructs into their semantically equivalent representation in the host-language and the host-language translation 
into various target-languages, and (3) the direct translation of a language-extension construct to an analysis tool's 
language when the default translation provided through the host-language is inadequate. 
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 In our framework, a language extension is specified as an attribute grammar fragment that contains new 
productions and attribute definitions for these productions and those in the host language.  The activity of creating 
an extended language specification can be as simple as taking the union of all the productions and attribute 
definitions in the host language and language extension specifications.  This is performed by the framework tools 
and provides for a significant degree of modularity between language extensions.  In traditional attribute grammars 
the modularity and reuse of language features specified as attribute grammar fragments is achieved only by writing 
attribute definitions that “glue” new fragments into the host language attribute grammar.  These attribute grammars, 
which do not have forwarding, cannot implicitly define semantics for a language construct and this is crucial for the 
modularity we seek. 

 To give the reader an introduction to attribute grammars and forwarding, we will first illustrate below the 
mechanism of forwarding in terms of a construct familiar from the programming language domain—a foreach loop. 
We will then illustrate how a well defined language suitable for the embedded systems domain—Lustre—can be 
used as a host-language and illustrate how extensions can be defined to start building up a modeling-language on top 
of this host-language.  We provide some examples of using language extension to allow for flexibility in the 
modeling notation in following section.  In the section on translation we show how forwarding is used to easily 
implement high-quality translations to many analysis engine languages while avoiding many pitfalls of intermediate 
languages. 

Forwarding in Attribute Grammars

 Forwarding is a unifying technique that allows us to mimic common language extension processing techniques
like macro expansion, simple term rewriting, and meta-object protocols inside an attribute grammar framework and 
thus makes it possible to declaratively specify expressive language extensions. To use forwarding, a language 
construct specifies a semantically equivalent construct that defines the semantics not explicitly defined by the 
“forwarding” construct.  In attribute grammar terms, a production defines a distinguished attributed abstract syntax 
tree that provides default values for synthesized attributes that are not explicitly defined by the production.  

foreach:  for<Stmt> ::= elemType<Type> elem<Id> collection<Expr> body<Stmt> 
  for.pp = “foreach” + elemType.pp + elem.lexeme + “in” + collection.pp + “do” + body.pp 
  for.errors = if collection.type.implements(Collection)  then   no-error   else  mkError … for.pp … 

forwardsTo  parse “{ `elemType.pp`  `elem` ; 
   for ( Iterator `iter` = `collection`.iterator( ) ; `iter`.hasNext( ) ; )  
    { `elem` = ( `elemType.pp`) `iter`.next( ) ;   `body` } ”

where iter = generate_new_unique_Id ( )

Figure 1. The production specifying the foreach loop extension. 

 A familiar example from programming languages will clarify.  Consider adding a simple foreach construct to 
Java to iterate over Java Collections.  An attribute grammar production for doing so is shown in Figure 1.  This puts 
syntactic sugar on a popular programming idiom but also defines its own simple error-checking semantic analysis. 
The foreach named production has a left-hand side <Stmt> non-terminal named for and right-hand side non-
terminals <Type>, <Id>, <Expr>, and <Stmt> named as indicated.  It explicitly defines the synthesized pretty-print 
pp and errors attributes allowing it to generate errors messages containing code written by the programmer. (We use 
the familiar dot (.) notation to access attribute values.) It also specifies its forwards-to tree as the expected host-
language block-loop construct built by parsing the string and using the “unquote” operator (` `) to reference right-
hand side subtrees, their attributes and the identifier iter.  The reference attribute type points to a node in the 
program abstract syntax tree defining the collection's type.  Its pp attribute is used to cast the Java Object-type value 
returned from the iterator method next. The left-hand side node generated by the production foreach is called the 
“forwarding-node.”  When it is queried for an attribute that it does not explicitly define, for example jbc, its Java 
byte code, it passes, or “forwards”, that request to the “forwards-to” node, the block-loop construct, that returns the 
attribute’s value.  Thus, we re-use all attributes defined on the block-loop except those with explicit overriding 
definitions.  Because the forwards-to tree will require inherited attributes, these are copied from the forwarding-node 
unless they are explicitly defined.  Note that in some cases the forwards-to node may also forward the query; we will 



46

IEEE/NASA ISoLA 2005

eventually find a value for the attribute since all language extensions forward (directly or indirectly) to constructs in 
the host-language.  Forwarding is similar to macro expansion in that both reuse the semantics of existing language 
constructs, but unlike macros, forwarding productions also define semantics, as attributes, that here generate proper 
error messages.  Also note that we have not specified how the concrete syntax of this extension is specified since 
this is done in a straight-forward and expected way.  We thus limit our discussions to the more interesting issues in 
specifying the semantics of language extensions via attribute grammars. 

Modeling-Languages as Extensions to a Host-Language

To illustrate how a new modeling-language can be specified as a set of language extensions to a host-language, 
we will use a simple example—the Altitude Switch (ASW).  The ASW is a (somewhat hypothetical) avionics 
system that turns power on to another system when the aircraft descends below a threshold altitude and turns it off 
when the aircraft ascends above the threshold altitude plus a hysteresis factor. As an example, we focus on one of 
the state variables that models the ASW behavior—the AltStatus variable used to track whether the aircraft should 
be considered above or below the threshold.   

 A Lustre-like specification of AltStatus is shown in Figure 2. In it, the initial value of AltStatus is undefined 
(indicated by the ‘Unknown �’  construct) and thereafter the variable is assigned by the nested if-expression.  We 
assign AltStatus the value Above if the altitude readings are reliable (AltQuality = Good) and we are either (1) 
classifying AltStatus for the first time (the previous AltStatus was Unknown) and we are above the threshold or (2) 
AltStatus has been established and we are above the threshold plus the hysteresis.  We declare AltStatus to be Below
if we have reliable altitude readings and the altitude is less than or equal to the threshold. If the altitude readings are 
not reliable AltStatus is Unknown.

 type Status = enum { Unknown, Above, Below } ; 
 node ASW (AltQuality:Q, AltThres:int, Hyst:int)  
            returns (AltStatus:Status); 
   let AltStatus = Unknown -> 
      if AltQuality = Good and Altitude > AltThres and 
         (PREV(AltStatus) = Unknown or Altitude > AltThres + Hyst) 
      then Above 
      else if AltQuality = Good and (not Altitude > AltThres) 
           then Below 
           else if not AltQuality = Good then Unknown else pre(AltStatus) ; 
   tel 

 Figure 2. A Lustre-like definition of the state variable AltStatus.

 Lustre as a host-language:

 We hypothesize that Lustre [35] may be a suitable host-language in our domain of interest for two reasons. 
First, Lustre is expressive enough to capture a large class of interesting behaviors and it has a well defined and 
simple semantics making it suitable for formal treatment by various tools [36]. Second, Lustre is supported by 
commercial tools [5], for example, a code generator that has been qualified for use in safety critical applications, 
thus, making it of interest to industrial partners. Lustre may be implemented as an extensible host language by 
writing an attribute grammar that defines its language constructs and defines attributes that perform semantic 
analysis and translation.  We may define an errors attribute similar to the one in the foreach example.  It may also 
involve defining string-type translation attributes named smv_trans, pvs_trans, and others that specify how 
constructs are translated to various target languages. 

 Below we illustrate how a Lustre host language can be extended with modeling language features that may be 
useful in different domains or preferred by different user communities.  We describe how RSML-e state variables 
and events can be added as language extensions.  
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Implementing RSML-e as a collection of language extensions 

 Since the Lustre host-language may not be the most suitable for review by domain experts (for example, pilots 
or air traffic controllers) an alternate notation would be of interest. The modeling notations SCR and RSML-e are 
such notations that have been well-received and shown to be relatively easy to understand and use [16, 37, 38]. 
Figure 3 shows a fragment of an RSML-e specification of the ASW.  The figure shows the definition of the state 
variable AltStatus discussed above. The conditions under which the state variable changes value are defined in the 
Equals clauses in the definition. The tables are adopted from the original RSML notation [37]—each column of 
truth values represents a conjunction of the propositions in the leftmost column (F represents the negation of the 
proposition and a “*” represents a “don’t care” condition). In a table with several columns we take the disjunction of 
the columns; thus, the table is a way of expressing conditions in a disjunctive normal form. 

 STATE_VARIABLE AltStatus : 
   VALUES : { Unknown, Above, Below } 
   INITIAL_VALUE : Unknown 

   EQUALS Above IF 
    TABLE 
     PREV(AltStatus) = Unknown  : T * ; 
     AltQuality = Good          : T T ; 
     Altitude > AltThres        : T T ; 
     Altitude > AltThres + Hyst : * T ; 
    END TABLE 

   EQUALS Below IF 
   TABLE 
    AltQuality = Good          : T ; 
    Altitude > AltThres        : F ; 
   END TABLE 

   EQUALS Unknown IF 
    TABLE 
     AltQuality = Good : F ; 
    END TABLE 
 END STATE_VARIABLE 

Figure 3. RSML-e like definition of the State Variable AltStatus.

As we stated above, a language extension is an attribute grammar fragment that specifies productions that 
define the abstract syntax of any new language constructs, attribute definitions for these new productions, and 
attribute definitions for existing productions in the host-language.  To implement the State_Variable construct in 
Figure 3 we follow this pattern and define a set of productions to define the syntax of state variable constructs as 
well as attributes on these constructs that check for errors and assist in building the semantically equivalent Lustre 
language construct that the state variable will forward to. 

 The State_Variable construct is essentially a variable assignment statement like those in the host-language with 
the exception that it also serves as a declaration of the assigned variable.  The production defining a state variable 
has on its right hand side an identifier name (in this case AltStatus), a non-terminal for the possible values, its initial 
value init<Expr>, and an expression expr<Expr> for subsequent values.  The implicit semantics of a state variable 
are provided by the Lustre assignment statement that it forwards to and is semantically equivalent to, essentially, 
name =  init  � expr.  Since a State_Variable production also declares a variable, this production builds the 
declaration as a Lustre declaration, of the form name : type, and indicates that this declaration should be lifted to the 
enclosing node.  This is done by placing the declaration, implemented as a higher-order attribute in a synthesized 
attribute that collects such declarations and moves them up the tree to the point that they can be inserted into the 
enclosing Lustre node construct. We do not provide the attribute grammar specification here.  The specification for 
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constructing the disjunctive normal form expression that becomes the condition of the if-then-else that the table 
translates to is more verbose than it is difficult. 

Events as an extension

 In Figure 4 is part of the same altitude switch, this time specified in the host-language extended with a notion of 
events. Here, the occurrence of the externally defined event AltRecvEvt is used in the computation of AltStatusEvt.
These computations also activate (or throw) the AltClassifiedEvt and AltLostEvt events to indicate the outcome of 
the assignment of the AltStatusEvt value.  We have abbreviated the three expressions that appear in the original 
Lustre ASW in Figure 2 as C1, C2, and C3 here to simplify the presentation. 

 var AltClassifiedEvt : Event ;   
     AltLostEvt : Event ; 
 AltStatus = Unknown -> 
  if catch AltRecvEvt and C1  
  then throw AltClassifiedEvt return Above 
  else if catch AltRecvEvt and C2  
       then throw AltClassifiedEvt return Below 
       else if catch AltRecvEvt and C3  
            then throw AltLostEvt return Unknown 
            else pre(AltStatus) 

Figure 4. Event/Action style constructs added to the host-language. 

 Events can also be implemented as a language extension.  The attribute grammar specification for events 
defines three primary productions—one to generate or “throw” an event, another that evaluates to true if it “catches” 
the specified event, and an event declaration.  The specifications for these productions is straight forward, but they 
do require a more complex set of supporting attributes to generate the boolean variable declarations and their 
defining expressions that form their Lustre implementation that these extensions forward to.  Declarations of events 
need to be transformed into declarations of boolean variables.  These variables replace events and are true under the 
condition in which the original event would have been thrown and false otherwise. Thus, the catch production 
simply forwards to a reference to the boolean variable emulating the event since both are true under same 
conditions. The throw production simply forwards to the expression that it “returns” since when events are emulated 
the boolean event variable and its defining expression effectively replace the throw constructs. 

 Of particular interest is how the assignment statements for the event-emulating boolean variables are generated.  
In the example, the boolean variable AltClassifiedEvt is generated to replace the AltClassifiedEvt event.  The 
assignment statement below (with catch constructs yet to be removed) is also generated to set this boolean variable 
to true under the conditions that the event was thrown.   

  AltClassifiedEvt = False -> (catch AltRecvEvt and C1) or 
    (not (catch AltRecvEvt and C1) and (catch AltRecvEvt and C2)) 

The AltClassifiedEvt boolean variable is naively computed to be true if the first if-condition (in Figure 4) is true or if 
the first if-condition is false and the second if-condition is true.  For an event e, it is a relatively straight forward 
process to compute this expression.  For each throw e construct, we build an expression from the enclosing if-
condition's that must be true to cause that throw instance to “fire.”  Again, we leave out the implementation of this 
since a inherited higher order attribute can be specified to pass down the enclosing if condition <Expr>-trees to a 
throw statement.  It constructs an expression that is true when the event is thrown.  Such expressions are collected 
from each throw, via a synthesized attribute, and the expression that is the disjunction of them is created to become 
the expression in the defining Boolean assignment as seen in the example above. 

 Given the mechanisms discussed above, it is easy to combine events and state-machine transitions into a 
“transitions with events” notation similar to the original definition of RSML [37].  This flexibility in introducing 
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new language constructs that can be targeted for various stake-holder needs is highly desirable. In addition, the 
attribute grammar framework provides an opportunity for static analysis at the appropriate level of abstraction, that 
is, in the modeling-language rather than in the host-language. For example, in all of these extensions, we would 
want to define the basic error checking attribute errors on the productions defining the new language constructs.  If 
we do not define the error checking attributes any type errors will be reported by the errors attribute on the 
forwarded-to construct.  Thus, all errors will be discovered but the generated error message will be in terms of the 
forwarded to expression, not the transition expression that was written by the user.  This demonstrates one aspect of 
how attribute grammars with forwarding provide a convenient yet powerful mechanism for specifying language 
extensions. By specifying additional attributes, in this case errors, our language extensions behave more and more 
like first-class constructs in the language and provide all of the capabilities that one expects from “built-in” language 
features. 

Translation

 Translators, either for execution, debugging, or analysis purposes, can also be defined as a language extension 
consisting of a set of attribute definitions for the host-language and some language extension productions.  For a 
translation-based evaluator, we would specify definitions for an eval_trans attribute on the host-language 
productions that specify a translation into, for example, C that can then be compiled and executed.  This model is 
also used for translating specifications to various analysis tools such as the NuSMV model checker and the PVS 
theorem prover.  To specify these translations, we would specify two string-valued attributes, pvs_trans and 
smv_trans, that on a language construct define its translation into, respectively, PVS and NuSMV.  Definitions for 
these attributes would be required for all productions in the host-language.  Thus any language extension, such as 
events, will have a default translation into NuSMV and PVS.  For example, the PVS translation for a throw
expression is determined by retrieving the pvs_trans attribute from the semantically equivalent construct that it 
forwards to. 

 For other language extension constructs, this translation through the host-language may lose information (as 
described in background section) and result in a degraded representation in the target language that makes the 
analysis more expensive.  Such constructs should instead provide a definition for the pvs_trans or smv_trans
attributes to specify their direct non-lossy translation.  Consider adding template types as a language extension.  
Template types exist in PVS but not in NuSMV or our host-language.  We want our translation to PVS to maintain 
this information and thus the productions that specify the template type extension would provide explicit definitions 
for pvs_trans that specifies the PVS-template code that implements the language extension template types.  This 
ensures a high-quality translation to PVS.  Since the host-language does not support template types, the extension 
must specify, via a collection of attribute definitions, how each node declaration with template type parameters can 
be instantiated into several instances that do not contain template types.  Each generated instance is the result of the 
concrete types used in a specific node call construct.  This is not a trivial analysis or transformation, but it can be 
done with forwarding attribute grammars and follows the techniques for instantiating C++ templates.  These 
transformations create the host-language constructs that the template types forward to in the host-language.  The 
translation of template types to NuSMV then relies on forwarding and the definition of smv_trans on the host-
language productions.  This approach avoids the pitfalls of intermediate notations described above in the 
background section. 

 To summarize, as we have outlined in this section, we believe attribute grammars with forwarding can be used 
to capture the semantics of a host-language and define language-extensions that can be combined to create new 
modeling-languages, as well as define how these languages are translated to various target-languages. We believe 
that this formalism is highly suitable as a foundation for model-based tools and that it will help us provide the high-
level of flexibility, ease of change, and high quality for which we aim.  Do note again, however, that we are 
presenting this idea to generate a dialogue in the formal methods, model-based, and static analysis communities with 
the goal of evolving a consensus for the architecture of the next generation of hyper-flexible modeling and analysis 
tools. 
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A CALL TO ARMS 

 In this report we assert that a critical obstacle to the widespread adoption of modeling and analysis tools lies in 
the lack of flexibility to accommodate customer preferences when considering the adoption of tools. We believe that 
the following conjectures describe fundamental obstacles to wide adoption of formal modeling and the potential for 
automation that comes with it; (1) no single modeling notation will suit all, or even most, modeling needs, (2) no 
analysis tool will fit all, or even most, analysis tasks, and (3) flexible and stable tools must be made available for 
realistic evaluations and technology transfer. 

 To make automated software engineering techniques more useful for more types of developers and allow us to 
move forward as a community it is crucial that we develop a foundation for building extensible and flexible 
modeling language processing tools. Such tools must satisfy, at a minimum, the following requirements—successful 
modeling tools must (1) allow easy extension and modification of formal modeling notations to meet the domain 
specific needs of a class of users, (2) allow easy construction of high-quality translations from the modeling 
notations to a wide variety of evolving analysis tools, and (3) enable controlled reuse of tool infrastructure to make 
tools extensions cost effective. 

 To initiate the discussions in the community, we hypothesize that languages and tools built using higher-order 
attribute grammars with forwarding can serve as a basis for such flexible language processing tools; tools that will 
allow us to unify our efforts and help bring our collective work to a broader audience.  Naturally, although we like to 
think so, we do not presume that our direction is the best (or even practicable) and it serves only as an illustration as 
to what we would like to achieve in a unifying language processing framework. The aim of this report is to stimulate 
the discussion and, hopefully, move the community into action so we can join forces in developing the solid tools 
infrastructure needed to have an impact on software development practice. 
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ABSTRACT

Many approaches to software verification require to check the satisfiability of (possibly quantified) first-order formulae
in theories modeling user-defined data types, the memory model used by the programming language, and so on. For such
verification techniques, it is of crucial importance to have satisfiability solvers which are both predictable and flexible,
i.e. capable of automatically discharging the largest possible number of proof obligations coming from the widest range
of verification problems. In this paper, we describe our approach to build predictable and flexible satisfiability solvers by
combining (an extension of) resolution theorem proving, arithmetic reasoning, Boolean solving, and some transformations
on the proof obligations (such as definition unfolding or theory reduction). We show the viability of the approach by
describing the experimental results obtained with an implementation of the proposed techniques on a set of proof obligations
extracted from various software verification problems, in particular the certification of auto-generated aerospace code.

CONTEXT AND MOTIVATION

Many approaches to software verification, ranging from applications of Hoare logic to software model checking (see
e.g., [1]) and, more recently, to program analysis,1 require to discharge some proof obligations, i.e. checking that some
formula (usually of first-order logic with equality) is satisfiable in a given theory modeling the user-defined data types of
the software system under scrutiny, the memory model used by the programming language, its type system, and so on. For
such verification techniques, it is of crucial importance to have satisfiability solvers which are both predictable and flexible,
i.e. capable of automatically discharging the largest possible number of proof obligations coming from the widest range of
verification problems. Indeed, this task is far from simple.

We identify two key challenges to build predictable and flexible satisfiability solvers:

• to provide satisfiability procedures for the theories most commonly used in software verification that capture inter-
esting classes of software properties so to have the highest possible degree of predictability (i.e. the guarantee of
termination with a correct answer), and

• to widen the scope of applicability of the available satisfiability procedures so to be able to discharge proof obli-
gations which are usually expressed in extensions of the supported (decidable) theories (see [2] for an extensive
discussion on this issue).

In this paper, we describe our approach to build satisfiability solvers for software verification by tackling the above
challenges. A careful integration of the following three techniques is at the core of our approach:

• Superposition theorem proving (see e.g., [3]) and satisfiability checking for Linear Arithmetics to reason about the
data flow of software systems;

• Boolean solving to handle their control flow;

• Two heuristics to reduce—a priori—the search space of the satisfiability checking problem.
∗The fi rst author has received fi nancial support of Centro Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq), a Brazilian

federal government agency for scientifi c and technological development.
1http://www.mit.edu/˜vkuncak/projects/jahob
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function Bool + T (φ: quantifier-free formula)
1 φp ←− fol2prop(φ);
2 Ap ←− fol2prop(Atm(φ));
3 while Bool-satisfiable(φp) do
4 βp ←− pick total assign(φp);
5 (ρ, π)←− T -satisfiable(prop2fol(βp));
6 if (ρ == sat) then return sat;
7 φp ←− φp ∧ ¬fol2prop(π);
8 end while;
9 return unsat;
end

Figure 1: A simplified view of traditional SMT algorithms

SATISFIABILITY OF QUANTIFIER-FREE FORMULAE

Let T be a theory with decidable satisfiability problem, i.e. it is decidable to check whether an arbitrary conjunction of
literals of T is satisfiable. The Satisfiability Module Theory (SMT) problem is the problem of checking if a quantifier-free
first-order formula φ of T is satisfiable, i.e. whether T ∧ φ is satisfiable. An SMT algorithm is a decision procedure for the
SMT problem.

Satisfiability Modulo Theory checking

In the following, βp is used to denote a propositional assignment; π is used to denote a conjunction of ground first
order literals, and πp its boolean abstraction; in general, we use the superscript “...p” to denote boolean formulas or as-
signments. We represent propositional assignments βp indifferently as sets of propositional literals {li}i or as conjunctions
of propositional literals

�
i
li; in both cases the intended meaning is that a positive literal v (resp. a negative literal ¬v)

denotes that the variable v is assigned to true (resp. false).

Figure 1 depicts Bool+T , the SMT algorithm underlying (with different variants) several systems such as Mathsat [4],
DPLL(T) [5], TSAT [6], ICS [7], CVC-Lite [8], and haRVey2. For the sake of simplicity, we only give a naive formulation,
based on the enumeration of total assignments and we ignore more realistic representations based on DPLL-style assignment
enumeration (for this the interested reader is pointed to one of the papers above). The algorithm relies on the existence of a
bijection between the atoms of φ and a suitable set of propositional letters. In particular, we call Atm the set of ground atoms
in φ and PAtm be a set of propositional letters s.t. the cardinality of Atm is equal to that of PAtm and Atm ∩ PAtm = ∅.
Let atm2prop be a bijective function from Atm to PAtm . fol2prop is a mapping from the quantifier-free formula φ to a
propositional formula φp as the homomorphic extension of atm2prop to φ; prop2fol is the inverse of fol2prop; its result
is a conjunction of ground first-order literals. Basically, the truth assignments for (the propositional abstraction of) φ are
enumerated, and checked against T . The procedure either concludes satisfiability if one such model is found, and returns
with failure otherwise. The ancillary functions in Figure 1 are assumed to satisfy the following requirements:

• pick total assign returns a total assignment to the propositional variables in φp. So, βp is a conjunction of propo-
sitional literals;

• T -satisfiable(β) detects if β is satisfiable in T . If so, it returns (sat, ∅); otherwise, it returns (unsat, π), where π is
satisfiable in T and π ⊆ β is called a theory conflict set.

It is easy to show that the algorithm terminates, and it is correct and complete (see e.g., [9] for more details). Termina-
tion holds since there exists only a finite number of possible assignments, and none is considered more than once: the set of
propositional assignments to φp is monotonically decreasing, since each iteration excludes at least one of them. Correctness
follows from the basic definitions of truth assignment and interpretation: sat is returned only if βp propositionally satisfies
φ, and there exists an interpretation refining it. Completeness follows from the fact that we never eliminate a consistent
assignment.

2See http://combination.cs.uiowa.edu/smtlib for more details and pointers to these systems



55

T. Margaria, B. Steffen, and M.G. Hinchey

Superposition-based satisfiability procedures

To be able to execute the algorithm in Figure 1, we are left with the problem of building the function T -satisfiable . In
order to do this, we adopt the rewriting approach described in [10] which uses superposition as a framework to synthesize
satisfiability procedures for various theories of interests for verification.

The superposition calculus (see [3] for an overview) checks the satisfiability of arbitrary sets of first-order clauses. It
consists of a set of rules which are derived from resolution and which are especially designed for the efficient treatment of
equality. Although equality dramatically enlarges the search space of resolution based provers, the effectiveness of super-
position lies in some powerful criteria (such as term ordering) to prune the search space while maintaining completeness.
Any fair application of the rules of the calculus to an unsatisfiable set of clauses derives ⊥ (also called the empty clause).3

Roughly, a saturation prover (such as the E prover [12]) amounts to a clever mechanization of the exhaustive application of
the rules of the calculus to any finite set of first-order clauses (indeed, a lot of sophistication is required to obtain efficient
implementations). In general, the process of applying the rules of the calculus to a set of clauses may not terminate since
first-order logic is undecidable. If for a class C of clauses, we are able to prove that this process terminates, then we are
entitled to conclude that the calculus is a satisfiability procedure for C given its refutation completeness. The methodology
to build satisfiability procedures described in [10] is based on this simple observation and it is organized in two phases.

Let Ax(T ) be a finite set of equational clauses axiomatizing T and β a conjunction of ground literals.4 The first
phase amounts to flattening all ground literals in β. A flat literal is either an equality of the form f(c1, ..., cn) = cn+1

or the negation of an equality of the form c1 �= c2 (where c1, ..., cn+1 are constants and f is an n-ary function symbol).5
Flattening is done by extending the signature with “fresh” constant symbols for all the distinct non-constant sub-terms in
β. It is easy to see that flattening preserves satisfiability. Let β� be the result of flattening β. The second phase consists of
exhaustively applying the rules of the superposition calculus to the clauses in Ax(T ) ∧ β�. As shown in [10], the second
phase terminates for many interesting theories such as the theory of lists, arrays, sets, and their combination. We illustrate
the approach on a simple example. Example Let us consider the theory A of arrays. The signature ΣA contains the binary
function symbol read, the ternary function symbol write (abbreviated below with rd and wr, respectively), and a finite set
of constant symbols (written in small letters). The theory A is axiomatized by the following set Ax(A) of axioms:

∀A, I, E.(rd(wr(A, I, E), I) = E) (1)
∀A, I, J, E.(I �= J ⇒ rd(wr(A, I, E), J) = rd(A, J)), (2)

where capitalised letters are implicitly universally quantified variables. Let β be the following conjunction of literals:

a = wr(wr(a, i, rd(a, j)), j, rd(a, i)) ∧ rd(a, i) �= rd(a, j).

