Field enhancement properties of nanotubes in a field emission set-up

Ch. Adessi

NASA Ames Research center, Moffett Field CA, USA

M. Devel

Laboratoire de Physique Moléculaire, UMR CNRS 6624
Université de Franche–Comté, Besançon, France
Controversy in the mechanisms of emission

Modeling of the polarization of CNT

- Resolution of the Poisson's equation
- Use of an atomic dipolar approximation
- The local field is computed with the Lippmann-Schwinger's equation

β factor for SWNT:

- evolution with the length
- evolution with the diameter
- influence of the density

β factor for MWNT

Thanks and conclusions
Flat panel displays:
- Low turn-on field
- Low sensitivity to the vacuum conditions
- High Brightness

NEA materials:
Diamond type films:
- Emission from localized sites
- Emission mechanisms not well known

Ultra Thin SC film:
- Emission properties due to nanometer thickness
- Uniform emission
- Mechanism: Electronic injection → bending of the conduction band

Carbone nanotubes:
- $v_{\text{turn-on}} \leq 1 \text{ V/μm}$
- Prototype of display already achieved

Nanotubes forest:

Multi-wall Nanotubes:

Mechanisms of emission

The mechanism leading to the electronic emission at low field is not well understood

⇒ Several phenomena are suspected to be involved

- Enhancement of the applied field:
 - Polarization phenomenon
 - Localized space charge
- Implication of localized states at the end of the nanotubes
- Uniform and atomic descriptions lead to contradictory results
- Is Fowler-Nordheim still valid?

Energy Distributions

\[E = 0.15 \text{ V/Å} \quad E = 0.20 \text{ V/Å} \quad E = 0.30 \text{ V/Å} \]

\[I_M = 3 \times 10^{-10} \text{ nA} \quad I_M = 5 \times 10^{-4} \text{ nA} \quad I_M = 100 \text{ nA} \]

\[E = 0.15 \text{ V/Å} \quad E = 0.20 \text{ V/Å} \quad E = 0.30 \text{ V/Å} \]

\[I_M = 3 \times 10^{-9} \text{ nA} \quad I_M = 2 \times 10^{-3} \text{ nA} \quad I_M = 10^5 \text{ nA} \]
Theoretical background

◊ Aim: Compute electrostatic field near nanotube's end
◊ Model: Atomic dipoles and perfect metal

⇒ Self-consistent resolution of Maxwell-Gauss's law:

\[\vec{\nabla}_r \cdot \vec{E}(\vec{r}) = -\frac{1}{\varepsilon_0} \vec{\nabla} \cdot \vec{P} = \vec{\nabla}_r \cdot \left[\sum_{j=1}^{N_{at}} \vec{\alpha}_j \delta(\vec{r} - \vec{r}_j) \vec{E}(\vec{r}_j) \right] \]

⇒ \(\vec{E}(\vec{r}) \) solution of the Lippmann-Schwinger's equation:

\[\vec{E}(\vec{r}) = \vec{E}_0(\vec{r}) + \sum_{j=1}^{N_{at}} \vec{S}_0(\vec{r}, \vec{r}_j) \cdot \vec{\alpha}_j \cdot \vec{E}(\vec{r}_j) \]

◊ Local field → \(\beta = \frac{E_{loc}}{E_{app}} = \frac{Max(E_z)}{E_0} \)

Polarization potential

(5,5) capped nanotube
Single wall nanotubes

general trend:
\[\beta(L) = L \times [a_0 + a_1 \ln(L) + a_2 \ln^2(L) + \ldots] \]

- Saturation of the \(\beta \) factor with the length
- Saturation sets up faster for \((n,n)\)
- The caps improve the \(\beta \) factor but do not modify the general trend
- No significant influence of the chiral angle
- Extrapolation for a length of 1 \(\mu \text{m} \): \((6,0)\) capped \(\rightarrow\) \(\beta \simeq 1100 \)
Variation with the diameter

\[L = 30 \text{ nm} \quad \text{and} \quad L = 1 \mu\text{m} \text{ (extrapolated)} \]

\((n,0) \) nanotubes

\[\beta(D) = a_0 + \frac{a_1}{D} + \frac{a_2}{D^2} + \frac{a_3}{D^3} + \ldots \]

\(\beta \geq 1000 \) can only be obtained with \(D \leq 0.5 \text{ nm} \)

\(\beta \) for a \((9,0)\), \(\beta \) is only around 200

\(\Rightarrow \) Phenomena other than polarization are probably involved in the emission
Influence of the density

Polarization potential in the XY plane (top) at $Z = 8.5$ nm and XZ plane (bottom) at $Y = 0$ for a rope of 13 (6,0) nanotubes

- The β factor decreases when the density is increased
- To have a uniform emission \rightarrow decrease the density
- The polarization is larger for the external nanotubes
- The X Y components of the field are larger than the Z component
- Emission from the brim of the rope \rightarrow large opening of the beam
Multi wall nanotubes

(3,3)@(13,5) and (3,3)@(15,2) (9,0)@(19,1) and (9,0)@(15,7)

- No significant influence of chirality
- The maximum value of the β factor is given by the inner shell
- The addition of shells tends to sweep out the instabilities of the β factor
- The outer shells tend to reduce the enhancement property of the inner shell \rightarrow Faraday cages
Conclusions

⇒ No influence of the band structure on the polarization

⇒ Saturation of the polarization with the length of the nanotubes

⇒ The saturation sets up faster for (n,n) nanotubes

⇒ (n,0) nanotubes are the best field amplifier

⇒ The largest β factor observed for isolated SWNT is only of the order of 200 → other phenomena are probably involved

⇒ In the case of a rope, the induced field is larger close to the brim

⇒ The field amplification of MWNT seems to be due to small inner tubes

The authors gratefully thank J.-M. Bonard (EPFL Lausanne) for numerous discussions.