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An analysis of the optimal control by blowing and suction in order to generate stream-

wise velocity streaks is presented. The problem is examined using an iterative process

that employs the Parabolized Stability Equations for an incompressible fluid along with

its adjoint equations. In particular, distributions of blowing and suction are computed for

both the normal and tangential velocity perturbations for various choices of parameters.

Nomenclature

E energy norm
G energy growth ratio
Lref reference length
p pressure disturbance
U mean-flow streamwise velocity
Uref reference velocity
u streamwise velocity disturbance
V mean-flow normal velocity
Vw normal velocity of blowing or suction at the wall
v normal velocity disturbance
Ww tangential velocity of blowing or suction at the wall
w spanwise velocity disturbance
β spanwise wave number

ε
√

ν/UrefLref

ν kinematic viscosity
ρ density

Superscript

T transpose
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Subscript

exit exit conditions
in start point
out end point
ref reference
x ∂/∂x
y ∂/∂y

I. Introduction

The performance of low-pressure turbines (LPT’s) is strongly affected by flow separation. There is
a possibility of delaying the boundary layer separation by tripping the boundary layer with the use of
generators placed on the surface of the airfoil. Usually, a trial-and-error method is used to determine an
appropriate placement of the control elements. However, this approach is time consuming and expensive.

One of the possible scenarios of early transition is associated with the development of velocity streaks.
Due to a secondary instability mechanism (associated with the presence of free stream turbulence), velocity
streaks in the boundary layer flow may lead to bypass transition at low Reynolds numbers. This earlier
transition to turbulence can prevent the flow separation. To generate the streaks, one may introduce a
system of counter-rotating streamwise vortices that decay downstream and result in a streaky structure in
the boundary layer.

Analysis of optimal streamwise vortices within the scope of the transient growth theory1 indicated that
a favorable pressure gradient suppresses the transient growth mechanism. Therefore, a row of localized
generators placed on the wall will be unlikely to generate the optimal perturbation. However, there is also
a possibility that the same streaky structures can be generated with the help of distributed generators.

In Ref. 2, a model of optimal control of the algebraically growing perturbations by blowing and suction at
the wall was proposed. The model provided a tool to find the distribution of blowing and suction at the wall
that suppresses the streaky structures. Because the theoretical model2 is based on linearized equations, it
can also be used to optimize the distributed generators in order to generate the streaky structures equivalent
to those generated by the optimal perturbation.

In the present work, the distributed generators are emulated by the normal and tangential velocity
perturbations at the wall. A parametric study of these generators has been performed for a flat plate
without a pressure gradient and for a flat plate with a favorable pressure gradient.

II. Governing Equations

We consider steady three-dimensional disturbances in an incompressible two-dimensional boundary layer.
The streamwise coordinate, x, is made nondimensional using a reference length scale Lref , while the
normal and spanwise coordinates, y and z respectively, are made nondimensional using the length scale
√

νLref/Uref , where ν is viscosity and Uref is a reference velocity. With the help of a small parameter ε

defined as ε =
√

ν/UrefLref , the following scalings are assumed for the streamwise, normal and spanwise
velocity disturbances, u, v and w respectively, and the pressure disturbance, p:

u ∼ Uref , v ∼ εUref , w ∼ εUref , p ∼ ε2ρUref (1)

This choice of scaling of the linearized Navier-Stokes equations along with the neglect of curvature effects leads
to the governing equations for Görtler instability with Görtler number G = 0. The solution is assumed to be
periodic in the spanwise direction z. It is therefore possible to assume solutions of the form u = u(x, y) cosβz,
v = v(x, y) cosβz, w = w(x, y) sinβz and p = p(x, y) cosβz where β is the spanwise wave number. The

2 of 13

American Institute of Aeronautics and Astronautics



governing equations are given in dimensionless form as:

ux + vy + βw = 0 (2)

(Uu)x + V uy + vUy = uyy − β2u (3)

(uV + vU)x + (2V v)y + βV w + py = vyy − β2v (4)

(Uw)x + (V w)y − βp = wyy − β2w (5)

where U(x, y) is the mean-flow streamwise velocity and V (x, y) is the mean-flow normal velocity. U is scaled
with Uref and V is scaled with εUref .