Flattening β yields the conjunction of the following (ground) literals:

c1 = rd(a, i) (3)
c2 = rd(a, j) (4)
c3 = wr(a, i, c2) (5)
c4 = wr(c3, j, c1) (6)
a = c4 (7)

c1 �= c2 (8)

where c1, c2, c3, c4 are “fresh” constants. The second phase amounts to exhaustively apply the rules of the superposition
calculus given in [3] to Ax(A) ∧ β�. For this example, standard rewriting and the following simplified version of the
calculus is sufficient:

l� = r� l = r

(l[r�] = r)σ
Superposition,

l� = r� l �= r

(l[r�] �= r)σ
Paramodulation, s �= t

⊥ Reflection,

3Fairness means that if some inference is possible, it will be performed at some step unless one of the parent clauses gets simplifi ed or
deleted (see, e.g. [11] for a formal defi nition).

4Here, we are assuming that the theory T can be fi nitely presented by a set of fi rst-order clauses. As shown in [10], many theories of
practical interest admits such an axiomatization.

5To check satisfi ability, predicate applications can be turned into function application as follows. For p an n-ary predicate symbol is
in the input set of literals, the literal p(t1, ..., tn) is translated to fp(t1, ..., tn) = tt where fp is a “fresh” n-ary function symbol and tt
is a distinct constant. Similarly, ¬p(t1, ..., tn) is translated to fp(t1, ..., tn) �= tt. So, via this satisfi ability preserving transformation,
flattening can be applied also to non-equational literals.
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where σ is the most general unifier between l� and a sub-term of l, for Superposition and Paramodulation, and the terms s
and t must be unifiable, for Reflection (we have omitted the provisos about ordering constraints for simplicity).

A Superposition between (6) and axiom (1) yields c1 = rd(c4, j), which can be rewritten to c1 = rd(a, j) by (7).
A Superposition between c1 = rd(a, j) and (4) gives c1 = c2, which by Paramodulation with (8) yields c1 �= c1. By
applying Reflection to c 1 �= c1, we immediately obtain ⊥, which proves that β is A-unsatisfiable.

In order to implement T -satisfiable(β), it is sufficient to implement flattening (which can be easily done), and then
run a superposition theorem prover on Ax(T )∧β�. Furthermore, all superposition theorem provers are capable of returning
a proof of the unsatisfiability of a set of clauses. By analyzing such a proof, it is possible to identify the sub-set of (unit)
clauses in β� which are used to derive the empty clause. This offers an elegant and uniform way to obtain the theory conflict
set π. Since the proof found is not necessarily the one using fewest assumptions, the returned set of literals is not guaranteed
to be minimal but it is usually a good over-approximation.

It is important to emphasize the flexibility offered by this approach with respect to specialized decision procedures. In
fact, when a decision procedure for a new theory is needed, it is only necessary to feed the superposition theorem prover
with the axioms of the theory and the literals to be proved (un-)satisfiable, whereas with specialized decision procedures a
major design and coding effort should be undertook.

The Nelson-Oppen combination method

The price to pay for using superposition to build satisfiability procedures in a flexible and uniform way is a restriction
in the class of theories which can be handled. In fact, it is well-known that superposition theorem proving has difficulties in
handling (decidable fragments of) arithmetics. The technique described above inherits this limitation so that it can efficiently
handle (equational) theories which are axiomatized by a finite set of clauses. In order to overcome this limitation, we can use
the Nelson and Oppen (N&O) combination schema [13] to combine saturation theorem proving and arithmetic reasoning
(for details and preliminary experiments, see [14]).

The N&O combination method enables us to solve the problem of checking the satisfiability of a conjunction Φ of
quantifier-free literals in the union of two signature-disjoint theories T1 and T2 for which two satisfiability procedures are
available. Since the literals in Φ may be built over symbols in T1 or in T2, we need to purify them by introducing fresh
constants to name sub-terms. This process leaves us with a conjunction Φ1 ∧ Φ2 which is equisatisfiable to Φ where Φi

contains only literals with symbols of Ti, for i = 1, 2.6 In this way, literals in Φi can be dispatched to the available decision
procedure for Ti.

To show the correctness of the N&O method (see e.g., [15]), the theories T1 and T2 must be stably-infinite. Roughly,
a theory is stably infinite if any satisfiable quantifier-free formula is satisfiable in a model having an infinite cardinality. All
theories considered in this paper (the theory of equality, the theory of arrays, and the theory of Linear Arithmetic) are stably
infinite.

An efficient implementation of the N&O method is based on the availability of satisfiability procedures with (at least)
the following properties (see [16] for an in depth discussion on this and other efficiency issues):7

Deduction completeness. It must be capable of efficiently detecting elementary clauses (i.e. a clause whose literals are
equalities between constants which occur in purified literals belonging to both theories) which are implied by the
input conjunction of literals.

The N&O method for satisfiability procedures satisfying the requirements above is depicted in Figure 2 when T1 is
the theory of equality for which the superposition calculus is known to be a satisfiability procedure (see e.g., [10]) and
T2 is Linear Arithmetic (LA) for which various satisfiability procedures are available (see e.g., [18]). Such a combination
method simply consists of exchanging elementary clauses between the two procedures until either unsatisfiability is reported
for one of the two component theories or no more elementary clauses can be exchanged. In the first case, we report the
unsatisfiability of the input formula; in the second case, we report its satisfiability. Only finitely many elementary clauses
can be constructed by using the constants of both Φ1 and Φ2, and so the N&O method terminates.

6Notice that flat literals are purifi ed.
7Incrementality and resettability are two other common requirements in this context. Unfortunately, it is diffi cult to modify modern

state-of-the-art superposition provers so to make them incremental and resettable. So, we do not discuss here these issues. However,
see [17] for a possible way to overcome this problem.
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Figure 2: The Nelson-Oppen Combination Method

It is sufficient to exchange only elementary equalities when combining convex theories. A theory is convex if for any
conjunction of equalities Γ, a disjunction D of equalities is entailed by Γ if and only if some disjunct of D is entailed by
Γ. Examples of convex theories are the theory of equality, the theory of lists, and the theory of Linear Arithmetic over the
Rationals (LA(R)). Since both procedures are assumed to be deduction complete, the combination method only needs to
pass around elementary equalities between the procedures as soon as they discover them.

When combining at least one non-convex theory such as the theory of arrays or the theory of Linear Arithmetic over
the Integers (LA(I)), the combination method is more complex since the procedures should exchange elementary clauses.
Although the procedures are capable of deriving the entailed elementary clauses, their processing is problematic since they
are only capable of handling conjunctions of literals. The standard solution is to case-split on the derived elementary clauses
and then consider each disjunct in turn by using a backtracking procedure.

Although surprising (since superposition is not known to be complete for consequence finding, i.e. we are not guar-
anteed that a clause which is a logical consequence of a set of clauses will be eventually derived by applying the rules
of the calculus), satisfiability procedures obtained by superposition are deduction complete, i.e. derive sufficiently many
elementary clauses to be efficiently combined à la N&O with other procedures (see [17] for details). We illustrate the
combination schema with a simple example. Example Let us consider the theory T obtained as the union of LA(R) and the
theory A of arrays (cf. Example ). A deduction complete satisfiability procedure for A can be built by superposition [17]. A
deduction complete satisfiability procedure for LA(R) can be built by modifying the Fourier-Motzkin elimination method
(see e.g., [18] for details). Now, consider the problem of checking the satisfiability (in T ) of the following conjunction of
literals (which are already purified):

rd(b, i) = e2 ∧ wr(a, i, e1) = b ∧ (9)
e1 + e2 �= 2e2 (10)

(notice that e1 and e2 occur both in literals of LA(R), cf. (10), and of A, cf. (9). First, (9) is sent to the superposition prover
which terminates without deriving the empty clause. However, it is capable of performing the following derivation (again
we consider the simplified superposition calculus introduced in Example ):

rd(b, i) = e1 by Superposition between (1) and the second literal of (9)
e1 = e2 by rewriting the previous with the first literal of (9)

Then, the derived elementary (unit) clause e1 = e2 is sent with (10) to the satisfiability procedure for LA(R) which
immediately reports unsatisfiability. The N&O combination schema reports the unsatisfiability of the conjunction of (9)
and (10).

SATISFIABILITY OF ARBITRARY FIRST-ORDER FORMULAE

We now consider two extensions of the SMT problem, introduced at the beginning of the previous section. First,
we consider a theory T whose satisfiability problem is not necessarily known to be decidable. This is quite common in



58

IEEE/NASA ISoLA 2005

software verification where theories are frequently obtained by modularly composing and extending small theories. To
be concrete, let T be obtained by extending LA with finitely axiomatizable theories (which themselves may be obtained
as combinations/extensions of others) whose signatures are not necessarily disjoint with that of LA. We describe a semi-
decision procedure for the satisfiability problem of T based on an extension of the N&O method, where the superposition
prover generates instances of the axioms of the theories and then sends such facts (hence, a superset of the elementary
clauses) to the satisfiability procedure for LA. To make this approach practical, we briefly present two heuristics which we
have found particularly useful to reduce the search space of the superposition prover: definition unfolding and reduction of
large theories [19]. The second extension of the SMT problem we consider here is checking the satisfiability of first-order
formulae containing quantifiers. We describe a technique which allows us to reduce the satisfiability problem of quantified
formulae in a theory T to the satisfiability problem of quantifier-free formulae in an extension of the original theory T �.

An Extension of the Nelson-Oppen Combination Schema

First of all, let us consider the situation of a theory T which does not contain LA and it is finitely axiomatized. Recall
that we use a superposition prover to build satisfiability procedures for theories which can be finitely axiomatized. Since
superposition can handle (at least in theory) any sets of clauses, we can use the SMT algorithm in Figure 1 (at least) as a
semi-decision algorithm whenever we consider a theory T which is axiomatized by a finite set of formulae, which are easy
to translate to Conjunctive Normal Form (CNF).

Now, let us consider the situation in which T is an extension of LA by a finite set Ax of axioms. There are two
sub-cases two consider. First, Ax does not contain symbols of LA. In this case, T can be seen as the disjoint combination
of LA and the theory axiomatized by Ax. If this last is stably-infinite then the N&O schema of Figure 2 is a satisfiability
procedure for T ; otherwise, it is only a semi-decision procedure. The second, more complex, case to consider is when
the axioms of Ax contain symbols of LA. In this situation, we need to extend the schema of Figure 2, since exchanging
elementary clauses is no more sufficient, even in simple situations. The key idea is to use the superposition prover as a
mechanism to find ground instances of the quantified axioms which can be suitably used by the procedure for LA to detect
unsatisfiability. As a consequence, the N&O schema must be modified in two ways: (i) the whole set of flat literals (i.e. also
the arithmetic literals) is sent to the superposition prover and (ii) the superposition prover must send to the procedure for
LA (and/or the module for case-splitting, cf. Figure 2) also the ground arithmetic facts which it has derived. We illustrate
the technique by means of an example. Example Let us consider the theory T obtained as the extension of LA(R) with the
following two axioms:

∀U, V.(0 ≤ U ⇒ uir(V, U) ≤ U)) (11)
∀U, V.(0 ≤ U ⇒ 0 ≤ uir(V, U)) (12)

where uir is a function which returns a random number constrained to be in the range satisfying the constraints above. Let
us consider the problem of checking the T -satisfiability of the following formula in Disjunctive Normal Form (DNF):8

0 ≤ pv51 ∧ pv51 ≤ (5 − 1) ∧ 0 �≤ 0 ∨
0 ≤ pv51 ∧ pv51 ≤ (5 − 1) ∧ 0 �≤ pv51 ∨
0 ≤ pv51 ∧ pv51 ≤ (5 − 1) ∧ pv51 �≤ (5 − 1) ∨
0 ≤ pv51 ∧ pv51 ≤ (5 − 1) ∧ 0 �≤ uir(1, ((135300 − 1) − 0)) ∨
0 ≤ pv51 ∧ pv51 ≤ (5 − 1) ∧ uir(1, ((135300 − 1) − 0)) �≤ (135300 − 1)

(13)

Indeed, if each disjunct of (13) is T -unsatisfiable then (13) is T -unsatisfiable. The first three disjuncts are obviously
unsatisfiable: the first is LA(R)-unsatisfiable because of 0 �≤ 0, the second is Boolean-unsatisfiable because of 0 ≤ pv51

and 0 �≤ pv51, and the third is also Boolean-unsatisfiable because of pv51 ≤ (5− 1) and pv51 �≤ (5− 1). It is easy to see
that (13) can be simplified to

0 ≤ pv51 ∧ pv51 ≤ 4 ∧ 0 �≤ uir(1, 135299) ∨
0 ≤ pv51 ∧ pv51 ≤ 4 ∧ uir(1, 135299) �≤ 135299

while building its Boolean abstraction by evaluating ground terms. We are now left with the problem of checking the
T -unsatisfiability of two conjunctions of literals which are not trivially unsatisfiable. Let us consider each case separately.

1. Each literal in the conjunction is turned into a unit clause and it is sent to the superposition prover together with the
CNFs of (11) and (12), i.e.

0 �≤ U ∨ uir(V, U) ≤ U (14)
0 �≤ U ∨ 0 ≤ uir(V, U) (15)

8This proof obligation corresponds to cl5 nebula array 0020 in the benchmark set Array.
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where U and V are implicitly universally quantified variables. Among many other facts, superposition derives (by
resolution between (15) and the last literal) that 0 �≤ 135299, which is then sent to the satisfiability procedure for
LA(R) so that unsatisfiability is immediately detected. Hence, we are entitled to conclude the T -unsatisfiability of
this disjunct.

2. This case is similar to the previous. The only difference is that superposition derives 0 �≤ 135299 by resolution on
(14) and the last literal.

Since the last two disjunct are T -unsatisfiable, we can conclude the T -unsatisfiability of (13).

Heuristics: definition unfolding and large theories

In order to make the extension of the N&O schema efficient, it is crucial to reduce the search space of the superposition
prover, so that the least possible number of ground instances of the axioms in Ax should be considered. Even when the
theory T does not contain LA, it is important to reduce the search space of the superposition prover in order to augment
its predictability. A similar observation has already been done in [19] when using resolution-based theorem provers for
software verification. We have found definition unfolding and the reduction of large theories particularly useful in this
respect.

Definition unfolding

Expanding definitions is a crucial concern for automated theorem proving. Definitions represent concepts in a theory
and are an important structuring mechanism. For example, the subset relationship ⊆ is defined in terms of set membership
∈. How a theorem prover handles such definitions can have a significant effect on its performance. Resolution-based
theorem provers are often very weak on problems involving definitions because all formulae must be preliminary translated
to CNF. So, for example, it is not possible to replace x ⊆ y with ∀e.(e ∈ x ⇒ e ∈ y) in a clause since this would introduce
a new quantifier and the quantifiers have already been eliminated in the translation to CNF. A further problem which
frequently arises in software verification is given by predicates defined by case-analysis on the values of their arguments; a
large number of clauses are created by the translation to CNF so that the search space of the prover is significantly larger.

To overcome these difficulties and to make the prover more predictable, we have adapted the technique of definition
unfolding of [20]. Let φ be a formula to be checked for satisfiability in the theory T , obtained as the extension of LA
by a set Ax of axioms which contain (non-recursive) predicate definitions. We replace all the occurrences of predicate
applications by suitable instances of the body of the definition. Let φ� be the formula obtained by this transformation and
Ax� be obtained from Ax by deleting all predicate definitions. It is easy to see that φ is satisfiable in T iff φ� is satisfiable
in T �, obtained by extending LA with the axioms in Ax�.

If the body of the definition contains a quantifier, then there are two cases to be considered. If the occurrence of the
predicate application has a positive (resp., negative) polarity and the quantifier is existential (resp., universal), then it can be
Skolemized by replacing its bound variables with Skolem constants. Hence, we obtain a ground formula on which the SMT
algorithm of Figure 1 can be directly invoked. Otherwise, i.e. the occurrence of the predicate application has a negative
(resp., positive) polarity and the quantifier is universal (resp., existential), then we have two choices: (i) do not expand the
definition so to avoid introducing new quantifiers in the formula and hope that superposition will be capable of coping with
it or (ii) expand the definition and further processing the formula to eliminate the newly introduced quantifier as explained
below before invoking the SMT algorithm. We illustrate our technique with an example not involving quantifiers. Example
Let us consider the theory T obtained by extending LA(R) with the following predicate definition:

∀n.(IsInt0-199(n) ⇔ n = 0 ∨ n = 1 ∨ · · · ∨ n = 198 ∨ n = 199) (16)

expressing the fact that the number n is an integer in the range between 0 and 199. We want to check the unsatisfiability in
T of the following formula:

IsInt0-199(x) ∧ (¬0 ≤ x ∨ ¬x ≤ 199). (17)

Now, if we do not perform definition unfolding, (16) is translated to CNF, thereby resulting in 201 clauses: 200 of the form
U �= k ∨ IsInt0-199(U) for k ∈ {0, ..., 199} and one of the form

�199

k=0
U = k ∨ ¬IsInt0-199(U) for U an implicitly

universally quantified variable. By resolution between IsInt0-199(x) of (17) and the last clause above, we get the clause�199

k=0
x = k, which must be passed to the the case-splitting module (cf. Figure 2) so that each one of 200 cases is considered

first with ¬0 ≤ x and then again with ¬x ≤ 199 (for a grand total of 400 case splits). So, all the burden is on the case-
splitting module while the available satisfiability solver of the SMT algorithm (cf. Figure 1), which is much more suited to
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function grounding (φ: quantified formula)
φ0 ←− existential closure(φ)
φ1 ←− minimize scope(φ0)
φ2 ←− drop existentials(φ1)
(φ3, ∆) ←− rename and define(φ2)
return (φ3, ∆)

end

Figure 3: Handling Quantifiers

handle large formulae, remains idle. To avoid this ineffective use of the resources, it is better to expand the definition (16)
in (17) so to obtain the following formula:

(x = 0 ∨ x = 1 ∨ · · · ∨ x = 198 ∨ x = 199) ∧ (¬0 ≤ x ∨ ¬x ≤ 199) (18)

which must be checked for unsatisfiability in LA(R). In this way, the 400 case splits are handle by the available satisfi-
ability solver and only the satisfiability procedure for LA(R) can be used, thereby avoiding the overhead of invoking the
superposition prover to derive suitable instances of the definition.

Reduction of large theories.

It is not unusual that software specifications comprise hundreds of axioms and the proofs of the unsatisfiability of
conjectures are usually shallow and consist of analyzing a large number of cases. Resolution-based theorem provers are
known to have quite impressive performances on problems consisting of few axioms and conjectures (usually extracted
from mathematical problems) whose proofs are quite deep and contain simple case analyses. Hence, it is not surprising that
resolution-based theorem provers do not perform well in the context of software verification (see e.g., [21] for an in-depth
discussion on this issue). The problem is that provers are lost in the search space although the majority of the axioms are
irrelevant to the proof under consideration.

In [19], a technique to find out an approximation of the relevant axiom set for the proof of a conjecture is presented.
We use an adaptation of such a technique as a pre-processing step of the SMT algorithm of Figure 1 by introducing suitable
syntactic constructs to structure the set Ax of axioms. The axiomatization is structured into theories. A theory Ti defines
the semantics of a set of symbols Si by means of a set of axioms Axi, and possibly the use of previously defined theories
via an explicit importation clause.

The idea underlying the reduction algorithm is to use a directed acyclic graph whose nodes are associated to the
theories; an edge from the node n1 to the node n2 represents the fact that the theory T1 associated to n1 is a superset of
the theory T2 associated to n2, i.e. S1 is obtained by extending S2. So, given a formula φ, it is sufficient to compute the
set of symbols occurring in φ, find which the set Nφ of nodes with theories containing the symbols of φ and to form the
relevant axiom set by transitive traversal of the nodes reachable from Nφ. Finally, in order to incorporate the treatment of
arithmetic in this framework, which is not finitely axiomatized in our case, our algorithm considers an implicit theory Ta,
such that Axa is empty and Sa are the arithmetic symbols, and adds an implicit edge to Na from all nodes representing
theories where these symbols appear. For more details and an extensive discussion, the interested reader is referred to [19].

We evaluate the impact of these two techniques on a set of benchmarks.

Handling quantified formulae

So far, we have considered the problem of checking the (un-)satisfiability of ground formulae in a given theory. In many
software verification scenarios, considering only ground formulae is too restrictive. The crux to lift the SMT algorithm of
Figure 1 to handle quantified formulae is again the usage of a superposition prover to implement T -satisfiable .

For simplicity, here we consider a theory T axiomatized by the a set of clauses Ax. However, the technique can be
straightforwardly adapted to consider LA(R). Let φ be a first-order formula (containing quantifiers), the idea is to transform
φ into a ground formula φg by replacing the quantified sub-formulae of φ with fresh propositional letters and to add the
definitions ∆ of these to the axioms Ax in such a way that Ax ∧ φ is satisfiable iff Ax ∧ ∆ ∧ φg is. The algorithm for
pre-processing is given in Figure 3. Let φ be a first-order formula and v1, ..., vn its free variables. The formula returned by
existential closure(φ) is ∃v1, ..., vn.φ. It is easy to see that φ is satisfiable iff existential closure(φ) is.
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Since we want to add a set ∆ of “small” formulae to Ax and to preserve as much as possible the Boolean structure of
the formula (so to maximally exploit the Boolean solver of the SMT algorithm in Figure 1), minimize scope implements
rules to move quantifiers as far inwards as possible. Roughly, we use all the rules to transform a formula into prenex form9

but in the opposite direction [20]. For example, the formula ∀x.(φ∧ψ) is transformed to (∀x.φ)∧ψ if the variable x does
not occur in ψ and the formula ∃x.(φ ⇒ ψ) to (∀x.φ) ⇒ ψ, again if x does not occur in ψ. These transformations are
equivalence preserving and terminate as they always reduce the depth of a formula starting with a quantifier. In practice,
these classic (anti)prenexing rules do not always yield an optimal result, as they take into account neither the associativity
and commutativity of conjunction and disjunction, nor the properties of multi-variables quantifications. Consider indeed
the following :

∀x, y • [p1(x) ∧ p2(x, y) ∧ p3] = ∀x • [∀y • [p1(x) ∧ (p2(x, y) ∧ p3)]],

= ∀x • [p1(x) ∧ (∀y • [p2(x, y) ∧ p3])],

= ∀x • [p1(x) ∧ (∀y • [p2(x, y)] ∧ p3)],

= ∀x • [p1(x) ∧ ((∀y • [p2(x, y)]) ∧ p3)].

At this point, no simplification rule can be applied, as x is a free variable in both operands of the conjunction under the
scope of the outermost quantification, which still applies to p3. However, there is a better solution:

∀x, y • [p1(x) ∧ p2(x, y) ∧ p3] = p3 ∧ ∀x • [p1(x) ∧ ∀y • [p2(x, y)]].

The next example illustrates the influence of the variable order in the quantification:

∀x, y, z • [p1(x, z) ∧ p2(y, z)] = ∀x • [y • [z • [p1(x, z) ∧ p2(y, z)]]].

Here, no simplication rule can be applied. However, there is a better solution:

∀x, y, z • [p1(x, z) ∧ p2(y, z)] = ∀z • [∀x • [p1(x, z)] ∧ ∀y • [p2(y, z)]].

The rules implemented in the minimize scope routine are aware of aforementioned properties and provides a more aggres-
sive minimization of quantifier scope than the classical rules [20].

We are now ready to start the elimination of quantifiers. We begin by eliminating the existential quantifiers by a re-
stricted form of Skolemization. Invoking drop existentials on a first-order formula φ returns the formula obtained by
repeatedly eliminating existential quantifiers in an outermost way. More precisely, drop existentials exhaustively applies
the following transformations: φ[∃x.ψ]p (φ[∀x.ψ]p) is rewritten to φ[ψ[x/c]]p, where c is a fresh constant, p is the outer-
most position at which a positive (negative, resp.) occurrence of an existentially (universally, resp.) quantified sub-formula
is in φ, and ∃x.ψ (∀x.ψ, resp.) does not contain free variables. This process terminates since each application of the rules
removes an existential or a universal quantifier. We can eliminate the remaining quantifiers by substituting each quantified
sub-formula ψ with a fresh propositional letter q and recording its definition q ⇔ ψ. The function rename and define
performs this with some optimizations. More precisely, invoking rename and define on a first-order formula φ returns
the pair (φ�, ∆) which is obtained by exhaustively applying the following transformations: φ[ψ]p is rewritten to φ[q]p,
where q is a fresh propositional letter, p is the outermost position at which a quantified sub-formula occurrence is in φ, and
ψ does not contain free variables. Furthermore, we add q ⇒ ψ (ψ ⇒ q) to ∆ if ψ is a positive (negative, resp.) sub-formula
occurrence of φ. Since there are only finitely many (quantified) sub-formulae, this process obviously terminates. It is not
difficult to prove that the formula φ is satisfiable iff φg ∧ ∆ is, where (φg, ∆) = rename and define(φ) (see [9] for a
formal development).

The formula φg and the theory axiomatized by Ax ∪ ∆ can be sent to the SMT algorithm of Figure 1.

IMPLEMENTATION AND EXPERIMENTS

We have implemented the techniques described above in a system called haRVey.10 It makes use of several existing
tools: Flotter11 to transform the axioms of the background theory to CNF, D. Longʼs BDD library12 or zChaff for Boolean
reasoning, the E prover13 for T -satisfiable , and the ATerm library14 for transforming formulae and axioms as well as a basis

9A formula is in prenex form if it has the following structure Q1x1...Qnxn.φ, where Qi is either ∀ or ∃, xi is a variable (i = 1, ..., n),
and φ is a quantifi er-free formula whose free variables are x1, ..., xn.

10http://www.loria.fr/equipes/cassis/softwares/haRVey
11http://spass.mpi-sb.mpg.de
12http://www-2.cs.cmu.edu/˜modelcheck/bdd.html
13http://www4.informatik.tu-muenchen.de/schulz/WORK/eprover.html
14http://www.cwi.nl/htbin/sen1/twiki/bin/view/SEN1/ATermLibrary
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Table 1: Experimental Results.

haRVey (%) NASA (%)
Array 100 96.4

Init 94.4 76.8
In-use 78.9 68.4
Symm 100 50.0
Norm 70.8 51.8

for the communication between the various tools. haRVey accepts as input the (possibly structured) axiomatization Ax
extending LA(R) and the first-order formula ϕ to be proved (un-)satisfiable in a LISP-like syntax. The set Ax of axioms
is searched for definitions which are expanded in the input formula ϕ (related heuristics are presented below), quantified
sub-formulae are eliminated, and the set of axioms suitably modified (as explained below). At this point, the theory is
reduced and passed to the superposition prover. Finally, the ground formula obtained after unfolding and “grounding” (cf.
Figure 3) is passed to the SMT algorithm of Figure 1. If arithmetic reasoning is required, the superposition prover may be
combined with a satisfiability procedure for LA by using the extension of the N&O schema described in this paper.

