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Introductory remarks

• Paper describes a numerical FE based aeroelastic-acoustics analysis 

methodology

• This is followed by solution details of a 2-D airfoil and results correlation with      

known theoretical solution

• Also presented the 3-D wing case and related results pertaining to vibration,      

steady and unsteady flow (CFD), aeroelastic and aeroelastic-acoustic 

simulations

• Further associated solution results are presented for a numerically simulated 

unsteady pressure data

• Also SPL results from a SOFIA flight sensor data is presented in some detail 

• Provides a discussion on implementation of these techniques in an existing FE 

software suitable for solution of complex, practical problems

• Discussions and concluding remarks
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Numerical Formulation

• Structural (FE) free vibration matrix equation solving for  and 

• The aerodynamic data are next computed by solving the Navier-Stokes (FE) 

equation

in which 

• Vehicle equation of motion is then cast into the frequency domain

where

is the generalized mass matrix and similarly            ;             is the 

aerodynamic load vector;         being the generalized impulse force vector               
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Numerical Formulation (cont’d)

• Generalized impulse force vector

• Earlier, the CFD code analysis results were verified with flight test data

– Hyper-X vehicle and flight data comparison

( )tIf
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Numerical Formulation (cont’d)

• Equation (3) may then be cast in a state-space matrix form as

or

where

and

in which and
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Numerical Formulation (cont’d)

• In the presence of sensors, for the most general aeroservoelastic case these 

equations are converted into zero order hold (ZOH) discrete time equivalent at 

the k-th step:

in which

and

where  and are and having been modified to include sensors
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Numerical Formulation (cont’d)

• Coupled aeroelastic (AE) model
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Numerical Formulation (cont’d)

• Acoustic frequencies are obtained by performing FFT on computed unsteady 

aerodynamic pressures

• Also the sound pressure level (SPL) for a specified node is computed by first 

fixing a time band, t and then performing the following calculation using n 

number of sampling points

a) compute average pressure

b) compute the root mean square of pressure

c) compute the SPL

where                               for airPaPref
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Flowchart of aero-elastic-servo-acoustic analysis
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Numerical Example I, 2-D

• 2-D subsonic NACA 0012 Airfoil

– Flight Condition : Mach Number = 0.3, Angle of Attack = 5-degree

• In an effort to verify the solution accuracy:

– Steady state : Correlation with (i) Smith-Hess panel method (ii) CFD solver

– Unsteady analysis solution is compared with Wagner’s suddenly accelerated airfoil 

problem
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Numerical Example I, 2-D (cont’d)

• Steady state solutions

1. Coefficient of Pressure (Cp)

distribution over solution domain

2. Coefficient of Pressure (Cp)

distribution comparison

on the airfoil
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Numerical Example I, 2-D (cont’d)

• Unsteady analysis solution

– Unsteady Coefficient of Lift (Cl) history comparison
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Numerical Example I, 2-D (cont’d)

• Unsteady analysis solutions

– Coefficient of Pressure (Cp)

Acoustic

Waves

t = 0.1 t = 0.2 t = 0.4 t = 0.9

t = 1.5 t = 3.0 t = 5.0

1.1365 -0.8875

Cp

0.0
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Numerical Example I, 2-D (cont’d)

• Unsteady analysis solutions

– Velocity

Startup

Vortex

t = 0.1 t = 0.2 t = 0.4 t = 0.9

t = 1.5 t = 3.0 t = 5.0

1.5 0.0007

Velocity

1.124 0.749 0.375
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Numerical Example II, 3-D

• 3-D cantilever wing with NACA 0012 airfoil

– Flight condition : Mach 0.3 and 0.6, Angle of Attack = 0 degree

(a) (b)

1. Cantilever wing with

aeroelastic solution domain

2. Structural (a) and 

aerodynamic (b) surface grid

of wing
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Numerical Example II, 3-D (cont’d)

• Structural modes of cantilever wing

– `

• Aerodynamic steady-state pressure and Mach distribution (M = 2.0)

(d) mode 4,

38.026 Hz., in plane

(c) mode 3,

18.819 Hz., 2B

(b) mode 2,

14.819 Hz., 1T

(a) mode 1,

3.521 Hz., 1B

(h) mode 8,

64.958 Hz., 4B

(g) mode 7,

59.797 Hz., 1B control

(f) mode 6,

48.636 Hz., 2T

(e) mode 5,

41.408 Hz., 3B

Pressure Mach

Flow Direction
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Numerical Example II, 3-D (cont’d)

• Typical aeroelastic response plot (generalized displacement)
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Numerical Example II, 3-D (cont’d)

• Layout of the acoustic computation sampling points
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Numerical Example II, 3-D (cont’d)

• Mach 0.6

1. Aeroelastic unsteady

pressure response

(node, C25)

2. Acoustic wave

frequencies

(node, C25)

Unsteady pressure history for Mach 0.6
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Numerical Example II, 3-D (cont’d)

• Sound Pressure Level (SPL) for a line along the cord length (20% from wing tip)

SPL on Airfoil
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Numerical Example III, simulated data
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Numerical Example III, simulated data (cont’d)
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Numerical Example III, simulated data (cont’d)
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Numerical Example IV,
SOFIA measured unsteady pressure data

SOFIA sensor measured unsteady pressure data 

(a) Measured sensor data

(b) Close up Measured sensor data
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Numerical Example IV,
SOFIA measured unsteady pressure data (cont’d)

SOFIA calculated SPL results data 

(a) SPL results data

(b) Close up SPL result data
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Numerical Example II, 3-D (additional)

• Mach 2.0
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STARS capability
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Concluding Remarks

• An integrated finite element based aeroelastic-acoustics analysis algorithm 

presented

• Its implementation in a code, suitable for large scale computation, is also 

presented in some detail

• Numerical verification example problem is demonstrated

• A 3-D wing problem is analyzed in detail, that demonstrate the FE codes 

capability to solve practical problems routinely

• Also presented a simulated example problem followed by a SOFIA flight 

measured data solution
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Thank you! 

QUESTIONS ?
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