Since we investigate two types of distributed generators, there are two sets of boundary conditions. The
first set of boundary conditions is associated with the normal velocity perturbation and is given as:

y = 0 : u = w = 0, v = Vw and y →∞ : u,w, p = 0 (6)

where Vw is the normal velocity of blowing or suction at the wall (y = 0). The second set of boundary
conditions is associated with the tangential velocity perturbation and is given as:

y = 0 : u = v = 0, w = Ww and y →∞ : u,w, p = 0 (7)

where Ww is the tangential velocity of blowing or suction at the wall. The system of equations (2-5) can
be solved subject to the boundary conditions (6) or (7) with a prescribed initial velocity perturbation at
x = x0.

Introducing the vector f = (u, v, w, p)T , where the superscript “T” means transpose, the governing
equations (2-5) can be recast as

(Af)x = B0f + B1fy + B2fyy (8)

where A, B0, B1, and B2 are 4× 4 matrices given in the appendix as well as in Ref. 1 and Ref. 3.

III. Optimal Control: Model

A. Model

We are interested in computing the distribution of blowing and suction that can generate a streamwise
velocity streak equivalent to that which will be generated by an initial optimal perturbation. Since the
problem is linear, this distribution can be determined using the optimal control model of Cathalifaud and
Luchini.2

Given an optimal initial disturbance at x0, the method determines a control by blowing and suction
that suppresses the streamwise streaks. The method of optimal control is based on the minimization of
an objective functional subject to constraints. Using standard mathematical techniques from control the-
ory,4 a system of differential equations (direct and adjoint problems) along with conditions of optimality is
formulated. The solution gives the optimal control and is computed using an iterative procedure.

For the sake of clarity, we recapitulate the formulation of the optimal control model. In this problem,
f is the vector containing the state variables, Vw (or Ww) is the control variable and the constraints are
given by the direct problem (Eq. 8) along with its boundary conditions and initial condition. Additionally,
ξ= (a, b, c, d)T is the vector containing the Lagrange multipliers and ζ is the Lagrange multiplier associated
with the wall receptivity. Although we continue the model description using the control variable Vw, the
model is valid for Ww as well. The objective functional to be minimized is given as

J (f , Vw) =
1

2

∫ ∞

0

u2(xout, y) dy (9)
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Minimization of this functional is equivalent to minimizing the energy of the disturbance at the output
cross-section. Note that this objective functional does not take the “cost” of the control into account.

The Lagrangian functional is defined as

L(f , Vw, ξ, ζ) = J (f , Vw)−

∫ xout

xin

∫ ∞

0

ξ · [(Af)x−B0f−B1fy−B2fyy] dy dx−

∫ xout

xin

ζ(x) ·(v(x, o)−Vw(x)) dx

(10)
and the equations of the adjoint problem can be found from the condition of extremality

δLf = lim
τ→0

L(f + τδf , Vw, ξ, ζ)− L(f , Vw, ξ, ζ)

τ
= 0 (11)

where δf is a variation of f . The equations for the adjoint problem are

ax + Ubx + V cx + (V b)y + byy − β2b = 0 (12)

Ucx + 2V cy + cyy − β2c− Uyb+ ay = 0 (13)

udx + V dy + dyy − β2d− β(a+ V c) = 0 (14)

cy + βd = 0 (15)

The boundary conditions are

y = 0 : a = b = c = 0 and y →∞ : a+ cy + 2cV = 0 (16)

and the initial condition of the adjoint equations, ua(xout, y) is given by the solution to the direct problem
at the end point, u(xout, y). Furthermore, the optimality condition is given by

y = 0 : a+ cy = 0 (17)

B. Iterative Procedure

An iterative procedure is used to numerically determine the optimal control. The algorithm is given as:

1. The forward problem using the direct equations is solved from x = xin to x = xout subject to the
boundary conditions and the initial condition (the optimal perturbation).

2. The objective functional is computed at the end of the forward iteration, and it is compared to the
value of the objective functional found at the end of the first iteration. If the ratio is less than a prescribed
value, the iterations stop. Otherwise, the initial condition for the backward problem is found from the solu-
tion to the forward problem at x = xout.

3. The backward problem using the adjoint equations is solved from x = xout to x = xin subject to the
boundary conditions and the initial condition for the adjoint problem.