For benchmarks, we have considered the proof obligations generated by the certification of auto-generated aerospace
software [22]. For certification, the goal is not to ensure full correctness but to check that a program satisfy a certain level
of safety. A typical security problem is that a program does not access out-of-bound elements in an array. Using a Hoare
logic approach, one can automatically add annotations to a program, generate the corresponding proof obligations, and
then discharge them. In [22], five safety properties are considered on four auto-generated aerospace programs written in C
(ranging from around 400 to more than 1000 lines of code): 366 valid and 2 invalid proof obligations are obtained. The
mean value of the cardinality of the set Ax of axioms is 79.

The experiments have been carried out on a Pentium IV 2Ghz running Linux with 256 Mb of RAM and 1Gb of disk
space. We have set a time-out of 30 seconds per proof obligation. The results are depicted in Table 1. The first column lists
the five safety properties used to generate the proof obligations. The second (third) column records the percentage of proof
obligations successfully discharged by haRVey (the system developed by NASA and described in [22], respectively).15 In
the cases of Array and Symm, we successfully discharge all proof obligations, for Init our system scores definitely better
than NASA, while for In-use and Norm haRVey is still better but not as good as we would like. The problem with In-use
is that corresponding proof obligations are large and the system frequently times out. For Norm, the problem is that only
a partial axiomatization of the operator sum, which takes a vector and returns the sum of its values, is supplied. This is so
because it is not possible to have a complete axiomatization for this operator in first-order logic as explained in [22].

To evaluate the impact of the proposed heuristics, we have repeated our experiments in the following configurations
of the system. First, we have disabled theory reduction: we have drastically reduced our success rates of 60%. Second,
we have prevented the expansions of definitions: we have reduced our success rates of only 3%. Finally, to evaluate the
effectiveness of our integration of LA in the system, we have eliminated all the axioms regarding LA from the benchmarks
in Array and we have re-rerun the system using our extension of the N&O schema on the resulting proof obligations.
haRVey is still capable of discharging all modified proof obligations.

We believe that these results are encouraging and confirm the viability of our approach for effective automated software
verification tasks such as those arising in the engineering of areospatial systems. Other successful applications of the
techniques described in this paper can be found in [9, 23, 14].
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ABSTRACT 

 In this paper, the applicability of existing model checking approaches for C code to embedded systems is 
studied. We first provide a survey of four methods and fourteen tools from the recent literature. Then the major 
challenges for the application of these approaches to embedded C code are presented. As a basis for evaluation, we 
discuss the limitations of the different C model checkers in the light of those challenges. The main part of the 
contribution is a case study in which CBMC as one representative model checker is applied to a specific piece of 
micro-controller code. Based on the experiences of this study we summarize the main problems which still have to 
be solved, if C model checkers shall be applied to embedded code, and suggest directions for future work. 

INTRODUCTION

 Model checking is often considered as a promising future tool for analyzing embedded software and improving 
its quality. The corresponding industries have become interested, and several research projects produced tools, in a 
few cases even offered and supported commercially. However, model checking technology is still far from being a 
well established standard tool in the development of embedded systems. Apart from the well known complexity 
issues, one of the limiting factors to applicability is that most of the available model checking tools have a 
proprietary input model. Consequently, developers would have to re-model their specifications and implementations 
in order to feed them into the model checker. This is usually not considered to be worth the effort. Very few model 
checking environments provide interfaces to standard development tools (e.g. Statemate1, MATLAB/Simulink2, or 
ASCET3) or are integrated into such tools (e.g. SCADE4). In these cases, however, it is only the logic and discrete 
dynamics part of the models which can be analyzed. The equally important arithmetic and continuous control parts 
are neglected. It is our experience that this is regarded as a major disadvantage by developers in industry. A further 
issue is the fact that often several different development tools are used in the same company. This would raise the 
need for either the same number of corresponding model checkers or translations between the different 
representations. 

 A remedy to these problems could be to apply model checking to the C code. A representation of the software in 
C code can be expected to exist in some development phase for any embedded software project. It is either 
generated from tools like MATLAB/Simulink or developed manually. So, it is not necessary to consider different 
formats of different development tools. Apart from that, the C code is more comprehensive, as it includes the logic 
and arithmetic parts of the specification models as well as the C code, which is embedded in these models. This idea 
motivated a study we presented in a technical report5. In this study we surveyed fourteen C source code model 
checkers with emphasis on their applicability to embedded software. 

1 http://www.ilogix.com/statemate/statemate.cfm 
2 http://www.mathworks.com/ 
3 http://en.etasgroup.com/products/ascet/index.shtml 
4 http://www.esterel-technologies.com/products/scade-suite/overview.html 
5 Schlich, Bastian and Kowalewski, Stefan, “C model checking: A survey.” Technical Report RWTH-I11-2005-2, 
Informatik XI, RWTH Aachen University, 2005. 
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 This paper is organized as follows. In section “Model Checking Approaches” we describe the different 
approaches of model checking C code which we found in the literature. Then in section “Challenges” we describe 
the challenges that arise when model checking C code for embedded systems. In section “Evaluation” we evaluate 
the model checkers. After that we present a case study in which we tried to model check C code for the ATMEL 
ATmega 166. In the next section we summarize the problems we discovered and propose solutions to these 
problems. In the end we conclude. 

MODEL CHECKING APPROACHES

 In the following we describe the four most often used ways to model check C code. These four approaches are 
in alphabetic order: 
� Bounded Model Checking (BMC) 
� model checking with predicate abstraction using a theorem prover 
� model checking with predicate abstraction using a SAT solver 
� translation of the C code into a model of an existing standard model checker 
For each approach we give a list of model checkers that use it. All C model checkers known to us are listed in Table 
1. In the next section we evaluate each of these model checkers in detail. There are other ways to model check C 
code than listed here, but they are less often used. These four are used to handle the potentially infinite state space of 
a C program. In all these approaches the program is in some way transformed into an abstracted program that has a 
finite state space. This is required because the model checking algorithm has to visit all states. 

 In Bounded Model Checking this transformation is done by unwinding the potentially infinite constructs (e.g. 
while loops) only n times. This number n is the upper bound. For this reason this method is called Bounded Model 
Checking. An example for a Bounded C Model Checker is CBMC7 (ref. 1). In the majority of cases CBMC is able to 
determine the upper bound n. If it fails, the user can provide an upper bound that is then used by CBMC. If the user 
provides this upper bound, it cannot be guaranteed that there is no counter-example that is longer than the upper 
bound. In this case CMBC can only be used as a tool to find errors and not to prove correctness, since errors can be 
missed. 

 The next two approaches in the table use predicate abstraction (ref. 2, 3). Model Checking using predicate 
abstraction is done via abstracting the data by predicates on this data. In the abstract program Boolean variables 
represent the predicates and the original data variables are eliminated. This type of abstract program is called 
Boolean program (ref. 4). Model Checking is then applied to this Boolean program. Since this abstract program is 
created by a conservative approximation it may happen that the model checker finds an error which has a trace that 
is not feasible. Then a refinement process has to adjust the set of predicates and create a finer abstraction. This loop 
is called Counter-Example Guided Abstraction Refinement (CEGAR) (ref. 4, 5). The difference between model 
checking with predicate abstraction using a theorem prover and using a SAT solver is the way in that the Boolean 
program is constructed. A model checker that uses a theorem prover builds the Boolean program by repeatedly 
calling a theorem prover. Whereas a model checker, that uses a SAT solver, only makes one call to the SAT solver. 
In this call the SAT solver computes the abstraction of the concrete transition relations. Examples for model 
checkers that use a theorem prover are: BLAST8 (ref. 6), BOOP9 (ref. 7), MAGIC10 (ref. 8, 9), MOPS11 (ref. 10) and 
SLAM12 (ref. 11, 12). An example for a model checker that uses a SAT solver is SatAbs13 (ref. 13, 14). 

6 http://www.atmel.com/dyn/products/product_card.asp?part_id=2010 
7 http://www-2.cs.cmu.edu/~modelcheck/cbmc
8 http://www-cad.eecs.berkeley.edu/~blast 
9 http://boop.sourceforge.net  
10 http://www-2.cs.cmu.edu/~chaki/magic 
11 http://www.cs.ucdavis.edu/~hchen/mops/ 
12 http://research.microsoft.com/slam/ 
13 http://www-2.cs.cmu.edu/~modelcheck/satabs/ 
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 In the last approach the C code is transformed into a model used by a general purpose model checker. This has 
the advantage that these model checkers are widely spread and have efficient algorithms. On the other hand it has 
the disadvantage that all special knowledge of the C code and the hardware has to be used in the abstraction process, 
because these model checkers are not aware of this information. The different C model checkers that use this 
approach, all use abstractions to generate models that are finite. FeaVer14 (ref. 15) and FocusCheck (ref. 16) are two 
model checkers that use this approach. FeaVer transforms C code into Promela code. This Promela code is then 
checked with the Spin15 model checker. FocusCheck transforms the C code into XSB Prolog. From XSB Prolog a 
push-down transition system is generated and model checked. 

 Additional information can be found in our technical report. 

CHALLENGES

 In this section we describe challenges that arise when model checking C code for embedded systems and give 
hints if and how they could be handled. First we describe restrictions related to the C source code and then 
restrictions related to the chosen model checking approach. In section “Evaluation” we discuss the restrictions of the 
different C model checkers listed in Table 1 in detail. 

Challenges: C Source Code 

 As aforementioned the described C code model checkers target at the verification of ANSI C code. But C source 
code found in e.g. micro-controllers is often not compatible to ANSI C. Incompatible features include for example: 
� direct hardware accesses 
� in-line assembly language statements 
� compiler specific instructions 
� hardware specific instructions 
Dependent on the chosen micro-controller the adjustments to the chosen model checker are more or less complex. If 
the micro-controller uses the GCC compiler or an adaptation of the GCC compiler, the adjustments are less 
complex, since most of the C model checkers use GCC for preprocessing. If the chosen micro-controller uses its 
own compiler, the preprocessing process of the model checker has to be changed. This can be done by writing a 
parser that transforms the C code into the internal representation of the model checker. But this task is time 
consuming. All language constructs present in the language for the micro-controller, which are not handled by the 
model checker, have to be abstracted. An alternative to this is changing the model checker to handle these 
constructs. But this is often a complex task. Unwanted side effects could be introduced. 

Challenges: Model Checking Approach 

 Furthermore there are restrictions originated from the way model checking is done in the model checker. In 
section Model Checking Approaches we described the different model checking approaches. In this section we 
describe the challenges that arise from these different approaches.  

 In Bounded Model Checking there exists the aforementioned restriction that errors can be missed if the bound n
is not chosen properly. Anyhow even if n is chosen to small, this method can be used for debugging purposes. 

 In model checking with predicate abstraction using a theorem prover there are some more restrictions: 
� exponential number of calls to a theorem prover (ref. 13) 
� limited number of supported C constructs (ref. 13) 
� limited support for pointer arithmetic (ref. 13) 
� negligence of possible arithmetic overflows (ref. 13) 
� negligence of data flow 

14 http://cm.bell-labs.com/cm/cs/what/modex 
15 http://spinroot.com/spin/whatispin.html 
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There are heuristics that try to handle the exponential number of calls to a theorem prover by e.g. limiting the 
number of calls per assignment. But that often leads to an increase in the number of refinement steps due to spurious 
counter-examples. At present there is no solution to this problem. The limited number of supported C constructs and 
the limited support for pointer arithmetic stems from the use of a general purpose theorem prover. Not all C 
operators can be handled by these theorem provers. In these general theorem provers, the program variables are 
modeled as unbounded integer values. Thus possible overflows in the C program are ignored. In the domain of 
embedded systems there are very restricted resources, e.g. 8 bit char variables are used, and Boolean values are 
bundled into char variables. A model that uses unbounded integer values is not precise enough, many errors will be 
missed. The only solution to this problem would lead to an exchange of the theorem prover. But at present we do not 
know a general purpose theorem prover that considers bounded data types. The last problem derives from the use of 
predicate abstraction. This technique depends on the abstraction of the data variables and hence cannot accurately 
observe the data flow. In C programs for embedded systems the data flow is more important than it is in drivers or 
protocols. This restriction cannot be addressed in this approach. In model checking with predicate abstraction using 
a SAT solver there are not that much restrictions: 
� little restrictions on allowed C constructs (ref. 13):  

� no recursion 
� no dynamic memory allocation  

� negligence of data flow 
The restrictions on the allowed C constructs stem from the use of a SAT solver. The C program is transformed into a 
Boolean formula and this Boolean formula has to be finite. But recursion and dynamic memory allocation are two 
constructs that are potentially infinite. These restrictions cannot be addressed in this approach. The inaccurate 
consideration of the data flow stems from the use of predicate abstraction as aforementioned. Nevertheless this way 
of model checking can be used to model check C code for embedded systems, if these two constructs are not present 
in the C code. 

 The only general restriction stemming from the model transformation approach is that general purpose model 
checkers are used. These ignore the domain specific characteristics of the models that we are interested in. All other 
restrictions stem from the specific implementation of this approach. We discuss them in the next section. 

EVALUATION 

 In this section we present the implementation specific restrictions of all model checkers that are shown in Table 
1. This table gives an overview about all C code model checkers known to us. Only two of these, namely CBMC and 
StEAM, are capable of full ANSI C. The model checker SatAbs has little restrictions on the allowed C constructs. All 
other C model checkers have more rigid restrictions, or it is not known to us if they are able to model check full 
ANSI C. It is important to notice that all these model checkers focus on ANSI C source code. This is due to the fact 
that most of them deal with the verification of drivers and protocols. Most of them concentrate on the control flow 
and neglect the data flow. For software for embedded systems this data flow can be important. 

BLAST, BOOP, MAGIC and SLAM have restrictions on the C source code because they use a general purpose 
theorem prover in their approach. General purpose theorem provers like e.g. Simplify or Zapato support only linear 
arithmetics on real numbers. So the other constructs used, have to be approximated by means of uninterpreted 
functions (ref. 14). To adapt the constructs that are not allowed they would have to change their approach and/or the 
theorem prover they use. Since KISS is an extension to SLAM, only SLAM has to be changed. 

CBMC is capable of full ANSI C. It suffers from the already mentioned restriction regarding the upper bound. 
In section Case Study we present a case study in which we tried to extend CBMC to model check C code for 
embedded system. More information can be found there. 

 DiVer and F-SOFT are only assumed to have full ANSI C. NEC gives no detailed information about these 
model checkers. 
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 FeaVer uses the tool Modex to translate the C source code into Promela. The translation uses a table that tells 
Modex how to abstract the different C constructs. The default abstraction of Modex is in many cases very 
conservative. Many constructs are abstracted to no operation (noop). It takes big manual effort to change that table 
for C programs for embedded systems. In many cases this results in a model that is quite too big and thus not 
manageable by Spin. 

FocusCheck used to model check Cimpel but now it model checks ANSI C (ref. 16). Since they use CIL like 
MAGIC does, to translate C source code into a push-down system, they have some restrictions on the C source code. 
But they do not mention these restrictions in their paper. To adapt more C constructs they have to change from CIL 
to other C language frameworks. 

MOPS is based on the compiler GCC version 2.x. It is only able to model check GCC 2.x compatible programs. 
Additionally these programs have to adhere to some other restrictions. The main focus of MOPS is the control flow 
of the program. Subsuming these facts it is not possible to use it for model checking C code for embedded systems. 

SatAbs uses predicate abstraction like BLAST, BOOP, MAGIC, and SLAM do. But instead of using a theorem 
prover it uses a SAT solver. The little restrictions that SatAbs has on the source code arise from the use of a SAT 
solver. Every Boolean program has to be finite and therefore no recursion and no dynamic memory allocation are 
allowed. 

 StEAM compiles C source code to machine code for a virtual machine called Internet Virtual Machine (IVM). 
Then this virtual machine is steered and monitored while it simulates the code. To extend StEAM to handle 
constructs used in C code for embedded systems the compiler has to be extended. It could also be possible that the 
virtual machine has to be changed. 

 Zing transfers C code into a proprietary model. Then it model checks that model. This model transformation has 
to be changed in order to handle the needed C constructs. But we don't know yet if the Zing model is expressive 
enough to represent these constructs. 

 We have to mention that all C model checkers described in this section are well suited for the purpose that they 
were written for. In most cases this is the verification of drivers and protocols. We only wanted to evaluate if it is 
possible to use them for the verification of C code for embedded systems. More information to this topic can be 
found in our technical report. 

CASE STUDY 

 In this section we describe a case study that we made at our institute. In this study we tried to extend the model 
checker CBMC to be able to model check C code for the ATMEL ATmega 16 micro-controller. The handling of the 
used C code should be easy for CBMC, since both CBMC and the ATmega16, use GCC as the compiler. The 
decision to use CBMC was made during the evaluation of the C code model checkers. We chose it because it is able 
to check full ANSI C and it uses Bounded Model Checking. By using Bounded Model Checking CBMC it able to 
find errors in programs, for which model checking without a bound would not terminate. We chose the ATmega 16 
micro-controller because it is well structured and widespread. We can easily get real-world examples for testing 
purpose. 

 The program we want to analyze is shown in Figure 1. It is an implementation of the “intelligent” light switch 
example (ref. 17). If the button is pressed once, the light should be switched on to the dimmed state. If the button is 
pressed a second time within two seconds, the light is switched on completely. If the button is pressed a second time 
after more than two seconds, the light is switched off. In our implementation the LEDs (simulating the light) are 
connected to port A. The button is connected to one of the pins' of port B. We use two timers. Timer zero is used to 
debounce the button and timer one is used for measuring the two seconds delay. We use active polling without 
interrupts. The specification we want to prove is as follows: 
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� If the light is off and the button is pressed once, the light is in the dimmed state afterwards. 
� If the light is off and the button is pressed twice within two seconds, the light is in the bright state. 
� If the time between the both pushes of the button is greater than two seconds, the light is off. 

 When the program is given to CBMC, it gives an error message telling that it found a “+”, but it expected a 
pointer. To understand this error message we have to analyze our source code. CBMC tells us that this error happens 
in line eight. Line eight reads as follows: DDRA = 0xFF. DDRA is the Data Direction Register of port A (DDRA). 
This instruction sets all pins at port A as output. The preprocessor transforms this instruction via header files into: 
(*(volatile uint8_t *)((0x1A) + 0x20)) = 0xFF. CBMC sees a dereference of a typecast of a 
pointer. But at the point where it expects the pointer, it finds an addition of two constants. Then the resulting 
constant is typcasted to pointer type and then dereferenced. For CBMC this is not valid because it is a direct memory 
access to a fixed memory location. But this is exactly what this instruction is expected to do. It should write the 
value 0xFF into memory location 0x1A + 0x20. The I/O-registers of the ATmega 16 have fixed addresses and 
reside in the memory at their address incremented by a fixed offset of 0x20. For the model checking process we can 
replace this direct memory access by an access to an array. This array simulates the memory. To achieve this we 
could change our program, CBMC, or the header files. We do not want to change all our programs to model check 
them. By changing CBMC we could introduce side effects. Therefore we decided to change the header files. This 
only needs to be done once for each micro-controller. These header file can only be used for model checking, as the 
object code of a program compiled with these header files is useless. 

We replace: 
#define _MMIO_BYTE(mem_addr) (*(volatile uint8_t *)(mem_addr)) 
#define _MMIO_WORD(mem_addr) (*(volatile uint16_t *)(mem_addr)) 

by: 
unsigned char array_for_data_address_space[96]; 
#define _MMIO_BYTE(mem_addr) array_for_data_address_space[mem_addr] 
#define _MMIO_WORD(mem_addr) array_for_data_address_space[mem_addr] 

The size of the array is 96, because the ATmega 16 has got 96 registers and I/O-registers. Type char is chosen, 
because the memory of the ATmega 16 is 8 bit wide. After this change the preprocessor transforms DDRA = 0xFF
into array_for_data_address_space[(0x1A) + 0x20)] = 0xFF. Now CBMC can parse our 
program. But after some minutes of doing unwindings CBMC terminates with a core dump. The cause for this 
problem is a part of the delay() method. CBMC tries to determine the upper bound for unwinding the while
loop, but it fails. The expression !(TIFR & (1 << OCF0)) does not change in the scope of CBMC. TIFR is 
the Timer/Counter Interrupt Flag Register and OCF0 is the Output Compare Flag 0 that is part of the TIFR. This 
flag is set by the hardware when a timer overflow occurs. This register and hence the flag are part of our introduced 
array. It is set to zero in the initialization phase but it is never changed, since the behavior of the hardware is not 
modeled. We have three possibilities to fix this error. We could submit the upper bound via command line. But this 
bound would then be used for all infinite constructs in our program. Another solution would be to let CBMC choose 
a value for this flag non-deterministically. However this would not reflect the correct behavior of the timer. We 
know that finally the timer will overflow, and the bit will be set until it is reset by our program. A non-deterministic 
choice would not reflect this behavior. The third solution would be to develop a module that simulates the behavior 
of the hardware. The timers, interrupts, and the I/O-registers could be simulated by this module. But from our point 
of view the coupling between CBMC and this module would be rather tight. The effort of changing this module to 
simulate another micro-controller would be too high. The implementation of this module would be easier, if CBMC
would provide parallelism. In this case this module could be implemented as a parallel process. Parallelism would 
also be needed to implement an extension that model checks programs with interrupts.

 Beside these technical issues we examined the provided specification capabilities of CBMC. It provides the 
following ones: 
� pointer safety 
� array bounds 
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� exceptions
� user-provided assertions 
It is not possible to express our timed specification with these specification capabilities. Even the following 
approximation of our specification could not be expressed without introducing new variables: 
� If the light is off and the button is pressed once, the light is in the dimmed state afterward.  
� If the button is pressed twice, the lights are in bright state or off afterward. 

 Recapitulating we can say, that at this point it is possible to model check our program for pointer safety, array 
bounds, and exceptions. But it makes no sense for us to model check for user-provided assertions, without editing 
our program, introducing new variables, and changing the access to I/O-registers to calls to a function that returns 
non-deterministic values. We do not want that much changes in our C code because these changes can be very 
difficult in industrial-size programs. 

 Again we have to mention that CBMC is well suited for the purpose it is written for that is the verification of 
hardware. But it shows limitations when embedded C code has to be verified. 

PROBLEMS AND SOLUTIONS 

 In this section we summarize the existing problems and state those that we want to address. Thereafter we 
propose solutions to the two main problems.  

Problems

 As shown before, the existing C code model checkers are not well suited for model checking C code for 
embedded systems. The first reason for this is that most of them aim for the verification of drivers and protocols 
only. They can handle ANSI C, but ignore the underlying hardware. They try to model check C code for every 
existing platform. We think that this goal is not achievable. For us it seems to be important to use the information, 
which we have about the hardware platform. The result is a model checker that is only suited for a special hardware 
platform. But this makes it possible to model check C code that otherwise would be uncheckable. Such an approach 
is promising because e.g. in the automotive industry a special hardware platform is used for a longer time period. 
The same hardware is used in many cars. For each new car new software has to be developed. If there would exist a 
model checker that could model check software for this hardware, this would increase the confidence in the 
software. 

 To afford this, we address the following problems of the existing C code model checkers: 
� missing consideration of the hardware  

� interrupts 
� timer 
� I/O- register 
� Direct memory accesses 
� Embedded assembly language 

� unsuitable specification techniques:  
� reachability in the source code  
� specification via function calls 

The two main problems are the missing consideration of the hardware and the unsuitable specification techniques. 
The missing consideration of the hardware causes ignorance of the interrupts, the timers, and the I/O-registers. 
Direct memory accesses are reported as errors in many of the existing model checkers. And embedded assembly 
language statements are ignored in all cases. Thus C code for embedded systems cannot adequately be analyzed in 
these model checkers. The second important problem stems from the partly unsuitable specification techniques. 
Many of the model checkers do tests like pointer analysis, array bounds, etc. For these tests no specification is 
needed. But in case of C code for embedded systems these test often fail due to the aforementioned ignorance of the 
hardware. For specification purpose often reachability in the C code is used. But if specification of e.g. invariants is 
needed, one has to insert new variables to the source code. From our point of view this is not desirable, since this 
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can introduce unwanted side effects. In some model checkers specification is done via function calls. The user 
specifies the parameter values and the resulting return values. But in many C programs for embedded systems only 
very few function calls are used. Therefore only a small part of the specification can be represented in these model 
checkers. 

Solution Proposal 

 We propose the following solution. We plan to develop a model checker that model checks C code for the 
ATMEL ATmega 16 micro-controller. The model checker has to handle all constructs found in C code for this 
micro-controller. Our approach is depicted in Figure 2. In our approach the C code is compiled by the AVR-GCC to 
the assembly language. We keep debug information in the assembly language file. Then the model checker module 
checks the assembly language file. There are some advantages using the assembly language. First, all difficult C 
constructs are compiled to semantically equivalent assembly language constructs. These are easier to handle. The 
second advantage is that embedded assembly language now is also checked by the model checker. Possibly some 
errors introduced by the compiler are also found. Another advantage is that the assembly language code is the code 
that is finally transferred to the hardware. In the model checker there are two modules. One is responsible for the 
model checking process; the other is responsible for the simulation of the hardware. In the module that simulates the 
hardware, all the details for the handling of the timers, interrupts, I/O-registers, etc. are managed. We choose this 
modular approach to make the model checker adaptable to new hardware platforms. The coupling between the two 
modules should be loose. In a later extension also static timing analysis could be made for the assembly language 
files. The errors that are found by the model checking module should be shown in the C code file and not in the 
assembly language file. This is possible by using the debug information from the assembly language file. 

 Our second proposal refers to the specification techniques. In the model checker there should exist two different 
views for specification purpose: the users view and the developers view. The user only wants to specify about the 
states he can distinguish from outside the micro-controller. Those are the different states of the I/O-registers. If he 
uses the neXt (X) operator in his temporal logic formula, he has in mind the next change in the states that he can 
observe. He often is not interested in the changes inside the micro-controller. In contrast to this the developer wants 
to specify the behavior concerning the internal states of the micro-controller. For him, it should be possible to tell 
the model checker which variables are of interest to him. The same applies to the other temporal operators. 

