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Abstract: 

The dispersion relation for the inverse hyperbolic potential is calculated in the 

classical limit. This is shown for both the low amplitude phonon branch and the 

high amplitude soliton branch. It is shown these results qualitatively follow that 

previously found for the inverse squared potential where explicit analytic 

solutions are known. 
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Introduction 

 

In one spatial dimension, a class of integrable many-body systems is the 

Calogero-Sutherland-Moser systems. They consist of many identical non-

relativistic particles interacting through two-body potentials of the inverse 

square type and various extensions such as the inverse sine squared, the inverse 

hyperbolic squared, and the inverse squared Jacobian elliptic function(1,2,3). The 

significance of these models is they represent a class of integrable many-body 

systems. One test for integrability is to use the Lax method, which is the method 

first applied by Calogero, et. al to the inverse squared potential(4). Using this 

method one attempts to show that for certain potentials one can find two 

Hermitean N x N matrices L and A that follow the Lax equation dL/dt=i (AL-LA). 

With this L evolves as a transformation generated by A and det[L-!I] is a 

constant of motion.  

In this paper we look at the inverse hyperbolic squared potential and 

derive the dispersion relation in the classical limit. This is useful because it is one 

method one can compare the quantum mechanical system with the purely 

classical many-body soliton system, which may also be derived using the 

classical equations of motion. This comparison was done in a previous paper for 

the inverse squared potential(5). However, the dispersion relation for this system 

is a bit more problematic as no closed form analytic solution is known. 

 

Dispersion relation for the inverse hyperbolic potential 

 

We begin with the many body Hamiltonian 
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We make a change of variable,

! 

x"#x , so that 1/! is the unit of length, and so 

the Hamiltonian becomes 
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where energies are measured in units of !2!2/m, and "("-1)=gm/2!2.  Thus, we 

see that the classical limit !

! 

" 0 corresponds to 

! 

" #$ ; this is the limit we 

investigate in this paper.  This quantum system was originally solved by 

Sutherland(1,2,3), using the asymptotic Bethe ansatz(1,6,7), and a proof of 

integrability due to Calogero, et. al.(4) 

As is well known(1,6,7), the solution by the asymptotic Bethe ansatz for the 

low energy properties makes use of two quantities #(k) and $(k), which are 

solutions of the following integral equations: 
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and 
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The limit to the integral B is related to the density d=N/L through 
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while the chemical potential µ is determined by the requirement that $(±B)=0.  

The kernal %'(k) of the integral equation is the derivative of the two-body phase 

shift %(k), which for our (reduced) Hamiltonian is 
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The low-lying or zero temperature physical properties are determined from #(k) 

and $(k) as follows.  First, the ground state energy is calculated as 
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From this, the zero temperature equation of state may be determined.  Second, 

the dispersion relation for low-lying excitations may be determined 

parametrically, with the energy given by |$(k)|, and the group velocity v(k) by 

v(k)=$'(k)/2&#(k).  (We choose the group velocity rather than the momentum to 

make the classical limit easier.)  The dispersion relation has two branches:  

|k|!B, called the hole or phonon branch; and |k|"B, called the particle or 

soliton branch.  This is discussed by Sutherland(1), where the quantum Toda 

lattice is first solved, and the classical limit taken to recover the original results of 

Toda(7). 

In the classical limit 

! 

" #$ , we find 

! 

B"#, and so we rescale k by k=2"x.  

Then, the kernal of the integral equation becomes 
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Letting B=2"b, and keeping terms of leading order in ", we find that for |x|!b, # 

and $ obey the integral equations 
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We see that the quantities that approach finite limits in the classical limit are 

"#(2"x)=#(x) and "-1$(2"x)=$(x), for |x|!b.  Outside the integration region, when 

|x|"b, we use the full integral equations, so that 
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and 
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Thus, on the soliton branch, we define the quantities which approach finite 

classical limits as #(2"x)=#(x) and "-2$(2"x)=$(x), for |x|"b. 

Looking at the group velocity, v(k)=$'(k)/2&#(k), and using 

$'(2"x)=$'(x)/2, |x|!b, or "-1$'(2"x)=$'(x)/2, |x|"b, we see that "-

1v(2"x)=$'(x)/4&#(x)=v(x), for all x.  Thus, the dispersion relation is given in the 

classical limit by velocity "v(x) and energy "|$(x)|, |x|!b, or "2|$(x)|, |x|!b. 

This gives an energy proportional to ! for the phonon branch, as is to be 

expected. 

We thus see that the dispersion relation in the classical limit depends on 

the solution of the two integral equations 
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In the second equation, µ represents the old µ/"2. The phonon branch of 

the dispersion curve can be found by a straightforward harmonic approximation 
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to the equations of motion.  By familiar methods, this gives for the frequency 

'(k) of an oscillation of wavenumber k, 
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Here, d is again the density N/L.  The group velocity is given by the usual 

expression v(k) = ('(k)/(k, so the dispersion relation for the phonon branch '(v) 

at density d is thus determined parametrically.  This must coincide with the 

previous expression when |v|!vs= v(0). 

To check this correspondence, we make what are apparently convergent 

expansions for both #(x) and $(x), 
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and 
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Here Tj(x) and Uj(x) are Chebyshev polynomials of the first and second kind 

respectively.  Using these expansions, which appear rapidly convergent except 

for the limit 

! 

b"#, corresponding to the inverse square potential, which can 

independently evaluated(8,9), one finds the dispersion relations shown in figure 

(1) for selected values of the density.  This agrees numerically for the phonon 

branch with the previous harmonic approximation.          
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Figure 1.  We show the dispersion relations for selected values of the density d = 

3.058..., 1.729..., 1.039..., and 0.673....  These values interpolate between the 

inverse square interaction and the Toda lattice.  To the left we show the phonon 

dispersion relation by plotting the frequency as a function of the group velocity, 

and to the right we show the soliton dispersion relation by plotting the energy of 

the soliton as a function of the soliton velocity. 

 

Discussion 

 

The dispersion relation qualitatively follows that found previously for the 

inverse squared potential in the classical limit(5). In that case simple analytic 

results were found. For each density shown, the point where the curve for both 

the soliton branch and the phonon branch is zero represent where the velocity is 

the speed of sound for that density. The phonon branch represents simple low 

amplitude sound waves whereas the soliton branch represents high amplitude 

non-linear waves. We have found these results by taking the classical limit of a 

quantum mechanical system. It would be interesting to see how this compares to 

the direct solution of the classical equations of motion as we have done 

previously for the inverse squared potential(5).  We plan to investigate this in a 

future work. 
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