4. A new initial condition and a new boundary condition for Vw is computed, and the forward problem
is iterated. The loop continues until the optimization is considered to have converged.

Given an initial optimal perturbation, this iterative scheme determines the optimal control by blowing and
suction to suppress the streamwise velocity streak that would have been generated by the initial disturbance
(if there was no control). Again, since the problem is linear, this same optimal control by blowing and
suction can be used to generate this same velocity streak in the case of zero initial disturbance.
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IV. Results

A. Flat Plate Without a Pressure Gradient

We consider a flat plate of length L in a flow having free stream velocity U∞. Therefore, this case has
the scalings Lref = L and Uref = U∞. The flow control area is distributed over the interval [x0, 1], where
x0, the location of the optimal inflow disturbance, is varied. For each pair of the parameters β and x0, a
transiently growing optimal inflow was determined using the model described by Andersson, et.al.,3 Luchini5

and Tumin, et.al.1

The optimal inflow disturbance is found in terms of the energy growth ratio G = Eout/Ein, where Ein is
an input energy norm and Eout is an output energy norm. Employing the fact that the optimal disturbances
at the input are represented by streamwise vortices with corresponding streamwise streaks at the output, we
use the following energy norms of Ref. 1 and Ref. 5:

Ein = ε2
∫ ymax

0

(v2 + w2) dy and Eout =

∫ ymax

0

u2 dy (18)

As an example, the streamwise velocity perturbation at x = 1.0 is shown for β = 0.4 and x0 = 0.25 in
Fig. 1. Figure 2 shows the optimal velocity perturbations at x0 = 0.25 that corresponds to the streamwise
velocity perturbation at x = 1.0 shown in Fig. 1.

Figure 1. Streamwise velocity perturbation at x = 1.0
for β = 0.4 and x0 = 0.25.

Figure 2. Optimal velocity perturbations for β = 0.4
at x0 = 0.25 corresponding to the streamwise velocity

perturbation at x = 1.0 shown in Fig. 1.

After the optimal inflow was computed, the iterative procedure described in Section III was applied to
calculate the wall velocity distribution that would suppress the velocity streaks at x = 1.0. Due to the linear
character of the problem, this velocity distribution is also the optimal distribution for the generation of a
streamwise velocity streak that has the same properties as in the case of an optimal inflow perturbation.

Figures 3 - 6 depict the blowing and suction distribution of Vw, the normal velocity at the wall, that will
lead to optimal streaky structures for various combinations of the parameters β and x0. Figure 3 shows Vw

for x0 = 0.1 for four choices of β (β = 0.2, 0.4, 0.6 and 0.8). For these four values of β, Fig. 4 shows Vw for
x0 = 0.25, Fig. 5 shows Vw for x0 = 0.4 and Fig. 6 shows Vw for x0 = 0.55.

In each figure, one can see that for optimal control, a large region of blowing exists at the start of the
flow control interval. For each choice of x0, the magnitude of Vw at x0 increases as β increases. Also, for
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each choice of β, the magnitude of Vw at x0 increases as x0 increases. After the interval of blowing, there is
a region of suction. The location of this blowing-suction transition within the flow control interval remains
roughly the same for a choice of β. Within this region of suction, the maximum magnitude of Vw is associated
with the largest value of β for a given x0; also, this magnitude increases as x0 increases. Beyond this region
of suction there are alternating smaller regions of blowing and suction. The number of these regions increases
as x0 increases. Furthermore, because of the scalings, the physical size of Vw is very small.

Figures 7 - 10 depict the blowing and suction distribution of Ww, the tangential velocity at the wall, that
will lead to optimal streaky structures for various combinations of the parameters β and x0. Figure 7 shows
Ww for x0 = 0.1 for four choices of β (β = 0.2, 0.4, 0.6 and 0.8). For these four values of β, Fig. 8 shows
Ww for x0 = 0.25, Fig. 9 shows Ww for x0 = 0.4 and Fig. 10 shows Ww for x0 = 0.55.

Statements similar to those made about Figs. 3 - 6 can be written regarding the relative magnitudes of
Ww for fixed values of x0 and β. One major difference is that the first region in the flow control interval
is one of suction. This region is followed by a region of blowing, and then there are alternating regions of
suction and blowing, with the number of regions increasing as x0 increases. As with Vw, because of the
scalings, the physical size of Ww is very small.