 In this model checker it should also be possible to check for the compliance to company-wide design directives. 
These could include design directives for interrupts: 
� If a special interrupt is activated, an interrupt service routine has to exist for this interrupt. 
� If a special interrupt is activated, the global interrupts have to be activated. 
� The global interrupts must not be activated, if no special interrupt is activated. 
� A function is not allowed to change the state of the interrupts, unless it is the init(),

activateInterrupts(), or deactivateInterrupts() function. 
There can be design directives for other micro-controller specific behaviors. 

 A goal for the remote future would be to make it possible to model check timed behaviors of micro-controllers. 
In our case study we already gave an example of such a timed specification. The assembly language code could be 
annotated with the accurate number of CPU cycles. Then an average time per CPU cycle could be chosen. This 
model could then be checked for its timing behavior.  But at the moment this goal seems to be out of range to us. We 
did some experiments in which we did this annotation and transformation by hand. But when we tried to model 
check the resulting models, we realized that the state space even for simple programs with simple specifications was 
quite too big. 

CONCLUSION 

 The paper has discussed different C source code model checkers. The overall result is that none of them is 
currently able to model check C source code for embedded systems out of the box. All of them originate from an 
academic or research oriented environment. Most of them deal with the verification of drivers or protocols and are 
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not intended to model check software for embedded systems. The main reasons for the lack of adequacy these C 
model checkers have for verifying C programs for embedded systems are the following: 
� too restricted a set of analyzable C constructs 
� inability to deal with hardware particularities 
� partly inappropriate specification techniques 

 We have presented a case study that showed the existing problems in some detail. Despite the limitations shown 
here, C model checking is still a promising approach to the verification of embedded software. For every project it 
has to be checked if one of the existing model checkers handles all the constructs that are used in this project. If this 
is not the case but only small changes have to be made, one could extend an existing model checker as described in 
section Case Study. Bigger changes in existing model checkers should be avoided. The performance could be 
decreased and side effects could be introduced.  

 Since it has turned out that the existing model checkers for C code are not suited to the verification of embedded 
systems, we have listed requirements for a new C code model checker for embedded systems. We have proposed a 
new approach in which the assembly language code is used for the model checking process. This is promising 
because the constructs found in the assembly language are easier to handle. We do not have to predict compiler 
behavior. Another benefit of model checking at assembly level is that the embedded assembly statements can be 
analyzed. The most important point in our approach is that a module is integrated which will simulate the hardware 
features. This module should be interchangeable to allow changes in the hardware platform that is used. We propose 
also a specification technique that provides two views to the system, namely the user’s view and the developer’s 
view. With these views different granularities for the specification should be possible.  

 C model checking is far from being used in software development for embedded systems as a routine tool. 
However, it might be used in individual cases. Some of the introduced tools show the potential for model checking 
embedded C source code, but there is still a lot of work to be done in order to adapt them to industrial source code 
for embedded systems. 
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TABLES

Model Checker Institute Model Method
BLAST UC Berkeley restricted ANSI C predicate abstraction, CEGAR, 

theorem prover 
BOOP IST Graz restricted ANSI C predicate abstraction, CEGAR, 

theorem prover 
CBMC CMU ANSI C Bounded Model Checking 
DiVer NEC, CU Boulder ANSI C (assumed) no information provided 
FeaVer Bell Labs restricted ANSI C model translation into Promela 
FocusCheck Iowa State U. Cimpel/ANSI C translation into push-down system, 

constraint-solver 
F-SOFT NEC unknown no information provided 
MAGIC CMU restricted ANSI C predicate abstraction, CEGAR, 

theorem prover 
MOPS UC Davis, UC Berkeley restricted ANSI C Model Checking on CFG 
SatAbs CMU restricted ANSI C predicate abstraction, CEGAR, SAT 

solver 
SLAM Microsoft Research restricted ANSI C predicate abstraction, CEGAR, 

theorem prover 
StEAM University Dortmund ANSI C simulation with virtual machine IVM 
KISS Microsoft Research - extension to SLAM 
Zing Microsoft Research ANSI C (assumed) translation into Zing Model 

Table 1. Model Checker List 
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FIGURES

//Intelligent Light Switch 

#include "avr/io.h"   //access to I/O-registers 
char Brightness = 0; 
char ButtonPressed = 0; 

void init(void) { 
 DDRA  = 0xFF;  //PORTA as output 
 PORTA = 0xFF; 
 DDRB = 0x00;  //PORTB as input 
 PORTB = 0xFF;  //activate pull-up 
 OCR0 = 0x46;  //timer 0 
 OCR1A = 0x2DC7;  //timer 1 
}

void delay (void) { 
 TCNT0 = 0x00; 
 TCCR0 = 0x0D; 
 while (!(TIFR & (1 << OCF0))) { 
 //noop 
 } 
 TCCR0 = 0x00; 
 TIFR = (1 << OCF0); 
}

int main (void) { 
 init(); 
 while(1) { 
  if (!(PINB & (1 << 0))) { 
   delay(); 
   if (PINB & (1 << 0)) { 
    ButtonPressed = 1; 
   } 
  } 
  if (ButtonPressed) { 
   switch (Brightness) { 
   case 0: 
    PORTA = 0x55; 
    Brightness = 1; 
    //activate timer 1 
    TCNT1 = 0x00; 
    TCCR1B = 0x0D; 
    break; 
   case 1: 
    if (TIFR & (1 << OCF1A)) { 
     PORTA = 0xFF; 
     Brightness = 0; 
    } else { 
     PORTA = 0x00; 
     Brightness = 2; 
    } 
    //deactivate timer 1 
    TCCR1B = 0x00; 
    TIFR = (1 << OCF1A); 
    break; 
   case 2: 
    PORTA = 0xFF; 
    Brightness = 0; 
    break; 
   } 
   ButtonPressed = 0; 
  } 
 } 
 return(1); 
}

Figure 1. Implementation of the “intelligent” light switch example (ref. 17). 
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Figure 2. Proposal for an architecture for a C model Checker
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ABSTRACT

Human-Agent collaboration is increasingly important. Not only do high-profile activities such
as NASA missions to Mars intend to employ such teams, but our everyday activities involving
interaction with computational devices falls into this category. In many of these scenarios, we are
expected to trust that the agents will do what we expect and that the agents and humans will work
together as expected. But how can we be sure? In this paper, we bring together previous work
on the verification of multi-agent systems with work on the modelling of human-agent teamwork.
Specifically, we target human-robot teamwork. This paper provides an outline of the way we are
using formal verification techniques in order to analyse such collaborative activities. A particular
application is the analysis of human-robot teams intended for use in future space exploration.

INTRODUCTION

In our previous work, we have developed techniques for verifying (using model checking)
multi-agent systems [1, 2]. The agents involved are rational/intelligent [25] and are represented
in a high level language describing their beliefs, intentions, etc. While this has potential to be
used in scenarios where rational agents are used to control critical applications, there is a need to
consider the verification of situations with more human involvement.

Our work on agent verification has been developed in collaboration with NASA. Rather than
deploying completely autonomous, human-free, space missions, NASA is now turning to joint
human-agent (typically, human-robot) teams as a way to handle more advanced space missions

∗Principal Contact: M.Fisher@csc.liv.ac.uk
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within the future. Yet, it is still important to ensure that the humans and agents will work together
to achieve their goals.

Fortunately, attempts have been made to model human-agent activity, specifically via the
Brahms framework [21, 20]. Brahms describes teamwork at a high level of abstraction yet, since
its intended semantics is quite close to BDI models of agency [17], there is a possibility that agent
verification techniques can be relevant here. In particular, if we can characterise (simple forms of)
human behaviour as agent behaviour, then we ought to be able to utilise our previous work to verify
human-agent interactions. This paper describes our approach in this area.

The structure of the paper is as follows. We first provide some background concerning agents
and their use in space missions, then we outline our previous work on the verification of multi-agent
systems. The following section then describes the need for human-agent (specifically human-robot)
teams, and after that we address the problem of verifying the behaviour of such human-robot teams.
Some concluding remarks are given at the end.

BACKGROUND

Rational Agents

An agent can be seen as an autonomous entity. Thus, the agent makes its own decisions about
what to pursue. We are particularly concerned with rational agents, which can be seen as agents that
make explainable decisions on how to act so as to achieve their goals in the best possible way. Thus,
the key new aspects that such agents bring is the need to consider, when designing or analysing
them, not just what they do but why they do it. Since agents are autonomous, understanding why
an agent chooses a course of action is vital. In [26], a number of additional aspects of agents are
described, in particular their pro-active, reactive, and social attributes. Although we do not see
these as essential, most of the agents considered here do, indeed, incorporate such notions.

A number of logical theories of (rational) agency have been developed, such as the BDI [16,
17] and KARO [12, 14] frameworks (BDI stands for “Belief-Desire-Intention”, and KARO for
“Knowledge, Abilities, Results, and Opportunities”). One reason for using logic in agent-based
systems is that a formal semantics comes (more or less) for free. From this it follows that the
semantics of logic-based agents is strongly dependent on their underlying logic. The foundations of
such agent description frameworks are usually represented as (often complex) non-classical logics.
In addition to their use in agent theories, where the basic representation of agency and rationality
is explored, these logics often form the basis for agent-based formal methods and, as we will see
later, agent-based formal verification techniques.

Towards Rational Agents in Space Missions

Software is fast becoming an enabling technology for space missions. For example, the Interna-
tional Space Station (ISS) contains millions of lines of code that amongst other things supports the
inter-operability of US and Russian modules. The true future of software in space applications are
however embodied in missions such as the Remote Agent from Deep-Space 1 [18] and the Demon-
stration of Autonomous Rendezvous Technology (DART) [8] where spacecraft were autonomously
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controlled by software systems. Deep space missions require such autonomous behaviour since
communication delays make earth-controlled missions almost impossible. Autonomy is also a
major cost driver for NASA since human controlled missions require large earth-based teams for
support. See Figure 1 for an outline of why rational agents are increasingly used to provide a
high-level abstraction/metaphor for building complex/autonomous space systems.

Uncertain
environments


−→ more ʻIntelligenceʼ

↓
Cooperation
Coordination


−→ RATIONAL

AGENTS
↑

Communication
problems


−→ more Autonomy

Figure 1: Motivations for using Rational Agents in Space Applications

Autonomous software is, however, hard to verify due to the uncertain/nondeterministic envi-
ronments in which it executes. Yet, it is essential to attempt such verification since autonomous
systems are amongst the most complex (and error prone) systems to develop. For example, the Re-
mote Agent had a software deadlock during flight (although the mission completed successfully)
and the DART mission failed (although the reasons are not clear yet) [11].

It is also very likely that autonomous systems will contain many rational agents that will need
to interact and share information and resources: multiple space probes requiring collision avoid-
ance, multiple surface rovers, autonomous docking between vehicles, etc. Additionally, NASA̓ s
new focus on doing human-robotic exploration of the Moon and Mars, brings human “agents”
into the picture - this might simplify some of the autonomy requirements, but increase safety and
certification concerns.

Thus, there is a clear path, not only towards rational agents, but also towards teams of such
agents and humans. Such teams must be able to coordinate their activities, for example to avoid
collisions and to cooperate to achieve some common goal. Although there has been relatively
little work on the verification of BDI agents, there has been considerably more work on analysing
teamwork, in particular where humans and agents interact to achieve common goals. A prominent
approach is that of TEAMCORE developed by M.Tambe and colleagues [15], and an example of
a significant application they have developed is the DEFACTO system [19], which coordinates the
action of agents (e.g., representing fire engines) and humans for disaster response.

VERIFYING AGENT BEHAVIOUR

As seen above, the technology offered by autonomous software agents, particularly rational
agents, is very appealing. Rational agents can:

• adapt to uncertain environments;
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• solve problems independently;
• communicate and collaborate with other agents;
• learn new behaviour; etc.

However, can we be sure such agents will behave as expected? If rational agents are to have even
partial control of critical missions, then we have to be able to trust them. But how can we check
this? Our approach is to use logical verification techniques.

Logics for Precise Description — Logics provide an unambiguous formalism for describing
the behaviour of systems. There is a wide variety of logics that can be developed for different
scenarios, such as:

• dynamic communicating systems −→ temporal logics;
• systems managing information −→ logics of knowledge;
• autonomic/intelligent systems −→ logics of goals, intentions, aims;
• situated systems −→ logics of belief, contextual logics;
• systems in uncertain environments −→ probabilistic logics.

Importantly, combinations of such logics are needed, so that we can specify high-level properties
such as:

“a rational agent has a problem that it Aims to solve, but Believes that it needs help
(i.e., the agent cannot solve the problem itself), so in the Next moment in time, its
Goal will be to get help.”

in a compact and precise (unambiguous) formula like this:

(A solve-problem ∧B need-help)→ N (G get-help).

When writing specifications of the properties required of agent-based systems in particular, it helps
to use the same kinds of abstraction that we use to build the system itself (such as those mentioned
above, particularly beliefs and goals).

Verifying Logical Descriptions — Analysing agent systems in order to make sure they will run
as expected is a complex task. However, if we can provide both an abstract description of the agent
system in question, and a logical description of the requirements/properties to be checked, then we
can carry out logical verification, using a variety of techniques.

One such technique is Model Checking [7], and one of the reasons for this technique being
particularly popular is that it can, potentially, make the whole verification process completely au-
tomated. This led to the development of very sophisticated model checkers such as SPIN [13] and
NASA̓ s Java Pathfinder [24, 10].
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Verifying Multiple Agents — This form of verification (by model checking), which checks all
possible behaviours of an agent situated in an environment, extends naturally to multi-agent sce-
narios, as seen in Figure 2.
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Figure 2: Verifying Systems of Multiple Rational Agents

As seen in the figure, we can combine the abstract representation of the various agents in the system
and verify properties that refer not only to the properties that we require of each individual rational
agent, but also to the properties that we require of the whole agent team. In particular, we can refer
to its collaborative operation. Our particular approach to multi-agent verification is an instance of
this general scheme.

Our Approach to Multi-Agent Verification — Our approach to verification of agent-based sys-
tems was first introduced in [1] (see also [2] for an overview of the approach). The idea is to do
verification of agent programs directly, rather than a high-level design of the system. In particular,
we have produced tools that can translate an agent-oriented programming language into the input
language of the SPIN model checker as well as Java, thus allowing us to use NASA̓ s Java Pathfinder
as target model checker. We also defined a (relatively simple) logical language that allows us to
write — using the types of abstractions typical of rational agents (such as beliefs, goals, etc.) —
specifications of the properties the system is expected to satisfy. With this, the model checker can
automatically verify whether the system satisfy the required properties or not.

Examples of properties we can verify are as follows. Imagine a scenario in which an astronaut
is interacting with a robot on Mars. The robot is given some tasks for the day by the ground team,
but the astronaut can interrupt the robot at any time and give alternative tasks. The original plan
was for the robot to take panorama pictures at locations l1 and l2, but the astronaut tells the robot
to take a panorama at location l3 instead. We may want to make sure that the robot will interrupt
its original task as soon as the new course of action is suggested by the astronaut, that the requested
panorama will be taken exactly at l3 (i.e., the right location), that the original tasks are resumed
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once the astronaut instructs the robot to do that, that panoramas of locations l1, l2, and l3 will
all be eventually available, and so forth.

HUMAN-AGENT TEAMS

Human-agent teams refer to a complex human-agent work system in which people interact not
only with each other, but also with software and hardware systems coordinated by rational software
agents. This creates extra constraints, because even though software agents interact according to
well-defined communication protocols, people do not. In this section we first discuss the reason
why human-agent teams are relevant for space exploration. We then briefly describe the Brahms
environment, developed at NASA Ames Research Center. Brahms was specifically developed for
modelling human-machine interaction and work practice. Finally, we describe a typical human-
agent teamwork scenario.

Why Human-Robot Teams in Space?

Although completely autonomous space missions (i.e., missions consisting solely of au-
tonomous agents) are possible, they present a number of problems. One is that autonomous pro-
grams are difficult to control and analyse. An equally important one is that, for critical missions,
human decision making is still essential at some level. Thus, there is a move towards combining the
advantages of humans and agents into human-agent teams, specifically for planetary exploration.
Crucially, human-agent (specifically, human-robot) teams are expected to carry out collaborative
activity.

However, while such teams are appealing, in principle, several problems remain. The most
significant are that such teams are difficult to program and analyse,

• individually, e.g. agents understanding what humans will do, and
• globally, e.g. programming and analysing teamwork and joint goals.

In spite of this, the future of space exploration (in particular planetary exploration) is likely to
involve such human-agent teams. For example, NASA is planning to use human-robot teams in
Mars exploration. Closer to home, we can see that the future of ubiquitous/pervasive computing
essentially involves cooperation and collaboration amongst human-agent teams.

Brahms: Modelling Human-Agent Teams

Brahms is a multi-agent rule-based language developed at NYNEX (New York and New Eng-
land Baby Bell Telephone Company, now Verizon), at the Institute for Research on Learning (IRL),
and since 1998 at NASA Ames Research Center. The Brahms environment consists of a language
definition, compiler, an integrated development environment (the Composer) and a Brahms Vir-
tual Machine (the BVM) running on top of the Java virtual machine to load and execute Brahms
models. Brahms was originally developed as a multi-agent language for modelling and simulating
human work practice behaviour in organisations [6]. While Brahms can run in simulation mode,
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and is still used as a simulation environment [22], we have extended the BVM by allowing agents
to run as real-time software agents without a simulation clock and event scheduler to synchronise
the agents. This makes Brahms both a simulation and a software agent development environment.
With Brahms you can test a multi-agent system by running the system as a simulation. When the
system is debugged (using the Brahms AgentViewer), you can “flip the switch” and run the same
system as a real-time distributed agent system. We refer to this as from simulation to implemen-
tation, a software engineering method that uses simulation as a system design and integration test
environment.

Brahms agents are BDI-like agents (recall the Belief-Desire-Intention rational agent architec-
ture mentioned earlier). However, Brahms does not use a goal-directed approach, but rather an
approach we refer to as activity-based [5, 23]. Brahms agents are both deliberative and reactive.
Each Brahms agent has a separate subsumption-based inference engine [3]. Brahms agents execute
multiple activities at different levels at the same time. At each belief-event change (creation or
changing of beliefs), situated-action rules (i.e., workframes) and production rules (called “thought-
frames”) are evaluated at every active activity-level.

Brahms is a modelling language designed to model human activity. Agents, therefore, were de-
veloped to represent people. Brahms agents can belong to one or more group, inheriting attributes,
initial beliefs, and activities, workframes and thoughtframes from multiple groups (multiple inher-
itance). This allows the abstraction of agent behaviour into one or more groups. Because Brahms
was developed to represent peopleʼs activities in real-world context, Brahms also allows the repre-
sentation of artifacts, data and concepts in the form of classes and objects. Both agents and objects
can be located in a model of the world (the geography model) giving agents the ability to detect
objects and other agents in the world and have beliefs about objects. Agents can move from one
location in the world to another by executing a move activity, simulating the movement of people.

The Brahms modelling approach is based on a method that divides any system to be modelled
into a number of more or less interdependent sub-models: the Agent, Object, Geography, Knowl-
edge, Activity and Communication models. The Brahms model development environment — the
Composer — supports this model-based approach, and allows the modeller to create groups and
agents using a graphical user interface.

Group Hierarchy

The agent model consists of a group hierarchy representing the social, organisational, or func-
tional groups of which agents are members. In the mission operations domain we can represent the
mission operation workers according to their functional roles, such as the science team. Members
of the science team are responsible for the science deliverables of the mission. They are often
world-class scientists in specific domains, such as specialised science instruments that are carried
onboard the robot. The science team members are divided into science theme groups that repre-
sent the functional roles during the mission, such as the “instrument synergy team”, the “science
operations team”, and the “data analysis and interpretation team”. Excerpt 1 shows the definition
of some of the groups in Brahms source code (the excerpt shows partial source code: ʻ. . .ʼ means
that source code is left out).
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Excerpt 1. Partial Agent Model
group MyBasegroup memberof BaseGroup {

attributes:
public symbol groupMembership;

}

group VictoriaTeam memberof BaseGroup {...}

group ScienceTeam memberof VictoriaTeam, MyBaseGroup {
location: Building244;

attributes:
...

initial_beliefs:
// everyone knows where the rover is at the start of the sim

(VictoriaRover.location = ShadowEdgeInCraterSN1);

activities:
...

workframes:
...

thoughtframes:
}

group ScienceOperationsTeam memberof ScienceTeam {...}

agent Agent1 memberof ScienceOperationsTeam {
initial_beliefs:

(current.groupMembership = ScienceOperationsTeam);

intial_facts:
(current.groupMembership = ScienceOperationsTeam);

}

We will go step-by-step through the source code of Excerpt 1 explaining how groups and agents
are defined. Note that this excerpt describes the definition of four groups and one agent. Bold font
is used to denote keywords of the Brahms language. Every Brahms language element definition is
actually placed in a separate source file, but is here shown as if it were part of one source code file
for illustration purposes.

The first two groups are MyBaseGroup and VictoriaTeam. MyBaseGroup is a group
defined by the modeller and is used to define common features for all groups. It is a non-domain
specific “root” of the group hierarchy, used by the modeller to define common group properties.
MyBaseGroup and VictoriaTeam are both members of the group BaseGroup, which is the
root of all groups and is part of a base library that comes with the Brahms language, with cer-
tain predefined standard attributes. Here the MyBaseGroup group defines a common attribute
for all groups, i.e., the groupMembership attribute. The groupMembership attribute is
used in the model to allow agents to know to what group they belong. The third group that
is defined is ScienceTeam. The group ScienceTeam is a member of two parent groups,
VictoriaTeam and MyBase. This example shows that Brahms supports multiple inheritance
for groups and agents. Group inheritance means that the subgroups and/or agents inherit all the
elements defined in the parent group. The Brahms compiler will recognise naming conflicts in
multiple inheritance and will report these at compile time. At this moment Brahms does not sup-
port “late-binding” and thus there are no possible inheritance conflicts at run-time. Next, the group
ScienceOperationsTeam is defined as a member of the ScienceTeam group. Finally, we
see the definition of an actual agent. The keyword agent declares agents, and in this example
Agent1 is an agent that is a member of the ScienceOperationsTeam group. Thus, the
definition of groups and agents in Excerpt 1 explicitly defines the group hierarchy in Figure 3.
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Figure 3: Group Hierarchy from Excerpt 1

Workframes

In Excerpt 2, two workframes are shown: a “high-level” workframe called
wf SearchForWaterIce (at the end of the excerpt), and a workframe part of the
FindingWaterIce activity called wf WaitingForData. Workframes allow for the
execution of activities and the representation an agentʼs activity execution constraints. Since activ-
ities take time, a workframe has a duration based on the time that the activity takes. Workframes
“fire” according to a pattern-matching process in which workframe preconditions are tested and
workframe variables are bound. The body of a workframe (i.e., the do-part) can have conclude
statements and activity calls. Conclude statements in workframes are meant to represent the
belief-state of the agent in relation to the activity that is going to be executed (i.e., before the
activity call) or has finished executing (i.e., after the activity call), and are not meant to represent
reasoning of the agent (for this we use the thoughtframes).

One way of thinking about the role of workframes is to view them as constraints on when an
agent can perform an activity. Workframe (WFR) wf SearchForWaterIce constrains when
the agent can perform the FindingWaterIce activity. The constraints are represented as the pre-
conditions of the workframe. The preconditions encode what beliefs the agent needs to have in
its belief-set to enable it to perform the activity or activities (there can be more than one activity
call in the workframe body). In plain English wf SearchForWaterIce says: “When I be-
lieve that the VictoriaRover is currently in the activity SearchForWaterIce and I believe
that the VictoriaRover is currently located in a crater, first bind the name of the crater to the
variable rover-loc, then execute the workframe body with priority zero” (Brahms allows for
parallel execution of workframes, but uses a “time-sharing” approach using priorities). Note also
that wf SearchForWaterIce has the repeat:false statement at the top. This means that
this workframe will only fire once for a particular set of beliefs that match all its preconditions.
The result is that the agent will only execute wf SearchForWaterIce once for any crater the
VictoriaRover visits.

When the agentʼs inference engine has determined that the preconditions of
wf SearchForWaterIce are satisfied (due to finding matching beliefs in the agents belief-set)
and it is the WFR with the highest priority, the agent will start executing the first statement in
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Excerpt 2. Partial Activity Model for the ScienceOperationTeam Group
composite activity FindingWaterIce (Crater crater, int pri) {

priority: pri;

activities:
primitive activity WaitingForData( ) {

priority: 0;
max duration: 3600;

} //end activity
...

workframes:
workframe wf WaitingForData {

repeat: true;
priority: 0;
detectables:

detectable ReceiveHydrogenData {
detect((VictoriaRover.nextSubActivity = DoDrilling))
then abort;

} //end detectable
...

when (knownval(current.nextSubActivity = WaitForData))
do {

WaitingForData( );
} //end do

} //end workframe
...

thoughtframes:
...

} //end composite activity

workframe wf SearchForWaterIce {
repeat: false;
variables:

foreach(Crater) rover-loc

when (knownval(VictoriaRover.currentActivity = SearchForWaterIce) and
knownval(VictoriaRover.location = rover-loc))

do {
conclude((current.currentActivity = SearchForWaterIce));
FindingWaterIce(rover-loc, 0);

} //end do
} //end workframe

the body of the WFR, which in Excerpt 2 is the conclude statement that creates the belief for the
agent that says that its current activity is SearchForWaterIce. This represents that the agent
knows that it is currently in the activity of searching for water ice. Next, the engine calls the
activity FindingWaterIce. Matching of beliefs preconditions, binding variables and firing the
workframe, executing the conclude statement and calling the activity SearchForWaterIce, is
all done in the same simulation time-event. Thus, although these processes take actual CPU time,
they do not take any simulation time for the agent.

An important aspect of making Brahms into a software agent development language is the abil-
ity to seamlessly integrate Brahms agents within Java. Brahms has a JAPI defined to write agent
activities in Java, so that they can be called from workframes. Brahms agents can also be com-
pletely written in Java, which enables the wrapping of existing external systems as a Brahms agent,
enabling Brahms agents to communicate with external systems. For a more detailed description of
the Brahms language we refer the reader to [21] and [4].
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Sample Human-Agent Teamwork Scenario

There follows an outline of a scenario where human-agent (specifically, human-robot) teams can
be used. This essentially concerns ensuring robust network connectivity for planetary exploration
through the use of multi-agent (and human-agent) teamwork.

Two surface astronauts are going on an extra-
vehicular activity (EVA) to explore a region, defined by
the crew in an EVA plan. One or more network relays
provide connectivity to each astronaut. A network relay
can be one of two robots, or a robotically deployed relay
device. The robots can be autonomous relays, as well as
astronaut assistants, carrying tools and sample bags, tak-
ing pictures and panoramas. Each astronaut can “team
up” with a robot. When a robot is teamed up with an
astronaut, the robotʼs personal agent automatically per-
forms the “following” and “watching” activities, and also
automatically begins to monitor network connectivity to
the astronaut (the astronautʼs personal agent automatically begins to monitor connectivity to the
robot). The personal agents also monitor network connectivity back to the habitat. The personal
agent notifies the astronaut when network connectivity fails. Using a defined model of teamwork
the robot and astronaut personal agents will provide simple recovery steps to try to reestablish
communication.

VERIFYING HUMAN AGENT TEAMS

Semantics of Brahms Descriptions

The Brahms language is organised around the following representational constructs:

Groups of groups containing
Agents who are located and have

Beliefs that lead them to engage in
Activities specified by
Workframes

Workframes in turn consist of
Preconditions of beliefs that lead to

Actions, consisting of
Communication Actions
Movement actions
Primitive Actions
Other composite activities

Consequences of new beliefs and facts
Thoughtframes that consist of
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Preconditions and
Consequences

Using Verification Techniques

Because of the success of the previous work in verifying AgentSpeak agents and multi-agent
systems (written using AgentSpeak(F), a restricted version of AgentSpeak), and because Brahms,
like AgentSpeak, extends the Belief-Desire-Intention notions of rational agency, it would seem
reasonable to follow one or both of these approaches:

1. converting Brahms models into AgentSpeak models or
2. duplicating, with Brahms, as far as possible, the techniques used to make AgentSpeak verifi-

able.

The advantage of (1) is that it builds on existing work, and because it would involve translating one
(essentially) BDI-based language into another, the task appears simpler. It would, however, require
finding areas of common linguistic (syntactic/ontological) ground, which in turn could involve the
simplification or re-formatting of the Brahms language, a step that might itself require significant
formalisation and proof or verification.

A much larger task would be to convert Brahms models directly into a model checkerʼs input
language (e.g., Promela for Spin, Java for JPF). The complexity here centres on the fact that these
input languages do not have BDI notions as part of their foundation and, for Spin, on the limitations
of the Promela language. As this has been successfully done with programs written in AgentSpeak,
such work might be used as an inspiration for doing similar translations with Brahms descriptions.
Brahms, however, is more complex syntactically than AgentSpeak and, again, the translation pro-
cess might require altering Brahms descriptions and would require a formal translation process (to
ensure semantic equivalence between two quite different languages).

A pictorial view, following the previous description of multi-agent verification, of such human-
agent teams is given in Figure 4.

Note. There is perhaps a subtle difference in the rationale behind using Brahms and using other
agent languages. Brahms is fundamentally an application for modelling work systems, i.e., en-
vironments which include agents, objects, locations and other concepts and in which agents will
typically collaborate. An agent language tends to focus more on the development and behaviour
of the agents themselves, which may include competitiveness and may lack a framework of shared
achievement.

In translating, the fundamental aim is to replicate the semantics of the source in the target
language, and formal approaches often exist to make this as unambiguous as possible. In such a
situation, the logic of the Brahms model would need to be described and this description would act
as a pre-programming formal specification for the target language. Ideally, formal specifications
will exist that were used in building the Brahms scenario in the first place and these may be a
starting point for describing the underlying logic. As Brahms is modelling task-oriented behaviour
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Figure 4: Verifying Teams of Humans and Agents

in a dynamic, collaborative environment, many of the range of logics listed in the “Background”
section may be applicable. In particular, BDI and temporal logics can be used to describe the
agentsʼ mental states and associated activities. In Brahms, plans are represented as workframes, for
example:

workframe wf_moveToRestaurant {
repeat: true;
variables:

forone(Diner) dn;
forone(Building) bd;

when(knownval(current.howHungry > 20.00) and
knownval(current.chosenDiner = dn) and
not(current.location = dn.location) and
knownval(dn.location = bd ))
do {
moveToLocation(bd);
conclude((current.readyToLeaveRestaurant = false),

bc:100, fc:0);
}

}

The when descriptor effectively describes the belief context and do section shows the actions
taken. It also includes a conclude which describes the state at the end of the activity. It can
be seen that a temporal logic formula can be produced to describe this workframe in the broad
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sense. For greater conformity to the AgentSpeak model, how desires and intentions are differenti-
ated in Brahms and how plan and option generation and selection are performed, will need to be
considered.

A further option is to examine the interpretation cycle of an AgentSpeak agent (e.g., given in
the documentation for Jason, an interpreter for an extended version of AgentSpeak [9]), which is
closely representative of a practical reasoning system, and again to compare that structure with a
Brahms agent and to assess how the latter would need to be altered to give it some sort of equiv-
alence to the AgentSpeak agent cycle. The cycle describes the process of perceiving the environ-
ment, updating beliefs, retrieving plans according to perceived events, selecting plans as intended
means, and taking action. These are all actions that are present in the Brahms language semantics,
but obviously in a different form and perhaps with different characteristics.

CONCLUDING REMARKS

Our approach to the formal verification of human-robot (and, in general, human-agent) teams
consists of two parts:

1. the formalisation of team activity, using the Brahms framework, and
2. the use of our agent verification tools to analyse the team formalisations.

In particular, our aim is to analyse whether our approach to verification of BDI (Belief-Desire-
Intention) agents, for example through the verification of AgentSpeak programs, can capture (sim-
plified) Brahms descriptions. One direction is to consider the syntax of both AgentSpeak and
Brahms in order to assess whether, or how, they can be matched. For example, consider the follow-
ing excerpt from the grammars of both languages:

AgentSpeak Brahms

ag ::= bs ps agent ::= agent
agent-name {GRP.group-membership}
{
{GRP. attributes}
{GRP. relations}
{GRP. initial-beliefs}
{GRP. initial-facts}
{GRP. activities}
{GRP. workframes}
{GRP. thoughtframes}

}

Comparing the languages semantically reveals conceptual differences in the way that models are
constructed and may provide a basis for determining how, should it be necessary, Brahms descrip-
tions can be simplified or re-formatted (inside or outside of Brahms) for the purposes of verification
specifically.
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In this paper, we described our approach to verifying Belief-Desire-Intention agent-based
(space) applications using sophisticated model checkers, specifically by means of our model-
checking techniques for the high-level AgentSpeak language. If successful, this provides a mecha-
nism for verifying (at least part of) Brahms team activities.

There remain, of course, problems. Specifically, there is likely to be a complexity boundary
separating viable agent verification from inviable ones. There also remain the problems of compre-
hensively (and accurately) describing team activity and representing the environment appropriately.
Finally, there must be an appropriate logic language available for specifying the properties to be
checked, which again can be inspired by our existing work on model checking for AgentSpeak.

Our aim is to develop this approach further, and to use realistic scenarios taken from NASA
examples, in which it is essential to make sure that human-agent teams can always recover from
error situations/problems. Also of interest are scenarios involving human intervention/override,
such as advisory agents and semi-autonomous spacecraft docking.
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ABSTRACT 

 This study deals with interoperability formal definitions and test derivation avoiding the state-
space explosion problem. First, the notion of interoperability criteria is introduced. An interoperability 
criterion formally describes the conditions that two implementations must verify in order to be 
considered interoperable. The second point studied in this paper is interoperability test derivation. 
Based on the equivalence of two interoperability criteria, we proposed a method to derive 
automatically interoperability test cases. 

1. INTRODUCTION 

Different types of tests exist to ensure that implementations will work correctly in a real operational 
environment. Among these tests, conformance testing is used to verify if an implementation behaves 
as described in its specification, generally a standard. Another type of test is the interoperability test. 
Goals of interoperability are multiple. First, one has to test if the considered implementations 
communicate correctly. Secondly, they must behave during their interaction as described in their 
respective specifications. Third, they must provide the expected services.  

Conformance testing is precisely characterized. Testing architectures and conformance relations [1,2] 
were defined leading to automatic test generation [3,4] and execution. This is not the case for 
interoperability testing. However, some attempts to give definitions of interoperability or methods to 
derive interoperability tests exists in [5,6,7]. In this paper, we give formal definitions of 
interoperability with interoperability criteria (iop criteria for short in the following) that give conditions 
to be verified by implementations to be considered interoperable. These iop criteria manage 
quiescence. Indeed, implementations are allowed to be quiescent if it is foreseen in their specification. 
Based on these criteria, we describe a method to generate automatically interoperability test cases 
which avoids the well-known state-space explosion problem.  

This paper is structured as follows. First, Section 2 describes possible interoperability testing 
architectures. Section 3 presents the formal definitions used in this paper. The interoperability criteria 
are defined in Section 4. In Section 5, the proposed method and associated algorithms for 
interoperability test case generation are described. Results obtained are illustrated with an example in 
Section 6. Conclusion and future work are in Section 7.  

2. TESTING ARCHITECTURE 

 This study considers a one-to-one interoperability context. The interoperability system under test 
(SUT) is composed of two implementations (see figure 1). These two IUT (Implementation Under Test) 
are supposed to behave as described in their respective specification. They communicate with each 
other while providing the expected service. 
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IUT1 IUT2

LI1 LI2

LT1 LT2
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SUT (System Under Test)

TS (Test System)

Figure 1. Test architecture for an asynchronous interaction

In this context, two kinds of interfaces can be differentiated. First, the interfaces LIi (lower interfaces) 
are used for the interaction between the two IUT (see figure 1). These interfaces are only observable 
but not controllable. Indeed, a test system connected to such interfaces can only observe the events, 
but it cannot send a stimulus to these interfaces. The lower tester LTi is in charge of the observation of 
LIi via the lower PO (Point of Observation)  LPi .
The other interfaces are the interfaces UIi (upper interfaces). These interfaces are not used for the 
interaction of the IUT but they are the interfaces through which the IUT communicate with its 
environment. These interfaces are observable and also controllable. The upper tester UTi is in charge 
of the control and observation of UIi via the upper PCO (Point of Control and Observation) UPi. Thus, 
the tester Ti, composed by UTi and LTi, is the part of the Test System (TS) in charge of the control and 
observation of IUTi.  
Depending on the accessibility to the different interfaces, different interoperability testing 
architectures can be distinguished as described in [6,8]. The architecture is called lower (resp. upper) if 
only the lower (resp. the upper) interfaces are accessible, and total if both kind of interfaces are 
accessible. The interoperability testing architecture is called unilateral if only the interfaces of one of 
the two IUT are accessible. It is called bilateral if the interfaces of the two IUT are accessible but 
independently. The global architecture corresponds to the more usually considered case where all the 
interfaces of the two IUT are accessible with a global view.  

Synchronous or asynchronous communication The interaction between the two IUT is asynchronous 
(cf. section 3.3). Notice also that the interaction between UPi and the IUT can be either synchronous or 
asynchronous. It depends on the testing environment. We will consider that this latter is synchronous.  

3. FORMAL BACKGROUND  

 In this study, we will use the well-known IOLTS (Input-Output Labelled Transition System) [9] to 
model specifications. As usual in the black-box testing context, we also need to model 
implementations, even though their behaviours are normally unknown. They will also be represented 
by an IOLTS.  
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3.1 IOLTS Model  

�M can be decomposed as follow: �M=�MU � �ML (with �MU��ML=Ø), where �MU (resp. �ML)

is the set of messages exchanged on the upper (resp. lower) interface. �M can also be decomposed in 
order to differentiate inputs from outputs: �M =�MO� �MI (with �MO��MI=Ø), where �MO (resp. 

�MI) is the set of  outputs (resp. inputs). 

Let us consider an IOLTS M, and let ui � �M�{�}, ��(�M)*,  q � QM , we have :  
• �(q) is the set of possible event from q, out(q) the set of outputs from  q and in(q)  the set of inputs 

from  q.  
•  q after � is the set of states which can be reached from  q  by the sequence of actions  s . By 

extension, all the states reached from the initial state of the IOLTS M is  (q0M after �)  and will be 
noted by  (M after �) . In the same manner,  Out(M, �) = out(M after �)  and In(M, �) = in(M after
�) .  

•  Traces(q)= {��(�M)* | q after � � �}  is the set of possible observable traces from  q. And,  
Traces(M)= Traces(q0M) .

• �=p!a if  u=p?a and  �=p?a if  u=p!a.  

3.2 Quiescence, Suspensive IOLTS and Conformance Relation ioco  

Three main situations lead to quiescence of a system : deadlocks, outputlocks and livelocks. A deadlock
corresponds to a state after which no event is possible:  q �deadlock (M) = {�(q)= Ø} . An outputlock
corresponds to a state after which only transitions labelled with input exist and none of these inputs is 
observed:  q � outputlock(M) = {� (q) =In(q)) . A livelock corresponds to a loop of internal events:  q 
�livelock(M) = � �, …,�, (q,{�, …,�},q) ��M. Thus, q�quiescent(M) = q �deadlock(M)�q
�outputlock(M) �q �livelock(M) . A quiescence state q� quiescent(M)  is modelled by  (q, �,q)  where  
� is treated as an observable output event. The obtained IOLTS is called suspensive IOLTS [2], is 
noted �(M) , and we have  STraces(S)=Traces(�(S)) . Figure 2 gives an example of two specifications 
using the IOLTS model. Quiescence is modelled in the states  0  and  2  of  S1 , and in the state  0  of  
S2.

0

3 4

1

2

0

1
U!B l!a

U?A

l?cl?b

l!b l?a l!c

U!C

δ

δ

δS 1 S 2

Figure 2. Specifications S1 and S2

Interoperability criteria defined in Section 4.2 are based on the ioco conformance relation [2]. This 
relation says that an implementation  I  is ioco-conformant with respect to its specification  S  if  I  can 
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never produce an output which could not be produced by  S  after the same suspension trace. 
Moreover, I may be quiescent only if S can do so. Formally: 
 I ioco  S = �� � STraces(S),  Out(�(I), �) � Out(�(S), �) .  
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Figure 3. Implementations I1 and I2 of S1, and I3 and I4 of S2

Let us consider the implementation I1 and I2 of S1 of figure 3: I2 ioco S1 (because of the output U! B 
after the reception of l?b) and I1 ioco S1 (because if the tester sends the message c on the lower 
interface of I1, the implementation remains quiet, but no quiescence is foreseen in the state 4 of  S1). 
For the implementations I3 and I4 of S2 of figure 3, we have I3 ioco S2 and I4 ioco S2.

3.3 Interaction 
Interoperability testing generally deals with interactions of two or more implementations. To provide 
a formal definition of interoperability in a one-to-one context, we need to model the interaction of two 
IOLTS.

There are different ways to obtain the model of the interaction of two IOLTS with quiescence 
management. The method chosen here is calculating first the suspensive IOLTS �(M1) and �(M2), as 
explained in section 3.2. This step is then followed by constructing the interaction of �(M1) and �(M2),
using rules (1) and (2) of the definition 2. The main difficulty here is to preserve information that 
indicates the IUT in which quiescence is observed and to make appearing new quiescence introduced 
by the interaction. A quiescent state is noted: ((q1,q2),�(1),(q’1,q’2)) if (q1, �,q’1) � �(M1), 
(q1,q2),�(2),(q’1, q’2)) if (q2,�,q’2) � �(M2), and ((q1,q2), �,(q’1,q’2)) if ((q1,q2),�(1),(q’1,q’2)) and 
((q1,q2),�(2),(q’1, q’2)). It is obtained by propagating � of �(M1) and �(M2).
As, in the considered interoperability testing architecture, the interaction between the two 
implementations is asynchronous, we also need to model this asynchronous interaction. As in [10], we 
can model the asynchronous environment with FIFO queues. In [9], the asynchronous 
transformation A is defined. This transformation applied to a specification S gives as result the IOLTS 
A(S) representing the behaviour of S in an asynchronous environment. As consequence, the 
asynchronous interaction of M1 and M2 corresponds to the synchronous interaction of A(M1) and 
A(M2), noted  M1||A M2.

3.4 Projection 
In interoperability testing, we usually need to observe some specific events of an IUT. The IUT, 
reduced to the expected messages, can be obtained by a projection of the IOLTS representing the 
whole behaviour of the implementation on a set (called X in the following). This latter is used to select 
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the expected events. Quiescence d has to be seen in the projection as an observable event. For an 
IOLTS built from an interaction  M1||A M2 , quiescence  �(1)  is an observable event of  M1  and  �(2)  
of  M2. The projection of an IOLTS M on the set of events X is noted by M/X and is obtained by hiding 
events (replacing by internal events) that do not belong to X, followed by determinization.  

3.5 Modelling an Implementation for Interoperability Testing: The Iop-input Completion 
As described in figure 1, the two IUT interact asynchronously and testers are connected to their 
interfaces. When an IUT sends a message m that cannot be treated by the other IUT, the problem is 
how to consider this message in the point of view of the receiver. Indeed, this message m is put in the 
input FIFO queue of the receiver that cannot effectively treat it. Thus, this receiving implementation 
may be quiescent. It can neither treat the message m in its input FIFO queue (l?m), nor it can do any 
other action because its input FIFO queue is not empty and no output is possible. To model this 
behaviour, we choose to complete any implementation with inputs corresponding to the output 
alphabet of the other IUT specification. These new transitions lead the IOLTS into an error state. It is a 
deadlock state. On the upper interfaces, the IUT interacts directly with the tester (like in a 
conformance testing context). Thus, for events on the upper interfaces, the input-completion of the 
IUT corresponds to the input completion made for conformance testing (see [10]).  

Remark: The iop-input completion adds only transitions labelled with inputs to the original IOLTS 
representing the implementation. Thus, quiescence modelled in C(I1) or in  I1 is the same. To model 
the deadlock in the error state qE, quiescence must be modelled in the iop-input completed 
implementation C(I1). Thus, �(C(I1)) is the model of the behaviour of I1 in an asynchronous 
environment. In the following, the implementations are considered iop-input completed. Quiescence 
is also modeled on the considered implementations.  

4. INTEROPERABILITY (IOP) CRITERIA 

 In this section, we define two iop criteria. These criteria formally describe conditions that have to be 
verified by two implementations to be considered interoperable. We prove their equivalence in terms 
of non-interoperability detection. These definitions only apply for compatible specifications. Indeed, 
two implementations cannot be interoperable if their specifications are not compatible.  

4.1 Compatibility of the Considered Specifications 

 Two specifications are compatible if after any trace of the interaction, for each possible output on the 
interfaces used for the interaction, the corresponding input is foreseen in the other specification. In a 
formal way : �� � Traces(S1||AS2),  �/�S1 = �1, �/�S2 = �2 � {Out�L(S1, �1 )�In�L(S2, �2)  and  
Out�L(S2, �2) �In�L(S1, �1)} . In the following, specifications are supposed to be compatible.  

4.2 Definition of the Iop Criteria 
 In this section, we consider the global interoperability testing architecture (see Section 2). It is the 
most commonly used in practice for one-to-one interoperability testing. We define two iop criteria 
considering the events executed on the different interfaces of the implementations in two different 
ways.
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The first iop criterion is the global iop criterion iopG. It says that two implementations are considered 
interoperable if, after a suspensive trace of the asynchronous interaction of the specifications, all 
outputs and quiescence observed during the (asynchronous) interaction of the implementations are 
foreseen in the specifications.  

The other iop criterion defined in this section is the bilateral iop criterion iopB. It says that after a 
suspensive trace of S1 observed during the (asynchronous) interaction of the implementations, all 
outputs and quiescence observed in  I1 are foreseen in S1, and the same in the point of view of  I2
implementing the specification  S2.

As an example, with the implementations I1, I2, I3 and I4 of figure 3 (implementing S1 and S2 of 
figure 2), we have the results: 
� I1 iopB I3 and I1   iopG I3 although not(I1 ioco S1).
� not(I2 iopB I3) and not(I2 iopG I3), but I2 iopB I4 and I2 iopG I4. Indeed, the output  U!C  is not 

allowed in S1 after l?b, but only I3 can send b, not  I4.
� not(I1 iopB I4) and not(I1 iopG I4). Such a non-interoperability case would not have been detected 

without quiescence management. Indeed, the non-interoperability is due to the sending of 
message l2!c by I4 which is not expected by I1. Thus, this message is put in the input queue of I1 
but not treated. The whole SUT is in a deadlock situation. This deadlock is not foreseen in the 
specification interaction. Thus the iop criteria are not verified due to non allowed quiescence.  

4.3 Equivalence of the Two Interoperability Criteria 
 The most important result here is the following theorem 1. It says that the global iop criterion  iopG  is 
equivalent to the the so-called bilateral iop criterion  iopB , in terms of non-interoperability detection. 
Its proof needs the lemmas defined in the following.   
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Based on the theorem 1, one may wonder how it can help interoperability test generation. This is the 
purpose of the study developed in the next section.  

5. INTEROPERABILITY TEST GENERATION 
 In this section, we investigate the way to generate interoperability test using the equivalence between 
the bilateral and global criteria (cf. theorem 1).  

5.1 General Principles for Interoperability Test Generation 
The goal is to generate interoperability test cases (TC) that can be executable on the SUT. We consider 
a System Under Test (SUT) composed of two IUT interacting asynchronously (cf. figure 1 in Section2). 
These IUT are represented by a suspensive iop-input completed IOLTS. In practice, the inputs of a 
general interoperability test generation algorithm are the two specifications on which the 
implementations are based, and a test purpose (TP). A TP is a particular property (or behaviour in the 
interaction between the implementations) to be tested. In general, test purposes are incomplete 
sequences of actions. Let S be the set of specifications, P the set of test purposes and TC the set of 
interoperability test cases. The goal of a one-to-one interoperability test generation algorithm G is: 
S�S�P� TC. Figure 4 (a) shows an example. 
During conformance tests, a tester can send a stimulus to the implementation or receive an input. In 
the interoperability testing case, three kind of events are possible: sending of stimuli to the upper 
interfaces of the implementations, reception of inputs from these interfaces, but also observation of 
events (input and output) on the lower interfaces.  
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5.2 Interoperability Test Cases Modelling 
A test case TC is represented by an extended version of IOLTS called T-IOLTS for Testing IOLTS. A T-
IOLTS TC can be defined by TC =(QTC, �TC, �TC, q0TC). {PASS, FAIL, INC} �QTC are trap states 

representing interoperability verdicts. q0TC is the initial state. �TC �{u | � � �US1 � �US2}� {?(u)| 

u� �LS1 � �LS2}. ?(u) denotes the observation of the message u on a lower interface. �TC is the 
transition function. 
In the following, any TC is supposed to be deterministic, and controllable (if a tester can do an output 
in a state, no other action is possible for the test case in this state). A TC must also be input and 
observation complete in the input and observation states : if an input or an observation is possible in a 
state, all other inputs and observations are possible in this state (generally denoted in test cases with  
?otherwise  label leading to FAIL). Moreover at least one of the verdict states (PASS, FAIL, or INC) is 
accessible from every state. 

(S , S )1 2

Test execution

SUT(I   ||   I   )A 21

(S , S )1 2

TPS1
S 1

Conformance test
generation algorithm

Conformance test
generation algorithm

TPS 2
S 2

TC1 TC2

Test execution Test execution

verdict V 1 verdict V 2

1verdict Vʼ=V  ^V 2

SUT(I   ||   I   )A 21

Algorithm D

(b)
Approach based on a bilateral interoperability criteria

(a)
Approach based on a global interoperability criteria

TP

Iop Test Generation algorithm

TC

verdict V

TP

Figure 4. Interoperability Test Case Generation

The execution of the test case TC of the SUT (composed of the two considered IUT) gives a verdict:  
verdict(TC, SUT)�{PASS, FAIL, INC}. The meanings of the possible interoperability verdicts are PASS: 
no error was detected during the tests, FAIL: the interoperability criterion is not verified and INC (for 
Inconclusive): the behaviour of the SUT seems valid but it is not the purpose of the test case.  

5.3 Test Generation Based on the Global Iop Criteria 
The construction of Test Cases based on the Global iop Criterion  iopG  begins with the construction of 
the asynchronous interaction S1||AS2. Then S1||AS2 is composed with the test purpose TP. During 
this operation, two main results are calculated. First TP is validated. If the events composing TP are 
not found in the specifications (or not in the order described in TP), TP is not a valid Test Purpose. The 
composition is also used to keep (in the interaction of the two specifications) only the events 
concerned by the Test Purpose. It calculates the different ways to observe/execute TP on the SUT. 
Problem: the construction of S1||AS2 can cause state-space explosion. Building S1||AS2 is
exponential in the number of states of S1 and S2 and the FIFO queues size. Interoperability test 
derivation with this method may be impossible even for small specifications combined with “on-the-
fly” techniques [3].  
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5.4 Using the Equivalence between Bilateral and Global Criteria 
 The theorem 1 of Section 4.3 proves that global and bilateral iop criteria are equivalent. We propose 
here a method to generate interoperability test cases that takes benefit from this result. This method 
uses conformance test tools. 
Based on the bilateral iop criterion, the idea is to use a conformance test tool F such that F: (S1,
TPS1)�TC1 and F: (S2, TPS2)�TC2. TPS1 and TPS2 are kind of “unilateral” test purposes derived 
from the test purpose TP. TPSi is obtained from TP and contains only events of Si.
In this context, the meaning of the theorem 1 is: verdict (TC, I1||A I2)= verdict (TC1,  I1||A I2 ) and
verdict (TC2,  I1||A I2 ). The iopG verdict verdict (TC, I1||A I2) is an interoperability verdict with a 
global architecture. The two other verdicts are kinds of conformance verdicts. verdict (TC1 ,  I1||A I2 ) 
(resp. verdict(TC2, I1||A I2)) is the verdict obtained by executing TC1 (resp. TC2) unilaterally on 
interfaces of I1 (resp. I2) during its interaction with I2 (resp. I1). The rules for the combination of these 
two verdicts to obtain the final iopB verdict are given by: PASS and PASS=PASS,  PASS and INC=INC,  
PASS and FAIL=FAIL, INC and FAIL= FAIL, INC and INC=INC and FAIL and FAIL= FAIL .  

Test generation based on the bilateral criterion  iopB
As described in figure 4 (b), the generation of TC1 and TC2 based on the bilateral criterion can be 
decomposed in two principal steps. First, step 1 (algorithm  D ) correspond to the derivation of  TPS1
and  TPS2  from  TP . Then, step 2 is the calculation of TC1 and TC2. This step corresponds to the 
function F  applied on (TPS1,S1) and (TPS2, S2) and uses a conformance test tool. 
For the execution of the test cases, TC1 is applied on I1 (during its interaction with I2), and TC2 on I2
(during its interaction with I1) leading to two verdict V1 and V2. The final interoperability verdict 
V’=V1 and V2 is obtained with the rules given above. 