B. Flat Plate With a Pressure Gradient

Optimal perturbations in a boundary layer with a pressure gradient were considered in Ref. 1. The pressure
distribution corresponded to the model designed at the NASA Glenn Research Center that was used to study
the flow over a LPT blade. This case has the scalings Lref = Ls, where Ls is the suction surface length
and Uref = Uexit, where Uexit is the nominal exit free-stream velocity based on the inviscid solution.1,6 The
optimal inflow disturbance was applied at x0/Ls = 0.125 and x0/Ls = 0.25 with the optimal energy growth
occurring at x/Ls = 0.5. For each choice of x0/Ls, four values of β were considered (β = 0.3, 0.5, 0.7 and
0.9).

We again apply the optimization technique to find the blowing and suction distributions for both the
normal and tangential velocities at the wall in order to generate the same streaky structures as in the case
of optimal perturbations. Figures 11 and 12 show Vw for several choices of β where x0/Ls = 0.125 and 0.25
respectively. For these same values of β, Figs. 13 and 14 show Ww for x0/Ls = 0.125 and 0.25 respectively.

The general behavior of the relative magnitudes of Vw and Ww for choices of x0 and β remain consistent
with that shown in Figs. 3 - 6 and Figs. 7 - 10. However, in the case of a flat plate with a pressure gradient,
the first region of Vw in the flow control interval is a region of suction. This region is followed by a region of
blowing, and again these regions are followed by alternating regions of suction and blowing, with the number
of regions increasing as x0 increases. Additionally, for the case of a flat plate with a pressure gradient, the
first region of Ww in the flow control interval is one of blowing. As with Vw, this region is followed by
alternating regions of suction and blowing.

V. Conclusions

In this paper we used an iterative method to compute the optimal control by blowing and suction at the
wall that minimizes the energy of perturbations when the initial perturbation is optimal. Due to the linear
nature of the governing equations, these same distributions can be used to generate the streamwise velocity
streaks that would have been generated from the optimal disturbance. The magnitude of the normal and
tangential velocity perturbations that can generate the velocity streaks is very small. Therefore, unlike the
case of localized generators, distributed generators may be a good candidate to generate the velocity streaks
that lead to bypass transition.
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Appendix

The matrices of Eq. (8) are given as follows:

A =











1 0 0 0

U 0 0 0

V U 0 0

0 0 U 0











, B0 =











0 0 −β 0

−β2 −Uy 0 0

0 −2Vy − β2 −βV 0

0 0 −Vy − β2 β











B1 =











0 −1 0 0

−V 0 0 0

0 −2V 0 −1

0 0 −V 0











, B2 =











0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0
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Figure 3. The blowing and suction distribution for the normal velocity at the wall for the flow control interval

[0.1, 1] for four choices of β.

Figure 4. The blowing and suction distribution for the normal velocity at the wall for the flow control interval

[0.25, 1] for four choices of β.
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Figure 5. The blowing and suction distribution for the normal velocity at the wall for the flow control interval

[0.4, 1] for four choices of β.

Figure 6. The blowing and suction distribution for the normal velocity at the wall for the flow control interval

[0.55, 1] for four choices of β.
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Figure 7. The blowing and suction distribution for the tangential velocity at the wall for the flow control

interval [0.1, 1] for four choices of β.

Figure 8. The blowing and suction distribution for the tangential velocity at the wall for the flow control

interval [0.25, 1] for four choices of β.
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Figure 9. The blowing and suction distribution for the tangential velocity at the wall for the flow control

interval [0.4, 1] for four choices of β.

Figure 10. The blowing and suction distribution for the tangential velocity at the wall for the flow control

interval [0.55, 1] for four choices of β.
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Figure 11. The blowing and suction distribution for the normal velocity at the wall for the flow control interval

[0.125, 0.5] for four choices of β.

Figure 12. The blowing and suction distribution for the normal velocity at the wall for the flow control interval

[0.25, 0.5] for four choices of β.
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Figure 13. The blowing and suction distribution for the tangential velocity at the wall for the flow control

interval [0.125, 0.5] for four choices of β.

Figure 14. The blowing and suction distribution for the tangential velocity at the wall for the flow control

interval [0.25, 0.5] for four choices of β.
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