Step 1 : We will explain here how to obtain TPS1 from  TP.  
TP says that after the execution of some events µ1...µn-1, the tester must observe another event µn, but 
does not explicit necessarily what may happen between µi and µi+1. In a formal context, TP is 
represented by an extended IOLTS. The most difficult problem to obtain TPS1 from TP is that µ1...µn
may contain any events of both �S1 and �S2. Thus, the algorithm to derive TPS1 from TP, S1 and S2
consists in separating events from S1 (in TPS1) and S2 (in TPS2) while keeping all information needed 
for the test generation. 
If all the events described in TP are events on the lower interfaces, the algorithm to obtain TPS1 and 
TPS2 represented figure 5 is very simple. But if TP contains events on the upper interfaces, this 
algorithm needs to go through the IOLTS representing the specification S2. It finds a path between µi-
1 (or µi-1) and µi. This operation is however simple and it costs less than calculating S1||A S2  with 
the method based on a global iop criterion (cf. figure 4 (a)). 
This algorithm only verifies the existence of µi in the alphabet of the specifications. The verification of 
TP (thus the verification of TPS1 and TPS2 derived from TP) is done in step  2. 
The algorithm of figure 5 uses some functions described hereafter. Let us consider a trace � and an 
event a. The function remove_last_event is defined by: remove_last_event(�.a)= �. And the function 
last_event by: last_event(�)=� if �=� (where �=�….�…�) and last_event(�)=a  if  �=�1.a. The error 
function returns the cause of the error and exits the algorithm.  
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Figure 5. Algorithm to derive TPSl
 from TP

Step 2 : This step corresponds to the function F applied on (TPS1,S1) and (TPS2, S2): (S1, TPS1)�TC1
and (S2, TPS2)�TC2. For the calculation of each test case (TC1 and TC2), the inputs are a specification 
(S1) and a test purpose (TPS1) based on this specification. We can use tools developed for 
conformance test generation like TGV [3] or TorX [4] for this step. 
The most important difference consists in the access on the lower interfaces: these interfaces are 
observable and controllable in conformance testing but only observable in interoperability testing. 
Thus, the events on the lower interfaces described on the interoperability test cases obtained by F are 
only observed. The testers do not apply input on the lower interfaces. These inputs must come from 
the other implementation in interaction with the considered IUT. For example, if an event l!m exists in 
the test case obtained from conformance test generation tools (which means that the tester must send 
the message  m  to the lower interface of the IUT), this will correspond to ?(l?m) in the interoperability 
test case. This means that the interoperability tester observes that a message m is received on the lower 
interface l. The events on the upper interfaces are controllable in both conformance and 
interoperability testing. Thus, no changes are made on the test cases for such events.  

Few words about complexity  
The first step of the method proposed here (cf. figure 4(b)) is linear in the maximum size of 
specifications. Indeed, it is a simple path search algorithm. The second step is also linear in 
complexity, at least when using TGV [3]. Thus, it costs less than calculating S1||AS2 with the classical 
method based on a global iop criterion (cf. figure 4(a)). Moreover, if an iop test case can be obtained 
using the classical approach, the proposed method based on iopB can also generate an equivalent 
bilateral iop test case. 

6. APPLYING THE TEST GENERATION ALGORITHM TO AN EXAMPLE 
 Let us consider the two specifications S1 and S2 of figure 2 in Section 3.2. In the following, we show 
how the proposed algorithm can be used to derive interoperability tests. Two test purposes allow 
considering two significant situations that one may deal with. 
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First example: let us choose a test purpose TP = l1!a.l2!b
This example corresponds to the simplest case where all the events described in TP are events 
executed on the lower interfaces. When deriving TPS1 and TPS2 from TP (µ1.µ2=l1!a.l2!b in the 
algorithm), we obtain TPS1=µ1.µ2=l1!a.l1?b and TPS2=µ1.µ2=l2?a.l2!b. The obtained test cases TC1
and TC2 using TGV [3] are given in upper side of figure 6. (PASS) is a temporary verdict and PASS is 
the definitive verdict obtained after a postamble which returns to initial state, and the transitions 
labeled with  ?otherwise  are not represented.  

U1!A ?(l1!a) ?(l1?b)

?(l1?c)

0 1 2 (PASS)

INC

U1?B PASS 0
?(l2?a)

1 PASS
?(l2!b)

?(l2!c)
INC2TCTC1

210

TC

U1!A ?(l1!a) ?(l2?a)
3

?(l2!b)

?(l2!c)
INC

U1?B
4(PASS)

?(l1?b)

PASS

Figure 6. The obtained Test Cases from TP=l1!a.l2!b 

For interoperability test case generation based on the global relation, the obtained TC (cf. figure 6) 
comes from the composition of S1||AS2 with TP. Thus, final interoperability verdicts obtained with 
TC1 and TC2, executed simultaneously or not on the SUT, must be the same as the verdict obtained 
with TC. The proof is not given here but a look at TC1 and TC2 shows that there are the same paths 
leading to the same verdicts as in TC. 

Second example: let us now consider TP =U1? A. U1! B  
This example is more complex than the previous one because TP contains only events on the upper 
interfaces of S1. TPS1 is easy to derive from TP and TPS1=TP. Deriving TPS2 from TP is more 
complex. Following the algorithm: 
� µ1=U1?A. Two possibilities, either �=U1? A.l1!a.l1?b.U1!B or �=U1?A.l1!a.l1?c.U1! C. Let us 

choose �=U1?A.l1!a.l1?b.U1!B. So, last_event(�)=U1!B � �LS1 and �= remove_last_event(�)= 

U1?A.l1!a.l1?b. Next step, last_event(�)=l1?b � �LS1, TPS2=l2!b (if �=U1?A.l1!a.l1?c.U1!C,  
TPS2=l2!c). 

� µ2=U1! B: �= l1!a.l1?b. Thus, last_event(�)= l1?b � �LS1�  TPS2=l2!b.l2!b.  
Thus, we obtain  TPS1=µ1.µ2=U1?A. U1!B and TPS2=l2!b.l2!b.  

U1!A ?(l1!a) ?(l1?b)

?(l1?c)

0 1 2

INC
TC1

210

TC

U1!A ?(l1!a) ?(l2?a)
3
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?(l2!c)
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3
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4
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0
?(l2?a)

1
?(l2!b)

?(l2!c)
INC2TC

32
?(l2?a) ?(l2!b)

INC

?(l2!c)

PASS

Figure 7.Test cases obtained for TP=U1?A.U1!B 

The obtained test cases TC1 and TC2 are given in upper side of figure 7. The execution of TC1 with 
TC2 until state 2 of TC2 corresponds to the same events as the execution of TC. The most difference is 
that TC2 contains supplementary events to be executed: there is a loop that returns to initial state that 
comes from the search of the previous event of U1?A made to obtain TPS2. Thus, verdicts obtained 
with TC1 and TC2 will be the same as the verdict that would be obtained with TC. But the calculation 
of TC needs the interaction of S1 and S2 whereas TC1 and TC2 are obtained using existing 
conformance test generation tools.  
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Some words on parallel test case execution. In the first example, TC1 and TC2 can be executed 
simultaneously because the derivation of TPS1 and TPS2 was simple. Indeed, the obtained test 
purposes contain only observations (no controllable events), TC1 and TC2 should be executed 
simultaneously with the tester T1 observing and controlling IUT1 and the lower tester LT2 of T2
observing IUT2 (see figure 1).  
In the second example, TC1 and TC2 can not be executed simultaneously. The most difference comes 
from the loop that returns to initial state in TC2 (state 0 to state 2). There is no corresponding loop in 
TC1. Thus, TC2 is longer to execute than TC1. TC2 does not contain controllable events. Thus, the 
execution of this test case needs the application of a stimulus on I1. I1 can send a message on its lower 
interface to I2. The observations are made on I2 to verify TC2.

7. CONCLUSION 

 In this paper, we propose formal interoperability definitions called iop criteria that give the 
conditions to be verified by two implementations in order to be considered interoperable. These two 
criteria (global iop criterion iopG and bilateral iop criterion iopB) are proved equivalent. This 
equivalence leads to a method to generate interoperability test cases which avoids the calculation of 
the specification interaction, and thus the state-space explosion problem. 
Future work will study the generalization of these iop criteria to a context with more than two IUT. As 
it is suggested by the obtained test cases, we will also consider how a distributed approach can be 
applied for interoperability testing.  
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ABSTRACT

This paper presents the use of the B technique in its event based definition. We show that it is possible to encode,
using Event B, the models i.e. transition systems associated to a process algebra with asynchronous semantics. The Event
B obtained encoding considers that the Event B model associated to the left hand side of a BNF rule defining the algebra
expressions is refined by a model corresponding to the right hand side of the same rule. The translation rules of each
operator of a basic process algebra are given. Then, an example illustrating each translation rule is given. This approach is
based on a proof technique and therefore it does not suffer from the state number explosion problem occurring in classical
model checking. The interest of this work is the capability to validate user tasks or scenarios when using a given system
and particulary a critical system. Finally, we discuss the application of this approach for validating user interfaces tasks in
the Human Computer Interaction (HCI) area.

Keywords. Event B method, events refinements, process algebra, application to HCI

INTRODUCTION

When performing syntactic analysis of formal languages, the classical approach consists in deriving abstract repre-
sentations from a formal BNF grammar. Usually, these abstract representations are abstract syntax trees. The construction
of an abstract syntax tree consists in applying the derivation rules of the BNF description. A hierarchical derivation tree
is obtained. This tree may be built either ascending (bottom-up approach) or descending (top-down approach). The trees
are augmented by other semantic information. Among this information, one can cite attributes, typing, or code generation
routines and so on.

We claim that it is possible to associate to BNF grammars a hierarchy of Event B models in a top-down approach. The
refinement relationship of Event B is used to encode the hierarchy provided by the abstract syntax tree. Each derivation
rule is represented by a refinement and the obtained hierarchy describes a tree that is augmented by models. Moreover,
these models are enriched by relevant properties (safety, reachability, robustness, ...). Obviously, the interest of such a
transformation is to allow the possibility to perform proofs of these relevant properties associated to these models.

The particular case of a language of processes (a process algebra which looks like CCS) is shown in this paper. A BNF
grammar defining the studied process algebra named CTT (ConcurTaskTrees [32]) is used as an example illustrating how
our approach works. We give a translation rule for each BNF rule. This process algebra is used for the specification and
validation of User Interfaces (UI). Indeed, validation of critical UI usually requires user scenarios which describe different
usages of an UI. Nominal and non nominal scenarios are defined and checked on the designed UI. Moreover, these scenarios
or tasks are checked at the specification and/or design level.

This paper is structured as follows. Next section recalls the basic definitions of the Event B method. Section 3 is the
kernel of our proposal. It gives the principle of the translation of a BNF grammar to a hierarchy of Event B models. It also
shows how this approach works on a BNF of the CTT process algebra and gives a practical example for each basic operator
of this algebra. Section 4 describes the usage of this translation for validating UI. Section 5 discusses the interest of this
approach in comparison with classical model checking.
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THE EVENT B METHOD

Among the increasing number of formal methods that have been described, model oriented methods, such as VDM [15],
Z [35] or B [2] [20], seem to have proved their applicability and efficiency. These methods are based on model description.
They consist in defining a model by variable attributes which characterize the state of the described system, the invariants
and other properties that must be satisfied and the different operations that alter these variables. Starting from this ob-
servation, Z method uses set theory notations and allows to encode the specifications in a structure named schema. Like
VDM, it is based on preconditions and post-conditions [25, 27, 26]. Moreover, VDM allows the generation of a set of
proof obligations. On the other hand, B is based on the weakest precondition technique of Dijkstra [21]. Starting from this
method, J.R. Abrial [2] has defined a logical calculus, named the Generalized Substitution Calculus. Proof obligations are
generated and need to be proved in order to ensure the correctness of developments and refinements.

In the recent years, J.R. Abrial has suggested a new definition of the B method: the Event B method [1]. This method
is adapted to the development of interactive systems as well as sequential systems. Our choice of B is motivated by the
fact that B Method is supported by tools which allow a complete formal development and is adapted to the description of
interactive systems [17].

Event B models

The basic element of any development achieved with the Event B method is the model. A model is defined as a set
of variables, defined in the VARIABLES clause that evolve thanks to events defined in the EVENTS clause. The notion
of Event B model encode a state transition system where the variables represent the state and the events represent the
transitions from one state to another. Moreover, the refinement capability offered by Event B allows to decompose a model
(thus a transition system) into another transition system with more and more design decisions moving from an abstract level
to a less abstract one. Refinement technique allows to preserve the proved properties and therefore it is not necessary to
prove them again in the refined transition system (which is usually more complex). The structure of an Event B model is
given by the following elements.

MODEL nameM
REFINES nameR

. . .
VARIABLES . . .
INVARIANT . . .
ASSERTIONS . . .
INITIALISATION . . .
EVENTS . . .

END

A model nameM is defined by a set of clauses. It may refine another model nameR. Briefly, the clauses mean:

• VARIABLES clause represents the variables of the model of the specification. Refinement may introduce new
variables in order to enrich the described system.

• INVARIANT clause describes, thanks to first order logic expressions, the properties of the attributes defined in the
clause VARIABLES. Typing information and safety properties are described in this clause. These properties shall
remain true in the whole model and in further refinements. Invariants need to be preserved by the initialisation and
events clauses.

• ASSERTIONS are logical expressions that can be proved from the invariants. They do not need to be proved for
each event like for the invariant. Usually, they contain properties expressing that there is no deadlock nor livelock.

• INITIALISATION clause allows to give initial values to the variables of the corresponding clause. They define the
initial states of the underlying transition system.

• EVENTS clause defines all the events that may occur in a given model. Each event is described by a body thanks to
generalized substitutions defined below. Each event is characterized by its guard (i.e. a first order logic expression
involving variables). An event is fired when its guard evaluates to true.
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Semantics of generalized substitutions

The initialisation and the events occurring in a B model are described thanks to generalized substitutions. Generalized
substitutions are based on the weakest precondition calculus of Dijkstra. Formally, several substitutions are defined in B. If
we consider a substitution S and a predicate P representing a post-condition, then [S]P represents the weakest precondition
that establishes P after execution of S. The substitutions occurring in Event B models are inductively defined by the
following expressions [1, 2, 29].

[SKIP]P ⇐⇒ P (1)

[S1 || S2]P ⇐⇒ [S1]P ∧ [S2]P (2)

[ANYvWHEREETHENSEND]P ⇐⇒ ∀ v(P =⇒ [S]P ) (3)

[SELECTETHENSEND]P ⇐⇒ E =⇒ [S]P (4)

[BEGINSEND]P ⇐⇒ [S]P (5)

[x:=E]P ⇐⇒ P (x/E) (6)

P (x/E) represents the predicate P where all the free occurrences of x are replaced by the expression E.

Substitutions 1, 2, 5 and 6 represent respectively the empty statement, the parallel substitution expressing that S1 and
S2 are performed in parallel, the block substitution and the affectation. Substitutions 3 and 4 are the guarded substitutions
where S is performed under the guard E.

In all the previous substitutions, the predicate E represents a guard. Each event guarded by a guard E is fired iff
the guard is true and when it is fired, the post-condition P is established (feasibility of an event). The guards define the
feasibility conditions given by the Fis predicate defined in [2].

Semantics of Event B models

The new aspect of the Event B method, in comparison with classical B, is related to the semantics. Indeed, the events
of a model are atomic events. The associated semantics is an interleaving semantics.

Therefore, the semantics of an Event B model is trace based semantics with interleaving. A system is characterized
by the set of licit traces corresponding to the fired events of the model which respects the described properties. The traces
define a suite of states that may be observed by properties. All the properties will be expressed on these traces.

This approach has proved to be able to represent event based systems like interactive systems. Moreover, decomposi-
tion (thanks to refinement) allows building of complex systems gradually in an incremental manner by preserving the initial
properties thanks to the gluing invariant preservation.

Refinement of Event B models

Each Event B model can be refined. A refined model is defined by adding new events, new variables and a gluing
invariant. Each event of the abstract model is refined in the concrete model by adding new information by expressing how
the new set of variables and the new events evolve. All the new events appearing in the refinement refine the skip event of
the refined model. Each new event corresponds to an −transition in the abstract model.

The gluing invariant ensures that the properties expressed and proved at the abstract level (in the ASSERTIONS and
INVARIANTS clauses) are preserved in the concrete level. Moreover, INVARIANT, ASSERTIONS and VARIANT
clauses allow to express deadlock and livelock freeness.

1. They shall express that the new events of the concrete model are not fired infinitely (no livelock). A decreasing
variant is introduced for this purpose.

2. They shall express that at any time an event can be fired (no deadlock). This property is ensured by asserting (in
the ASSERTIONS clause) that the disjunction of all the abstract events guards implies the disjunction of all the
concrete events guards.

Moreover, in the refinement, it is not needed to re-prove these properties again while the model complexity increases.
Notice that this advantage is important if we compare this approach to classical model checking where the transition system
describing the model is refined and enriched.
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A full simple example [16]

Let us consider below, the specifications of the clock example[16]. The abstract specificationClock uses one variable h
describing the hours of the clock. Two events are described. The first (incr event) allows to increment the hour variable.
The second event is the zero event. It is fired when h = 23 to initialize the hour variable.

MODEL
Clock

VARIABLES
h

INVARIANT
h ∈ 0..23

ASSERTIONS
h < 100

INITIALISATION
h := 13

EVENTS
incr = SELECT h = 23 THEN h := h+ 1 END;
zero = SELECT h = 23 THEN h := 0 END.

In the refinement specification (ClockWMinute) we introduce a new variable m and a new event ticTac. We
enhance the guards of the incr and zero events in introducing the description of minutes. ASSERTIONS clause allows to
ensure that the new events of the description system can be fired.

REFINEMENT
ClockWMinute

REFINES
Clock

VARIABLES
h,m

INVARIANT
m ∈ 0..59

ASSERTIONS
(h = 23) ∨ (h = 23)⇒ (h = 23 ∧m = 59) ∨ (h = 23 ∧m = 59) ∨ (m = 59)

VARIANT
59−m

INITIALISATION
h := 13  m := 14

EVENTS
incr = SELECT h = 23 ∧m = 59 THEN h := h+ 1  m := 0END;
zero = SELECT h = 23 ∧m = 59 THEN h := 0  m := 0END;
ticTac = SELECTm = 59 THENm := m+ 1 END.

ENCODING CTT ALGEBRA IN EVENT B MODELS

This section is the kernel of our proposal. It presents the informal BNF translation rule and its application on a
particular language describing a process algebra.

BNF rules translation principle

Our claim is that it is possible to parse BNF grammars into Event B models. The translation principle is defined as
follows.

Each BNF rule of the form T ::= E OP F is translated into two Event B models. The first one is associated with the
left hand side of the rule and contains only one event eventT associated with the non terminal T . The second model is a
refinement of the first one and corresponds to the right hand side of the BNF rule. Two new events eventE and eventF
associated with the non terminals E and F are added in the refinement. These events carry the semantics of the op terminal
and of the right hand side of the BNF rule. The new events are fired and when they are completed, the refined event eventT
is fired.
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The firing order of the events is determined by introducing a decreasing variant. A variant is a natural number which
decreases to zero. When the variant is zero, the events of the described refined model can no longer be fired again. Events of
the abstract model can be fired, this corresponds to a return at the previous level in the decomposition tree. This possibility
to return to the events of the abstract level is offered by the refinement relationship. In practice, this variant corresponds to
a decreasing enumeration of states in a trace thanks to logical expressions. Remember that the events allow to go from an
initial state to a target state defining a trace in the underlying described transition system.

In order to illustrate our approach, let us consider the CTT (ConcurTaskTrees) language which defines a classical
process algebra. This language is widely used by the user interface community for specifying and/or validating user
interfaces. User interfaces tasks are described thanks to this language. We have used this language to validate user tasks on
user interfaces designs expressed with Event B. This point is discussed later in the paper in next section.

The task modelling language CTT

CTT [32] is defined by its authors as a notation for task model specifications to overcome limitations of notations used
to design interactive applications. Its main purpose is to provide with an easy-to-use notation, which permits to describe
tasks expressions combining CTT temporal operators and atomic tasks (atomic events). A CTT task model is based on
a hierarchical structure of tasks represented by a tree-like structure. It requires identification of temporal relationships
between other subtasks of the same tree level.

Below, a potential grammar describing the syntax of the CTT language is given. It presents temporal operators (from
classical process algebra) and task characteristics of CTT.

T ::= T >> T - - Enabling
| T []T - - Choice
| T ||T - - Concurrent
| T |=| T - - Order independency
| [T ] - - Optional process
| T [> T - - Disabling
| T | > T - - Interruption
| T ∗[> T - - Disabling infinite process
| TN - - Finite process iteration
| TAt - - Atomic process

Next sections, we show how the semantics of CTT can be formally described in Event B allowing to translate, in a
generic manner, with generic translation rules, every CTT construction (interruption and disabling included) in Event B.
This approach uses the refinement capability offered by Event B. For all the translation rules presented below, we will note
vari for the state variables, Ti for processes, Gi for event guards and Si for any Event B generalized substitution. Si

corresponds to actions executed by a process Ti. It represents the captured semantics.

Generic rules for the translation of the basic CTT constructions

The rules for translating basic operators (enabling, choice, iteration, concurrency and atomic process) into Event B
models are given below. They will be used to translate the remaining operators.

MODEL T0

INVARIANT
I(vari)

INITIALISATION
Init(vari)

EVENTS
Evt0 =
SELECT
G0

THEN
S0

END;
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For the description of the transformation rules, we will use a process T0 as the root process to be decomposed into
another process expression corresponding to the CTT BNF given in above section. The set vari describes all the useful
state variables that characterize the process T0. Other variables may be added after refinement if it is needed observe new
elements while decomposing T0 in the process tree. S0 is the substitution that expresses, under the guard G0, the state
variables changes due to the process T0. These elements are semantic features and are not represented in the syntax.

Basic illustrating example

The sum Sum of two natural numbers aa and bb will be used to illustrate how these rules work. We will give several
different refinement possibilities to compute the sum of two natural numbers. The first Event B model SumT0 corresponds
to the instantiation of the previous generic model T0. It contains the event Evt0 whose corresponding guard (G0) is
equivalent to true (BEGIN . . . END generalized substitution).

MODEL SumT0

INVARIANT
Sum ∈ NAT ∧ aa ∈ NAT ∧ bb ∈ NAT

INITIALISATION
Sum :∈ NAT  aa :∈ NAT  bb :∈ NAT

EVENTS
Evt0 =
BEGIN
Sum := aa+ bb

END;

Here aa :∈ NAT means that aa becomes any natural number.

For the refinement of this example, we will use RSum, AA BB as the new variables of the refinement. They
correspond to refinement variables of the abstract variables Sum, aa and bb respectively. These variables are linked by the
same gluing invariant RSum+AA+BB = aa+ bb which guarantees the correctness of the refinement and therefore of
the CTT operators encoding. The variable initialization aa,AA :∈ (aa ∈ NAT ∧ AA = aa) of the refinement ensures
that the variables aa and AA are arbitrarily chosen natural numbers and are equal. The same applies for bb and BB.

Notice that the kernel of the semantic part of the translation consists in finding such an invariant. The other part, is
related to the firing order of events.

Enabling ”>>”

Let us consider T0 ::= T1 >> T2 for the activation of T1 followed by T2 (sequence). The translation to Event B is
given by a model with two events EvtT1 and EvtT2 corresponding to T1 and T2.

The translation uses a decreasing variant StateEna initialized to 2. EvtT1 is fired if its guard G1 is true and so its
substitution S1 is performed, the variant decreases. EvtT2 is fired in sequence if its guard is true and if the variant value is
set to 1 by Evt1.

REFINEMENT RefEnablingT0

REFINES T0

INVARIANT
J(vari, varj) ∧ StateEna ∈ {0, 1, 2}

ASSERTIONS
G0 ⇒ ((StateEna = 2 ∧G1) ∨ (StateEna = 1 ∧G2) ∨ . . .

VARIANT
StateEna

INITIALISATION
StateEna := 2  . . .

EVENTS
EvtT1 = EvtT2 = EvtT0 =
SELECT SELECT SELECT
StateEna = 2 ∧G1 StateEna = 1 ∧G2 StateEna = 0 ∧G

0
THEN THEN THEN
StateEna := 1  S1 StateEna := 0  S2 S

0
END; END; END;
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The disjunction of guards is given in the ASSERTIONS clause. The set varj defines the state variables of the
refinement. They are linked to the abstract state variables of the abstract model thanks to the gluing invariant J(vari, varj).
This gluing invariant is defined in all the refinements given below. Notice that the event EvtT0 ends the enabling of the
two processes, it gives the refinement of the event corresponding to process T0.

Example of the use of the enabling operator translation - Let us consider that the sum of aa and bb is performed in a
sequential manner. First the variable aa is added to RSum by event EvtT1 and then the variable bb is added to RSum by
event EvtT2. These two events of the refinement work for EvtT0 which collects the results and refines the event Evt0 of
the abstraction.

REFINEMENT RefEnablingT0

REFINES SumT0

INVARIANT
(RSum+AA+BB) = (aa+ bb) ∧ . . .

ASSERTIONS
(AA = 0 ∧BB = 0 ∧ aa+ bb ∈ NAT ) ∨ . . .

VARIANT
AA+BB

INITIALISATION
RSum := 0  Sum :∈ NAT  aa,AA :∈ (aa ∈ NAT ∧AA = aa)  . . .

EVENTS
Evt1 = Evt2 = Evt0 =
SELECT SELECT SELECT
AA = 0 ∧BB = 0 ∧ . . . AA = 0 ∧BB = 0 ∧ . . . AA = 0 ∧BB = 0 ∧ . . .

THEN THEN THEN
RSum := RSum+AA  RSum := RSum+BB  Sum := RSum
AA := 0 BB := 0 END;

END; END;

Variables AA and BB are used to implicitly represent the variant StateEna. The ASSERTIONS clause ensures that
the new events are fired and the variant guarantees the sequential ordering.

Choice ”[]”

Let us consider T0 ::= T1[]T2 defining a non deterministic choice between processes T1 and T2 i.e. either T1 or T2 is
fired. The translation to Event B is given by a model with three guarded events EvtT1, EvtT2 and EvtInitChoice.

The variant StateCho is initialized to 3. According to the guard value of each event, one of Evt1 or Evt2 is fired.
Each event decreases immediately the variant to value 0 forbidding the other events to be fired. The first event to be fired
is arbitrarily chosen by the ANYWHERE THEN substitution. The refined event EvtT0 ends the process T0, it allows to
fire again the event Evt0 of the abstract model T0.

REFINEMENT RefChoiceT0

REFINES T0

INVARIANT
J(vari, varj) ∧ StateCho ∈ {0, 1, 2, 3}

ASSERTIONS
G0 ⇒ ((∃(p).(p ∈ {1, 2} ∧
StateCho = 3)) ∨ (G1 ∧ StateCho = 1) ∨
(G2 ∧ StateCho = 2) ∨ (StateCho = 0 ∧G0))

VARIANT
StateCho

INITIALISATION
StateCho :∈ {1, 2}  . . .

EVENTS
EvtChoiceT1 = EvtChoiceT2 = EvtT0 =
SELECT SELECT SELECT
StateCho = 1 ∧G1 StateCho = 2 ∧G2 StateCho = 0 ∧G

0
THEN THEN THEN
StateCho := 0  S1 StateCho := 0  S2 S

0
END; END; END;
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Event Evt0 ends the firing of the choice between two processes, it gives the refinement of the event corresponding to
process T0.

Example of the use of the choice operator translation - Let us consider that the sum of aa and bb is performed using a non
deterministic choice. This possibility is offered by the semantics of Event B which allows a non deterministic event firing.

Two events are defined. One EvtChoice1 computes the result RSum = AA + BB and the second EvtChoice2

computes the result RSum = BB + AA. These two events of the refinement are working for the event Evt0 which
collects the results and refines the event Evt0 of the abstraction.

Here the variant is the natural number AA + BB. Notice that the non deterministic choice is performed thanks to the
presence of the variant expression AA = 0 ∧BB = 0 in the two events EvtChoice1 and EvtChoice2.

REFINEMENT RefChoiceT0

REFINES SumT0

INVARIANT
(RSum+AA+BB) = (aa+ bb) ∧ . . .

ASSERTIONS
(AA = 0 ∧ (BB = 0 ∨BB ∧ aa+ bb ∈ NAT ) ∨ . . .

VARIANT
AA+BB

INITIALISATION
RSum := 0  Sum :∈ NAT  aa,AA :∈ (aa ∈ NAT ∧AA = aa)  . . .

EVENTS
Evt0 = EvtChoice1 = EvtChoice2 =
SELECT SELECT SELECT
AA = 0 ∧BB = 0 ∧ . . . AA = 0 ∧BB = 0 ∧ . . . AA = 0 ∧BB = 0 ∧ . . .

THEN THEN THEN
Sum := RSum RSum := AA+BB  RSum := BB +AA 

END; AA := 0  BB := 0 BB := 0  AA := 0
END; END;

The InitChoice event of the choice translation rule is not needed in this example. It is directly encoded in the
INITIALISATION clause of the refinement.

Iterative process ”T ∗”

Let us consider a loop process T0 ::= TN
1 . The principle of encoding a loop in Event B consists making possible to

fire, N times, the events associated to the process T1. A decreasing variant initialized to N is used. The translation into
a loop encoded in Event B requires three events : a first one EvtInitLoop for initializing the variant StateLoop, a second
oneEvtLoop1 for the body of the loop and decreasing of the variant, and a third oneEvt0 for ending the loop and returning
to the event of the abstract level.

REFINEMENT RefIterativeT0

REFINES T0

INVARIANT
J(vari, varj) ∧ StateLoop ∈ NAT ∧ Start ∈ {0, 1}

ASSERTIONS
G0 ⇒ Start = 0 ∨ (StateLoop > 0 ∧G1 ∧ Start = 1) ∨ (StateLoop = 0 ∧G

0 ∧ Start = 1)
VARIANT
StateLoop+ Start

INITIALISATION
Start := 1  . . .

EVENTS
EvtInitLoop = EvtLoop1 = EvtT0 =
SELECT SELECT SELECT
Start = 1 G1 ∧ StateLoop > 0 ∧ Start = 0 G

0 ∧ StateLoop = 0 ∧ Start = 0
THEN THEN THEN
StateLoop :∈ NAT  StateLoop := StateLoop− 1  S0
Start := 0 SLoop END;

END; END;
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The variant corresponding to the number of iteration is initialized by the EvtInitLoop event and then the EvtLoop1
event is fired StateLoop times. When the loop terminates, EvtT0 is fired. The variant StateLoop decreases from its
arbitrary initial value to 0. The ASSERTIONS clause states that one of the events guards is always true.

The initial value of the variant is arbitrary fixed thanks to the :∈ operator. The advantage of such an approach is the
possibility to encode an arbitrary number of loop steps without increasing the complexity of the proof process. Compared
to model checking techniques, increasing the number of loop steps may lead to the combinatorial explosion problem.

Example of the use of the iterative process translation - Let us consider the sum of two numbers obtained by performing the
sum of aa and bb using a loop operator. The idea consists in first performing RSum := AA and then adding, BB times,
the value 1 to RSum. In this case, the variant will be the variable BB. Therefore, this example does not use an explicit
variable StateLoop to represent the variant.

REFINEMENT RefIterativeT0

REFINES SumT0

INVARIANT
(RSum+AA+BB) = (aa+ bb) ∧ . . .

ASSERTIONS
(AA = 0 ∧BB = 0 ∧ aa+ bb ∈ NAT ) ∨ . . .

VARIANT
AA+BB

INITIALISATION
RSum := 0  Sum :∈ NAT  aa,AA :∈ (aa ∈ NAT ∧AA = aa)  . . .

EVENTS
EvtT0 = EvtInitLoop = EvtLoop1 =
SELECT SELECT SELECT
AA = 0 ∧BB = 0 ∧ . . . AA = 0 ∧BB = 0 ∧ . . . AA = 0 ∧BB = 0 ∧ . . .

THEN THEN THEN
Sum := RSum RSum := RSum+AA  RSum := RSum+ 1 

END; AA := 0 BB := BB − 1
END; END;

The previous Event B model uses three events. The event EvtLoop1 decreases the variable BB until its value be-
comes 0. When the variant equals to 0, EvtT0 is fired to return to the events of the abstraction.

Concurrency ”||”

Let us consider T0 ::= T1||T2. The semantics of concurrency in interleaving semantics imposes to describe all the
possible behaviors. Therefore, this process is described by all the possible traces. It uses the interleaving underlying
Event B semantics i.e. if two events have their guard to true, they are fired in parallel, in an interleaving manner.

Two events EvtT1 and EvtT2 corresponding to processes T1 and T2 are defined. They can be fired at any time.

REFINEMENT RefConcurrencyT0

REFINES T0

INVARIANT
J(vari, varj) ∧ StateConc1 ∈ {0, 1} ∧ StateConc2 ∈ {0, 1}

ASSERTIONS
G0 ⇒ ((G1 ∧ StateConc1 = 1) ∨ (G2 ∧ StateConc2 = 1) ∨ . . .

VARIANT
StateConc1 + StateConc2

INITIALISATION
StateConc1 :∈ NAT  StateConc2 :∈ NAT1  . . .

EVENTS
Evt1 = Evt2 = Evt0 =
SELECT SELECT SELECT
G1 ∧ StateConc1 = 1 G2 ∧ StateConc2 = 1 G

0 ∧ StateConc1 = 0 ∧ StateConc2 = 0
THEN THEN THEN
StateConc1 = 0  S1 StateConc2 = 0  S2 S

0
END; END; END;
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Once the events EvtT1 and EvtT2 are fired, they cannot be fired again. Their variant (StateConc1 and StateConc2
respectively) is decreased from any natural number (:∈) to 0 and the abstract event of the refined model can be fired again
(Evt0).

Example of the use of the concurrency operator translation - For the same example, we have imagined a refinement with
a concurrent operator. Indeed, two concurrent events are defined. EvtT1 adds the value of AA to RSum when the event
EvtT2 adds the value BB to RSum. When these two events are fired, the last event EvtT0 is fired to compute the final
result for the abstraction.

REFINEMENT RefConcurrencyT0

REFINES SumT0

INVARIANT
(RSum+AA+BB) = (aa+ bb) ∧ . . .

ASSERTIONS
(AA = 0 ∧BB = 0 ∧ aa+ bb ∈ NAT ) ∨ . . .

VARIANT
AA+BB

INITIALISATION
RSum := 0  Sum :∈ NAT  aa,AA :∈ (aa ∈ NAT ∧AA = aa)  . . .

EVENTS
EvtT0 = EvtT1 = EvtT2 =
SELECT SELECT SELECT
AA = 0 ∧BB = 0 ∧ . . . AA = 0 ∧ . . . BB = 0 ∧ . . .

THEN THEN THEN
Sum := RSum RSum := RSum+AA  RSum := RSum+BB 

END; AA := 0 BB := 0
END; END;

The variant is the sum of variables AA and BB. However, if the model requires not to change AA nor BB then, the
developer could have used explicit variants.

Translation of other CTT constructions

Up to now, >>, ||, [ ] and ∗ operators have been described in Event B models. All the other CTT constructions (order
independency, optional process, disabling, interruption) are described below. Thanks to the interleaving semantics of the
Event B method, the translation of these operators uses the basic operators defined previously.

Order independency ”|=|”

Let us consider T0 ::= T1 |=| T2. In trace based semantics, order independency is interpreted by:

T0 ::= T1 |=| T2 is translated to T0 ::= (T1 >> T2) [] (T2 >> T1) (7)

The enabling and choice basic operators are used for this translation. They define the interleaved traces encoding the
order independency operator.

Optionality ”[Task]”

Let us consider T0 ::= [T1]. The optional process indicates that process T1 may be accomplished. In this case, we
introduce the atomic empty process, namely TSkip. Then, optionality is translated to a choice between the process T1 or
the empty process. We get:

T0 ::= [T1] is translated to T0 ::= T1 []TSkip (8)

The generalized substitution of the process TSkip is simply skip.
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Disabling ”[>”

Let us consider T0 ::= T1[> T2 where T1 is disabled by T2. Disabling requires a case based processing: either T1 is
atomic (i.e. cannot be refined or decomposed) or not.

Indeed, if T1 is an atomic process, then it means that either T1 is performed or T2 is performed. We get a translation
by a choice operator:

T0 ::= T1[> T2 is translated to T0 ::= T1 []T2 (9)

When T1 is not an atomic process (i.e. it involves CTT operators defining observable states) disabling can occur in the
trace defined by T1. If T1 is decomposed into T1,1 op1 T1,2 op2 · · · opn T1,n+1, then the disabling translation is defined
by the choice of all the possible traces resulting from the disabling i.e. disabling can occur at each observable state of the
T1 decomposition and shall be propagated in the further decompositions. We get:

T0 ::= T1,1 op1 T1,2 op2 · · · opn T1,n+1[> T2 is translated to

T0 ::= T2

[]T1,1 >> T2

[]T1,1op1T1,2 >> T2 (10)

[]T1,1op1T1,2 · · · opiT1,i+1 >> T2

[] · · · >> T2

[]T1,1op1T1,2 · · · opnT1,n+1

Remark. When disabling occurs, T1 is stopped. The system may be in a corrupted state which may correspond to a
bad state of the system.

When we use the Event B method to encode the disabling operator, it may happen that the proof obligations cannot be
proved. Indeed, since a state is corrupted it does not correspond to a correct process decomposition and the gluing invariant
is not preserved by the refinement which encodes the disabling. The use of Event B allows to generate proof obligations
that cannot be proved. In this case, a repairing event can be added in the disabling decomposition. The repairing event will
artificially repair the system in order to return to a non corrupted state. This event enforces the preservation of the gluing
invariant and provides for a formal debugging.

Let us consider a small decomposition of T0 ::= T1[> T2 where T1 is not an atomic process. We give below a partial
refinement specification of the T0 process.

REFINEMENT
DisablingRef

INITIALISATION
DisablingState := 3  . . .

EVENTS
EvtT11 = EvtT12 = EvtDisabling =
SELECT SELECT ANY pp

G11 ∧DisablingState = 2 G12 ∧DisablingState = 1 WHERE
THEN THEN pp ∈ 1, 2∧

S11 S12  DisablingState := 0 ¬DisablingState = 0
END; END; THEN

DisablingState := pp
END;

EvtT1 =
SELECT

G1 ∧DisablingState = 0
THEN

S1
END;
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Disabling infinite loop process ” ∗[>”

Let us consider T0 ::= T ∗
1 [> T2. In this case, the translation uses the same reasoning as the previous classical

disabling. We use the previous translation to define intermediate disabling in each iteration. We get:

T0 ::= T ∗
1 [> T2 is translated to T0 ::= (T1)

N [> T2 (11)

where N is any arbitrary natural number

Notice that the Event B method allows to define such an arbitrary natural number and to perform proofs on this basis.
This capability represents one advantage on model checking techniques where such a reasoning is not possible.

Finally, if the process T1 is not atomic, then disabling can occur in each observable state of the T1 decomposition as
defined in disabling operator subsection.

Interruption ”|>”

Let us consider T0 ::= T1| > T2. The process T1 is interrupted by the process T2. As for the disabling operator,
interruption translation requires a case based reasoning.

If T1 is an atomic process (not involving CTT operators), then it means that T2 can be performed an arbitrary number
of times (may be 0) and then T1 is performed. In this case, we get:

T0 ::= T1| > T2 is translated to T0 ::= TN
2 >> T1 (12)

When T1 is not an atomic process involving CTT operators the interruption can occur many times in each observable
state of the trace defined by T1. If T1 is written as T1,1 op1 T1,2 op2 · · · opn T1,n+1, then the interruption translation is
defined by the choice off all the possible traces resulting from the interruption. We get:

T0 ::= T1,1 op1 T1,2 op2 · · · opn T1,n+1| > T2

is translated to (13)

T0 :: TN1
2 >> T1,1 >> TN2

2 op1T1,2 · · · >> T
Nn+1
2 opnT1,n+1

HereNi are arbitrary natural numbers showing that the process T2 associated to interruption can occur zero or several
times. Notice that we have chosen to interpret the interruption operator using this approach. One could have chosen to
activate interruption exactly once (Ni = 1).

APPLICATION FOR THE SPECIFICATION AND VALIDATION OF UI

One of the major aspects, in the User Interface (UI) development activity, is the capability to take into account usability
of the UI. In general, usability is captured a posteriori through experimentation and/or a priori through the description of a
set of tasks representing scenarios of use. The validation of UI in critical systems like plane cockpits or machine factory
interfaces use such scenarios.

The work we have performed with the previously described approach deals with the latter. We have represented tasks
by decomposable processes. We consider that a set of tasks is described using a user task notation and the designed UI shall
meet the requirements expressed within these tasks.

Notations and models for design and validation of HCI

In general, the development of UI is concerned by two important interleaving phases.

1. A design phase which allows to produce the code implementing the suited UI and its link with the functional core
(heart of the application). In this phase, architectural notations, verification, validation, specification, refinement
and programming techniques are used by UI developers. Among the design notations and techniques we can cite
the Seeheim model [33], PAC[18], ARCH[14, 13], hybrid models [24, 22] and so on. Usually this phase allows to
establish robustness properties.
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2. A task validation phase which consists in validating user needs. This phase is not well mastered by UI designers
since most of these validations are issued from non computer scientists like psychologists and ergonomists. A set
of tasks, defining scenarios, is described at the requirements level and shall be supported by the final UI product.
Among the description oriented techniques and notations one can cite MAD [34], XUAN [23] and CTT [31]. This
list is not exhaustive and may be completed. Usually this phase allows to establish validation properties.

Unfortunately, the different models and notations we outlined above do not give enough formal representation to allow
the complete validation and verification, at the specification and design levels, of the UI design with respect to given
properties and user tasks. In general, verification and validation are reported at the testing phase when all the software
development is completed.

Therefore, representing formally both design and tasks, at early stages of the development (abstract levels) will permit
such verification and validation. However, thanks to the possibility of describing formal abstract models provided by formal
techniques, it becomes possible to handle a large amount of validation and verification efforts early at the specification and
design phases.

The proof based techniques we are using help to increase the quality of UI software developments. Indeed, our
approach uses the Event B formal technique for representing, verifying and refining specifications [10, 5] [3] and [4]. In
[5, 6], we presented our approach, based on Event B, handling the design phase.

Applications to Human Computer Interaction area

User requirements validation is performed by way of the validation of a set of user tasks. A task can be seen as a
scenario of use of the interface. It can be validated using several techniques: running a prototype, simulating or animating
a model or model checking or proof techniques.

For validating user interfaces tasks, we have used the CTT (ConcurTaskTrees) process algebra and its representation
in Event B previously presented. Two main applications have been developed : one consists in validating WIMP interfaces
(Windows, Icons, Mouse and Pointers) and the second one deals with multi-modal interfaces. Before describing these two
applications, we overview the way we have represented the dialog controller of an UI which represents the kernel of any UI.

Encoding the dialog controller with Event B

A set of B models is described. They allow to encode all the parts of an UI software from the functional core of the
application to the toolkit, presentation and dialog controller.

The dialog controller contains all the events that can be fired by an user while using the interface. These events are
atomic. In their turn, these events fire other events from the presentation, toolkit or from the functional core. The guards of
these events define their firing order and how these events interleave.

We do not give the details of this approach for the description of the UI in this paper but more details can be found in
[10, 5, 4, 3] and [8].

Application to the WIMP user interfaces[7, 9, 12]

This first application consists in describing the whole CTT operators using Event B models for the WIMP user inter-
faces. Each decomposition of an upper task in the CTT tree corresponds to an Event B refinement. A CTT task is described
by an initial state and a final state. It is refined into a sequence of atomic events which lead from the initial state to the
final state. The refinement preserves all the properties of the initial task. This process is repeated until atomic events, of the
dialog controller are reached in the leaves. When the atomic events of the dialog controller are reached by the refinement,
the validation process is completed.

The previous encoding of CTT in Event B has been experimented on several task models for WIMP applications.
Complete examples may be found in [8]. Moreover, the developed examples have shown that it is possible to have a generic
translation of CTT task trees allowing task validation also for plastic interfaces.

Let us consider our approach on a small WIMP case study which allows to convert euros to dollars and vice-versa. The
user enters, in a textfield component, the value he/she wants to convert then he/she makes the conversion by pushing either
the =C>> $ button component to convert euros to dollars, or $ >> =C button component to convert dollars to euros. The
converted value is displayed thanks to a textfield component.
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The dialog controller - A list of atomic events defining the transition system of the dialog controller of the exchange
currency application is given below.

Event Name Description
EvtExit Click on exit button

EvtExitApplication Close exchange application
EvtInputV alue Input any convert value

EvtReadOutputV alue Updating all views after a conversion
EvtConvertInEuro Click on dollar to euro button

EvtConvertInDollar Click on euro to dollar button

An user task model - A potential user task model, giben below, of the exchange currency application has been experimented
from our encoding CTT. Notice that the leaves of this user task model correspond of the atomic avents of the dialog
controller.

ExchangeApplication = ExchangeTask∗[> EvtExit >> EvtExitApplication
ExchangeTask = EvtInputV alue >> ChoiceOfConversion >> EvtReadOutputV alue
ChoiceOfConversion = EvtConvertInEuro[]EvtConvertInDollar

Application to the multi-modal user interfaces [28, 11]

In this kind of application, several modalities (i.e. Speech, Gesture or Direct Manipulation) are available. They may
be used in order to build an interaction with the system. The building process associated to the interaction is based on a
composition of sub-interactions which are themselves compositions of other sub-interactions and so on, until basic events
(from dialog controller) are reached. Composition operators are needed in order to build such multi-modal interactions. So,
the application to the multi-modal user interfaces consists in applying the whole CTT operators translation of previously
introduced to compose multi-modal interactions. Regarding the WIMP applications, multi-modal applications need to
express and check by Event B method another kind of properties, the CARE (Complementary, Assignment, Redundancy
and Equivalence) properties [19].

As a case study, we have specified and validated the multimodal MATIS (Mulitmodal Airline Travel Information
System) application defined in [30]. This application allows an user to retrieve information about flights schedules using
speech and/or direct manipulation with keyboard and mouse, or a combination of these modalities. This interaction mode
supports individual and synergistic use of multiple input modalities. The information about flights schedules correspond to
the parameters of the request, such as the departure and arrival city names and the min and max departure hours.

The dialog controller - Below the list of the atomic events of the dialog controller MATIS case study is given. It corresponds
to the transition system defining the multi-modal interactive application.

Event Name Description
EvtCityDepartDM Input the departure city thanks to the direct manipulation modality

EvtCityDepartSpeech Input the departure city thanks to the voice modality
EvtCityDepartGesture Input the departure city thanks to the gesture modality
EvtCityDepartDMSG Input the departure city thanks to all the three modalities
EvtCityArrivalDM Input the arrival city thanks to the direct manipulation modality

EvtCityArrivalSpeech Input the arrival city thanks to the voice modality
EvtCityArrivalGesture Input the arrival city thanks to the gesture modality
EvtCityArrivalDMSG Input the arrival city thanks to all the three modalities
EvtResultOfRequest Display the result of request

. . . . . .

An user task model - We have experimented our encoding CTT user tasks model on the MATIS application. A potential
user task model is shown below. This user task model expresses the capability to modify the different parameters before
processing the request (iterative process) and the capability to input parameter values in different orders using a concurrent
interaction mode involving all the three modalities (Speech, Direct Manipulation and Gesture).
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SearchF ly = InputData∗[> EvtResultOfRequest
InputData = CityDeparture||CityArrival||MinHourDepart||MaxHourDepart
CityDeparture = EvtCityDepartDM []EvtCityDepartSpeech []

EvtCityDepartGesture[]EvtCityDepartDMSG

CityArrival = EvtCityArrivalDM []EvtCityArrivalSpeech []
EvtCityArrivalGesture[]EvtCityArrivalDMSG

MinHourDepart = . . .
MaxHourDepart = . . .

USE OF THE EVENT B METHOD. PROOF TECHNIQUE VERSUS MODEL CHECKING TECHNIQUE

The previous translation rules cover the whole CTT language for user tasks modelling and description. These transla-
tion rules give not only a syntactical translation, but also give a formal semantics using the Event B method semantics for
the CTT language. All these rules are implemented and are tool supported. The Atelier B [17] tool is used for this purpose.
We have developped several examples of CTT tasks using this approach.

When a CTT task is defined, the corresponding decomposition tree corresponds to a set of models and refinements
designed using event B. These models contain ASSERTIONS clauses expressing the soundness of events occurrence
thanks to the variant behavior and to the guard disjunction property. In addition to the task model validation provided by
the event B technique, these clauses allow to express other properties and to prove them thanks to the used technique. It
means that it is possible to validate or invalidate properties on the CTT tasks descriptions.

Finally, the use of arbitrary natural numbers in the interruption and disabling operators is possible using the ANY . . .
WHERE . . . THEN. . . END or :∈ event B operators. The possibility of using arbitrary natural numbers allow to deal with
all the possible cases for tasks descriptions and modelling. Moreover, the proving system supported by event B method
allows to prove all the properties expressed in these models. Notice that this is almost impossible in model checking
techniques, where a fixed value for the natural numbers is required. Usually the state number explosion problem arises
when these natural numbers increase.

Nevertheless, we claim that model checking techniques and proof based techniques shall be used in conjunction in
order to get the benefits of both: automatic proving for model checking techniques and state number explosion avoidance
for proof based techniques. Proof based techniques have been used to validate user needs in WIMP (Windows Icons Menus
and Pointers) applications[8] and to express and to check multi-modal properties[11].

CONCLUSION

This paper has presented an approach allowing to translate a BNF grammar to a set of Event B models. The translation
rule we defined consists in associating a first event B model to the left hand side of a BNF rule and a second one to the right
hand side of this rule. The second B model refines the first one. Variants are defined to ensure the correct firing order of
events in these models. The abstract syntax tree describes the hierarchy of refined models. When these models are built, it
is possible to enrich them by defining state variables, transitions and invariants expressing relevant properties. The interest
of such models is to establish properties and to check them a priori allowing early validation/verification. Moreover, we
have applied this translation rule to the BNF grammar defining process algebra expressions. These expressions were used
to describe tasks and scenarios used to validate user interfaces.

Although the proposed approach produced satisfactory results, principally for user interfaces validation, it needs a deep
study. Indeed, there is a need to address the following points :

1. study of other BNF examples and other languages for which useful proofs could be performed. These examples will
improve the translation rule definition;

2. study the theoretical aspects. What are the necessary and/or sufficient conditions that shall be fulfilled by a BNF
grammar to be translatable in Event B models;

3. and finally study and/or develop an automatic (or semi-automatic) tool that allows parsing of BNF grammars to a
hierarchy of Event B models corresponding to an abstract syntax tree.
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ABSTRACT

This paper describes an experiment using an automated tool for testing smart cards embedded software
developed in C. Conventional testing of smart cards uses low-level commands and writing the use cases and
test scripts is a error-prone and tedious task. Our goal was to show how one can use a formal tool to improve
the testing process in order to concentrate better on the efficiency of the test. The approach consists in
modeling each layer of the system independently while abstracting the services provided by the lower layers.
The model is then verified, simulated and test cases are automatically generated using test criteria such as
branch coverage or statement coverage. To use those generated test scripts, we developed a translator to
execute the scripts on the C implementation of the system. We show the results obtained and the lessons
learned from the application of this approach to the validation phase of a smart cards file system manager.

1 INTRODUCTION

Smart cards provide a high level of security in a large variety of domains such as banking, mobile commu-
nication, public transport and e-government. Strictly bounded resource (in terms of memory and CPU) is
the first major constraint to consider while building software for these tiny computers. A typical card has
no more than 128 bytes of RAM, 64K of persistent memory (E2PROM or flash memory) and is powered
by a 8-bit microprocessor with clock speeds up to 5Mhz [1]. The second major requirement for smart cards
software is correctness and robustness. Correctness is usually verified using test, but conventional testing of
smart cards uses low-level commands and the writing of use cases and test scripts is tedious and error-prone.
A way to improve the testing phase is to use an automated tool which can also improve the test coverage.
Our goal is then to show how one can use a formal tool to improve the testing process in order to better
concentrate on the efficiency of the software testing.

Another requirement for smart cards software is portability. There are numerous hardware providers in
the market and their chip-sets have different resource access services. In order to optimize the use of resource
and to ease portability into different hardware platforms, smart cards software, in particular the Operating
System (OS), is often built using a multi-layered architecture. For example, the file system manager, which
is a core component of a smart cards OS, can be implemented in 3 layers: FSM (File System Module), HIM
(Hierarchical Management), and DMM (Dynamic Memory Management) layers. Each layer corresponds to
a particular abstract level of memory usage. In the FSM layer, the memory is viewed as an usual directory
tree i.e., a set of files and subdirectories. The primitive memory operations are provided by the DMM
layer where memory is divided into blocks and fragments i.e., series of non-adjacent blocks. The HIM layer
manages the hierarchical structure of these fragments and classifies them for being used in the FSM layer.
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Manually testing this type of software is tedious and error-prone. No real independent unit test can be
performed in the upper layers. Because the tester also needs the correct responses from the lower layers, it
is not possible to test one single layer independently of the other one. As the previously tested lower layers
can never be considered totally error free, error locating (when the test case fails) in the layer under test is
very time consuming. The whole manual process is therefore very long and does not include any reusable
methodology and its quality is difficult to be assess. In this context, our objective is to provide a more
reliable and efficient validation method (test and/or verification) for this kind of software. The main idea
is to formally model the system and then to generate test cases from the model in a systematic (and as
automatic as possible) manner. Taking into account this multi-layered nature of the software, our approach
consists in building in an incremental way the integration tests starting from the unit tests. This could be
done using a tool which proposes a modular design of the formal model.

Inside a multi-layered software, a layer can be seen as a reactive subsystem, which interacts during its
lifetime with the upper and lower adjacent layers. This feature advocates the use of a synchronous language
for modeling purpose1. The choice of Esterel Studio is based on the criteria of reliability, automation and
user-friendliness. This experiment is made in an industrial context where one of the main issues we address
is the acceptance of the tool by the engineers without changing the culture and the existing development
process. Consequently, our main results could be valid for other formal tools providing that they have solid
theoretical bases and the sufficient industrial maturity.

In this paper, we provide a modular method for unit testing multi-layered C programs. The tester
first identifies the interfaces between the modules of the same or different layers. Then, in the layer under
test, each control-related module, i.e., module that contains at least one control structure, is identified and
modeled. Note that for the modules that do not include any control structure (e.g., purely mathematical
operations) the test case generation is more trivial (no constraint solving is needed to compute the inputs
while the outputs can be find out by the simulator). The obtained models will be used to generate test cases
w.r.t. a coverage criterion.

Obviously, additional work has been done to allow the modeling of C function using a synchronous
language. As their execution models are quite different, we use the constraint facilities to simulate the
C execution (see Section 2.4). Furthermore, we need to provide an appropriate solution for some typical
problems of automated testing:

Incompletion of test case generator in terms of test coverage: Esterel Studio generates the test cases using a
SAT-based solver which may fail to fulfill the coverage criteria. As in [2], we need to manually complete
the set of test cases. This manual intervention is simplified using Esterel Studio and is described in
Section 2.6.

Execution of test cases on the implementation: in order to effectively use the generated test cases, we need
to translate them into a test plan in C syntax and link them with the C implementation. This process
is realized by an automatic tool developed in Section 3.

Correctness of the unit testing: the functions under test can call some external services. To ensure the
correctness of the unit testing, the behavior of those external services is mimicked independently from
their semantics while executing the test cases.

The rest of this paper is organized as follows. Section 2 presents a method for modeling C functions and
for generating test cases in Esterel Studio. In Section 3, we describe the translation and execution of test
cases on the C implementation of these modules. Section 4 provides a case study where our method is applied
to a smart card file system module, in particular, the obtained results and the learned lessons. We discuss
the related work in Section 5 before giving some concluding remarks and future directions in Section 6.

1Synchronous languages such as Esterel and Lustre have been shown to be very appropriate for modeling reactive systems
thanks to their precise semantics and operational model [2].
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2 MODELING C FUNCTIONS ANDGENERATING TEST CASES

2.1 The Esterel Studio tool-set

Esterel [3] is a modeling language based on the synchronous approach where the time is discrete and the
reaction time is not taken into account (the execution time is hence said to be zero). This approach is shown
to be particularly appropriate for modeling reactive systems i.e., the systems that are continually dependent
on the environment.

Esterel Studio is a graphical tool-set developed by Esterel Technologies that allows the user to specify
a system with the following assurance: the graphical representation (the specification) of the system is
executable and can be checked in terms of determinism, causality, and formal properties. The graphical
language SyncCharts [4] is used to build the specification which is then translated into Esterel syntax. The
user can also write some or all modules of the model directly in Esterel syntax. The tool will link all these
modules together to build an executable model (by simulating). Moreover, Esterel Studio also provides a tool
for verifying properties of the model. An automatic tool is also integrated which allows symbolic execution
paths to be generated from the model w.r.t. a coverage criteria.

In Esterel, the interface between a system and the environment is provided by the signals. A signal may
be attached with a value (valued signal) or not (pure signal). Arriving signals are input while broadcasting
signals are outputs of the system. Signals can be hence used to interface different modules of a system.
SyncCharts also provides the notion of port which is a group of different signals. The evolution of the whole
system is the evolution of the underlying finite state machine: a transition of this machine is the reaction of
the system to a given configuration of input signals.

2.2 An outline of the method

Starting from the informal specification of the function under test, the user develops a SyncCharts model
describing its behavior. Thanks to the simulator and the verifier of Esterel Studio, the developer gains
more confidence in the validity of the model and can use it as an oracle in the testing process of the C
implementation. Then the user uses several tools of Esterel Studio (execution paths generator, constraints
solver and simulator) for elaborating a series of test cases which fill a given test criteria. Two available test
criteria are reachable state coverage and transition coverage.

Our translator transforms the test cases into a test plan that calls the function under test with appropriate
arguments, and eventually provides returns from the related modules, i.e., the modules that contain external
called functions. The test verdict (pass/fail) is obtained by checking execution result of the function under
test against the output generated by model simulating. This process allows us to perform a real unit test of
the C implementation. In fact, in the test plan, returns from external called functions are replaced by values
proposed by the test case generator in order to perform the test cases.

2.3 Modeling C functions

Interface with the environment

We call interface variables the following elements of a C function:

• the arguments

• the returns (values and exceptions)

• the global variables used by the function

• the calls to external functions

• the arguments transferred to external functions

• the returns of external functions
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All these interface variables are modeled by signals which are attached with a value if it is necessary.
The function arguments and the returns of the external functions are modeled by input valued signals. The
returns are modeled by output valued signals while the calls to external functions are modeled by pure
signals. The global variables and the arguments transferred to external functions are modeled by one input
(for their old value) and one output signal (for their new value if any) because their value can be modified
during the lifetime of the function2.

In order to keep the correspondence between the model and the code, the interface variables must appear
in the same order in Esterel Studio and in C. In Esterel, the appearing order of signals does not have any
influence on the model execution. However, in C code, an order must be fixed between interface variables to
ensure the determinism of the program.

Datatypes

All C primitive data types can be modeled in Esterel except the pointers. Since Esterel does not support
pointers, we must transform them into arrays and hence, fix the size of data they point to. In other words, the
flexibility of the pointers in C cannot be totally reproduced. A data structure is modeled using a SyncCharts
port whose each signal models an element of the structure.

Control structures

All generally used control structures can be modeled in SyncCharts. The if-then-else structure is modeled
through paths between simple states, modules. The case-of structure is modeled in the form of a conditional
connector that automatically includes a default path (for the default case). The loop structures while and
for are modeled like in any other flowchart language using a if-then-else. The pure computing parts
of the program should be directly written in Esterel syntax which is sufficiently expressive for this task. A
function call is modeled by a pure signal while the transferred arguments are modeled by valued signals.

Example 1 Consider the function max3(int a,int b,int c) that returns the maximum of 3 given integers.
This function calls another function (max2(x,y)) which is contained in a separate module (max.c) and
returns the maximum of 2 given integers.

int max2(int x,int y); /* external called function from max.c */
int max3(int a, int b, int c) {
if (a > b) ret = max2(a,c)
else ret = max2(b,c);
return ret;

}

The SyncCharts model is shown in Figure 1. An if-then-else control structure based on the condition
(?max3.A>?max3.B) divides the model into two branches corresponding to two different calls of max2. Such
a call is modeled by the pure signal max2.Call. The two arguments transferred to max2 are modeled by two
valued signals max2.X and max2.Y. The return of max2 is modeled by the valued signal R max2 and is used to
build the return of max3 (i.e., the valued signal R max3).

2.4 Model of constraints

The model of constraints is used to enforce the semantics of a model in order to bridge the gap between the
Esterel model and the C code. The constraints restrict the possible sequence of input signals into the main
model. The model of constraints has as input signals, all input and output signals of the main model, and
as unique output, an ”Error” signal. The four typical constraints are:

1. the arguments of the modeled function must arrive before the first instant of the model simulation
lifetime.

2The modification of global variables specifies the side-effect of the function under test.
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Figure 1: SyncCharts model of max3

2. no response from a called function can arrive before the corresponding call: this constraint ensures
chronological order between any function call and its response.

3. all external called functions must return after being called in the same test case.

4. the last output signal must be a signal containing a real output, i.e., an exception or a returned value
of an expected type or a global variable modified by the function under test.

2.5 Model verification

The first step of the validation consists in using the models for simulating the behavior of the system. The
tool implicitly verifies the soundness of the formal model. Indeed, a successful execution of the model ensures
that it is sound in terms of determinism and causality. Furthermore, the simulation allows the user to gain
more confidence in the model w.r.t. its expected behavior.

The second step consists in verifying more complex properties like the broadcast of an output, or the
validity of an assertion. Each property is represented by a synchronous observer, i.e., a SyncCharts module
running in parallel with the model and having as input, the input and the output of the model itself. If the
property is satisfied, a specific signal is emitted by this observer.

2.6 Test case generation

The test case generation is done in two steps. The first step consists in generating the symbolic execution
paths of the model w.r.t. to a test criterion. This step also takes into account a user-defined model of
constraints described in Subsection 2.4, that restricts the sequence of input signals. An execution path is an
ordered set of transitions from the entry point to an exit point of the model. The execution paths generated
in this first step are said to be symbolic because they do not consist of real transitions but only of a set of
of constraints on the input signals (i.e., on their presence and value) that triggers those transitions.

Example 2 The set of constraints S (?S < 2) (?T > 4) R requires the arrival of the input signals S and R .
Moreover, the value of S must be less than 2. The signal T is not obligated to arrive in this step but its last
broadcast must have been done with a value greater than 4.

The most useful test criterion used in this step is the coverage (on the model), either in terms of reachable
states or of transitions between them. This property requires every reachable state of the model (respectively
every transition) to be passed through by an execution path.

In the second step, the constraints solver (Esverify developed by Prover Technology) is used for computing
a solution for each symbolic execution path, i.e., a set of values for its input signals that allow the transitions
to be produced. In Example 2, one solution for the constraints is T = 5 ; S = 1; R = 2. Because the input
signals correspond to the arguments and global variables in the C code, their values are actually the input
test data of the corresponding test case. The output data (i.e., test oracle) is computed by the simulator
by replaying the execution path. Note that some test cases may not correspond to a real execution path in
C. For example, the test cases ending in a state of (infinitely) waiting for response from an external called
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function have no correspondence in C because a C function is assumed to always give a response. These test
cases will be rejected by the translator described in Section 3.

Esverify is a SAT-based proof engine whose performance is sensitive to the size of the constraints. If
Esverify is not able to solve the constraints for fulfilling the coverage criterion, then a user interaction is
required. In Esterel Studio, this interaction is first done by visualizing the missing states or transitions. After
having observed missing elements, the user can manually complete the execution paths with help of the
simulator, by entering at each step the valued signals to cover the missing states or transitions. In other
words, the user needs to interactively solve the constraints on the signals to compute the input data of the
test cases.

3 TEST CASE TRANSLATION AND EXECUTION

In order to effectively test a C function, these test cases must be translated into a test plan in C syntax.
This translation can be seen as a refinement of the execution scripts from the abstract model to a concrete
implementation. This refinement can reject some test cases that do not respect the C execution semantics.
Furthermore, some specific powerful features of the Esterel models must be treated with care, i.e., the parallel
parameter checks must be serialized.

For each test case, the translated C code prepares the context (affectation of global variables) and
simulates a function call using the arguments. During its execution, if the function under test calls another
function, then the return of this function is also simulated. Note that all the necessary information (values
of global variables, values of arguments, returned values from external called functions) is contained in the
input data of the test case. The return from the function call (returned value or exception) and its side-effect
(the new values of global variables) are then checked against the output data of the test case in order to
determine the test verdict.

Figure 2 gives an outline of the translation and the execution of the test cases. The tester, the modeler
and the programmer are not necessarily three different people. The translation process is done in three steps:
(1) parsing and checking the test cases, (2) translating Esterel signals into C symbols and (3) generating test
plan in C syntax. The main input of the first phase is the set of test cases generated by Esterel Studio (.esi
file). Because the initialized values of the signals are not provided in the test cases, the translator needs to
look for those values in the model in Esterel syntax (.strl file). The name dictionary is needed to translate
Esterel names into C names. The test result can be Pass or Fail or an unexpected exception. The latter is
added in order to more easily locate errors in the C code.

3.1 Parsing and checking the test cases

A test case consists of:

• a set of input data (i.e., arguments, global variables and returns of external called functions),

• a set of function calls, and

• an expected output data (i.e., returned value or raised exception and/or new values of global variables).

Example 3 A test case generated from the model of max3 is as follows (excerpt from max3.esi):

1. max3.A = 127 max3.B = 1
2. % Output:;
3. % Output: max2.Call max2.X = 127 max2.Y = 0;
4. R_max2 = 0
5. % Output: R_max3 = 0;

Two arguments a and b of max3 are valued in the line 1. The value of c is its initial value defined in
max3.strl:
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Figure 2: Test cases translation and execution

refine max3.A:init 0;
refine max3.B:init 0;
refine max3.C:init 0;

In this case, a>b and max3 calls max2(a,c). This call is defined in line 3 (x=127 and y=0). The mimicked
returned value of max2 is 0 (line 4). Note that no semantics of max2 is assumed and any integer can be
accepted as its return. Finally, the expected returned value of this test case is also 0 (line 5).

Inside the translator, the parser not only checks the integrity of each test case but also the model
constraints described in Section 2.4. If these constraints are not satisfied, the test case does not respect the
C execution semantics and shall be ignored.

3.2 Translating Esterel signals into C symbols

In order to link the generated test plan with the C code, the signals used in the test cases must share the
names with the symbols in this function. For that, the translator uses a names dictionary (the .dct file in
Figure 2) where the tester defines the mapping between signals in the model and symbols in the C code. In
this dictionary, a signal is assigned to an external name which contains sufficient information to generate
the corresponding C symbol. The syntax of the external names is described as follows where the symbol —
is used to separate different components of a name:

signal external name ::= simple signal
| composed signal

composed signal ::= simple signal
| simple signal.composed signal

simple signal ::= no argument function | void return function
| global variable | argument | return | exception
| call argument | function call | call return
| modified argument

no argument function ::= DO—module—function
void return function ::= DONE—module—function
exception ::= module—name
argument ::= A—arg ordinal—arg name type
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call argument ::= | module—function—A—arg ordinal—arg name type
global variable ::= G—arg name type

| module—function—G—arg name type
return ::= R—simple name type
call return ::= module—function—R—simple name type
modified argument ::= module—function—R—A—arg ordinal—arg name type
arg name type ::= simple name type | array | pointer
simple name type ::= type c——name
pointer ::= type c—P—name—size
array ::= type c——name—size
function call ::= module—function
module | function | name ::= [a . . . zA . . . Z]+[a . . . zA . . . Z0 . . . 9]∗

size | arg ordinal ::= [1 . . . 9]+[0 . . . 9]∗

Most of these above identifiers are self-explained. A signal can be simple or composed. A composed sig-
nal denotes an element of a C structure. The identifiers argument, return, global variable, call return,
call argument and modified argument respectively represent the function arguments, the function returns,
the global variables, the returns from external functions, the arguments transferred to external functions and
the modified arguments by external functions. The identifier type c can be any of the primitive or defined
data types used in the C code (except the structures). Pointers are represented by arrays with pre-fixed size.
An external function call (function call) is identified by its name and by the module it belongs to.

Example 4 The names dictionary for Example 1 is as follows (—is replaced with __ for parsing purpose):

max3.A -> A__1__max3.int____a max2.X -> max__max2__A__1__int____x
max3.B -> A__2__max3.int____b max2.Y -> max__max2__A__2__int____y
max3.C -> A__3__max3.int____c R_max2 -> max__max2__R__int____ret
max2.Call -> max__max2 R_max3 -> R__int____ret

3.3 Generating C test plan

The translator generates the test plan (i.e., set of all test cases) in a Microsoft Visual C project which includes
a main.c file, a link to the C module containing the function under test and a C module containing external
called functions. For each test case, the main.c first declares and initializes the global variables, assigns the
function arguments using the input data. Then, a call to the function under test is simulated. During its
execution, the function under test may call other external functions whose we mimic the effects (i.e., the
returned value, the raised exception, the modification of the global variables and referenced arguments) in
the external module. Finally, main.c uses an exception handler3 to check the return (value or exception) of
the function under test against the output data of the test case.

4 CASE-STUDY: A SMART CARDS FILE SYSTEM SERVICE

We describe the application of our process to the CreateFile service provided by the Axalto smart cards file
system module. The considered file hierarchical structure is composed of 4 categories of files: RF (root file),
DF (directory file), EF (elementary file) and LF (linked file, i.e., shortcut to another file). A file system
instance (FSI) can have only one RF but the file system module can manage several FSI stored in the
persistent memory. Furthermore, some specific files can be shared between different FSIs using linked files.
An elementary file can be simply a raw sequence of bytes (transparent files) but can also be structured as a
sequence of records of variable size (linear variable files) or of fixed size (linear fixed files). In both of those
files, the records (or the bytes) are ordered in a linear manner. However, the records can also be ordered in
a cyclic manner (cyclic fixed files).

3By default, C has no exception but we use here an exception handling library developed in Axalto.
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The file system module is made of three layers4 (FSM/HIM/DMM) in order to optimize the memory in
use and to ease the portability to different chip-sets. The file system maintains a global structure called the
file system context which points to the currently selected file. CreateFile is one of the main functions of the
FSM layer that creates a new file and correspondingly updates the file system context. This function has
14 arguments (e.g., directory identifier, default access control rights, file size, type of file, file identifier, file
status, number of records, length of records, path to the pointed file if the new file is a shortcut) and uses 9
services of the lower HIM layer. These services can return void, an exception or a value through a pointer.

4.1 Model construction and verification

The CreateFile function consists of two main parts, described in two separate modules. The first one consists
in checking the validity of the request (w.r.t. the current context) while the second consists in realizing the
command (file creation, file initialization and context update). In Esterel Studio, the CreateFile function
is modeled by two main modules “Is the request admissible?” and “The request is admissible”.

The module “Is the request admissible?” can be modeled in several styles, according to the order and
the parallelism of the checks performed on the parameters. Parallel check is more efficient because it stops
as soon as the first check fails. However, performing the checks in parallel must be done with care because
in the corresponding C code, all checks are serial and each failed check may raise a different exception. The
model on which our test experiment is based describes effectively the checks of the module “Is the request
admissible?” in the same order as in the C code. It also calls the functions of the HIM layer in the same
order as the C code does.

This model has 66 reachable states. Amongst them, 23 states correspond to the “stop states” with
an exception raised by the function because the file creation is not possible in the current context. The
other states are either initial state (1), final states (3) or intermediate state (39). The intermediate states
correspond to the points of control from which one amongst several transitions can be produced according
to the value of the signals at that stage. The whole finite state machine is driven by 33 input signals which
are either pure or valued by a 16-bits integer.

The model is then checked by Esverify. In this stage, the properties to be ensured on the model are
typically “one cannot access a file that has not been created before”, “one cannot create a file with an
existing identifier”, “one cannot create a file if there is no more available memory”, etc.

4.2 Test coverage

The symbolic execution paths have been generated w.r.t. the transitions coverage criterion. The solver did
not succeed to solve all symbolic execution paths. Actually, we obtained only a coverage of 84%. Amongst
the generated test cases, one has to be removed because it has no corresponding C execution. Using the
Esterel Studio simulator, we could manually locate and complete the missing test cases.

4.3 Generated C test plan

Figure 3 shows a test plan generated for the function Fsm CreateFile. Only an excerpt from the declaration,
initialization and assignment of the arguments and global variables is seen due to the space limit. The func-
tion call is put inside a TRY...CATCH ALL structure to get and check its return against the expected output
(exception CONDITIONS OF USE NOT SATISFIED). The C function fsm createfile is encoded in fsm admin.c
using the function Him SetContext which is mimicked in HIM.c.

4.4 Results and learned lessons

During the development of the formal model in Esterel Studio, we faced the incompleteness and impreciseness
of the informal specification. We needed a lot of interaction with the development team in order to check the

4See Section 1 for an explanation.
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Figure 3: An example of test plan in C syntax

meaning and the purpose of described functions. However, this cooperation turned out to be very beneficial
because both the model and the informal specification have been since significantly improved. In particular,
the order of the tasks that can be performed in parallel in the model, must be defined in the informal
specification.

The generated test plan enabled us to find out 1 flaw in the C code which has not been detected by the
manually-built test plan. This flaw is caused by a comparison of two variables of different sizes. In fact,
before creating a new file, CreateFile checks if the file size does not overcome a limit. However, the check
defined in the C code is always successful (and hence meaningless) because it compares a Byte representing
the file size to a Word representing the size limit. The corresponding test case has showed a difference between
the behaviors of the C code and of the Esterel model.

In comparison with the conventional development in C, SyncCharts is more adapted for describing the
control structures of an algorithm. In contrast, the linear parts of the algorithm, which do not contain control
structures, need to be expressed in Esterel using a C-like syntax. In other words, building a SyncCharts model
is less error-prone than developing the C code only if control structures are present. Furthermore, the quality
of the test cases produced for fulfilling coverage criterion also depends on the quantity of control structures.
The case study is actually chosen according to this feature.

Before this case study, a test plan of the file system module has been manually produced by Axalto test
engineers. This is actually not a unit test because the HIM services are also involved. Furthermore, it is not
easy for the test engineers to set the file system in a given state before each test case. The test criterion is
output coverage, that is, coverage w.r.t. the function output (exceptions or file system context modifications).
This test criterion is less rigorous than the criterion used in our method (transitions coverage) and hence,
we generate more test cases. Indeed, there may be several execution paths which produce a given output.
In our method, the coverage measurement and the ability to test each layer of the system independently are
two critical advantages. Furthermore, our method is also more beneficial in terms of maintenance: if the
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specification of the system is changed, the adaptation of the test plan is much more costly in the conventional
approach.

In an industrial context, the main concern is to reduce the global time of the software production, i.e., of
both development and validation phases. If the time for assimilating Esterel Studio tools is not included, then
the cost for modeling and automatically unit testing is not longer than for a conventional testing approach.
Actually, all the cost is dedicated to modeling and eventually to completing the missing test cases. The
test case generation, translation and execution are fully automatic and require no extra-cost. In our case
study, 3 man-months were needed to build the Esterel model and to validate the general methodology; the
test case completion required 1 man-month; the (build-once but use-many-times) translator was encoded by
2 man-months. Note however that, a tester getting familiar with the specification of the system will need
less time for modeling a second function. The test case completion is more tedious task because it requires
the tester to follow carefully the test simulation (by Esterel Studio) in order to locate the missing cases.
Fortunately, the test case generator already provides a good coverage rate. In summary, a complete test of
all functions of the same layer will clearly improve the global time needed for the validation phase.

5 RELATED WORK

Model-based testing [5, 2, 6] has been used by numerous researchers in the validation of embedded code,
in particular, in the smart cards industry. In mobile communication domain, B-Method has been used for
testing several GSM applications [7, 8]. A WAP identity module embedded in the SIM cards has been tested
using formal models developed in AutoFocus [9, 2]. In banking domain, an electronic purse application has
been validated using TGV tool [10].

Both of those works are black-box testing [11], that is, no information of the code is used. They concentrate
on integration test, that is, the whole system is tested by sending it the command APDUs (application
protocol data units) and checking the response APDUs. Their main coverage criteria is hence w.r.t. to
specification requirements. Our testing method can also perform unit test and like [12], we use a gray-box
approach because we are actually testing an existing system. That is to say the model is built using the
information from both the specification and the implementation. This practice is not really unusual in the
industry where formal methods specialists often need to look at both of those elements in order to precisely
understand the system. The gray-box approach keeps our model relatively close to the tested implementation
and hence, the coverage results on the model and on the implementation are also strongly related. In [12],
the authors use the Alloy tool-set for modeling and generating test cases for a reliability-analyzing tool. They
also use a different coverage criterion (coverage of inputs data up to certain sizes). The case study is modeled
in Z and hence, a translation to Alloy is needed. As stated by the authors, this translation is an additional
risk of comprising test completeness.

Java Card [1] applications can be specified in JML (Java Modeling Language) and then be verified using
dedicated tools. Unit test cases can also be generated from JML specifications [13] but this process is still
semi-automatic because the user still needs to provide the input data (only output data, i.e., test oracle
is automatically generated). On the contrary, in [14], only input data for test cases are generated using
the Java PathFinder, a model-checker for Java programs. An interesting point of that work is that the test
generation can be directly applied to complex Java code.

The recently-born Spec# modeling language [15] can be seen as a C# counterpart of JML. Test cases can
be generated from a Spec# specification using Spec Explorer [16]. This tool seems to be more powerful than
Esterel Studio because it also enables the execution of test cases on .NET assemblies.

6 CONCLUDING REMARKS

We have described an effective method for using Esterel-based tools for unit testing multi-layered embedded
C code. In this method, we first built a SyncCharts model of the C module under test and then, use the
Esterel Studio tools to generate test cases from this model. A translator has also been built in order to
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translate and execute these test cases on the corresponding C code. Because the translator is independent
of the Esterel Studio tools, it can be used to compare the behavior of the model and of the C code, using any
suite of global variable, arguments and returns of the related modules (in the right order and with the right
syntax). This feature allows the testers to manually complete any test cases series or even to build their own
tests.

Model-based testing implies an extra-cost due to the construction of the model. However, the counterpart
is a more precise representation of the user-requirements and the security policy and a possibility of checking
the model w.r.t. those. These features are highly valuable in a sensitive domain such as smart cards
where security is one of the main criteria for any product assessment. Recently, Common Criteria [17] has
become a well-known standard that allows an independent organization to assess information systems in
terms of security. Automated testing can be used in the evaluation of the smart cards products in a high
assurance level (EAL5 to EAL7) of the Common Criteria ladder. For those levels, Common Criteria require
a rigorous (correct and complete) correspondence between formal models and the test cases used for testing
the implementation.

We are now extending this method to build a complete test environment for reducing the validation
cost of cards embedded software. Future work consists in modeling completely the file system manager and
then, a large part of the OS using a step-by-step methodology. Another interesting point consists of a more
sophisticated use of the Esterel Studio verification tools to ensure the security properties of the developed
model before using it to check against the C code (by test case generation). An approach for expressing
the security properties of cards C embedded code is studied in [18] and can be adapted to this context. In
many embedded system applications, Esterel Studio has been used to automatically generate C code from a
model. At the time being, the generated C codes still do not fit in a smart card due to its restricted memory.
However, this precise feature of Esterel Studio can be used in the development of the test cases translator
described in Section 3, which is a critical component of our testing method. Finally, because a product is
usually specified in UML by the programmers, we are looking (with Esterel Technologies team) at reusing (in
an automatic manner) the UML specification while building an Esterel model.
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