Thermoelectric Properties in the TiO$_2$/SnO$_2$ System

F. Dynys, A. Sayir, NASA Glenn Research Center, USA; A. Sehirlioglu*, Case Western Reserve University, USA; M. Berger, Ecole des Mines, France

Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO$_2$/SnO$_2$ system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 °C. Fabricated TiO$_2$/SnO$_2$ nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO$_2$-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coefficient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.
Thermoelectric Properties in the TiO$_2$/SnO$_2$ System

Fred Dynys,
Ali Sayir,
Marie-Hélène Berger
Alp Sehirlioglu,

NASA-Glenn USA
NASA-Glenn USA
Mines-Paris France
CWRU USA

NASA-IVHM
AFOSR (EOARD Grant # 073031)
NASA-Hypersonics (NNX08AB34A)
Objective: High Conversion Efficiency
- Reduces Mass, Volume & Cost

Space Power Generation

Waste Heat to Power
- Waste Heat is a under utilized energy resource
- U.S.-energy consumption ~29 tera-kWh (10^{12})
 - Barrels of Oil – 170 giga-barrels (10^9)
- World-energy consumption ~120 tera-kWh (10^{12})
- 20-65 percent is lost in the form of heat
- Maximizes efficiency
- Reduces CO₂ emission

- High temperature
- Oxidizing environment
- Low mass
- Low cost
Nanotechnology

Figure of Merit

\[ZT = \frac{S^2 \sigma}{\kappa T} \]

- \(S \) - Seebeck coefficient
- \(\sigma \) - electrical conductivity
- \(\kappa \) - thermal conductivity

Efficiency

\[\eta_{\text{max}} = \frac{\Delta T}{T_{\text{hot}}} \frac{\sqrt{1 + ZT} - 1}{\sqrt{1 + ZT} + T_{\text{cold}} / T_{\text{hot}}} \]

Phonon Scattering:
- Atom disorder
- Superlattices
- Alloying
- Crystal Structures
- Anharmonic vibrations
- Nano-technology

Fleurial/Chen – JPL/MIT

Si/Ge

Alloy Limit
Spinodal Decomposition

Desired Features
- ~50 nm grains
- High Temperature Stability
- Wide Composition Range
- Large Δ Mass

Transparent Conducting Oxides

Insulator/Semiconductor/Conductor
- Large Bandgap 2.4-3.8 ev
- N-type – Degenerate Semiconductor

Electrical Conductivity

<table>
<thead>
<tr>
<th>TCO</th>
<th>σ(S/m) @ RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITO</td>
<td>8x10^5</td>
</tr>
<tr>
<td>In$_2$O$_3$</td>
<td>1x10^6</td>
</tr>
<tr>
<td>SnO$_2$</td>
<td>2.5x10^5</td>
</tr>
<tr>
<td>ZnO</td>
<td>8.3x10^5</td>
</tr>
<tr>
<td>ZnO:Al</td>
<td>7.7x10^4</td>
</tr>
<tr>
<td>CdSnO$_2$</td>
<td>7.7x10^5</td>
</tr>
<tr>
<td>CdO:In</td>
<td>1.7x10^6</td>
</tr>
</tbody>
</table>

Fig. 10. TEM image of (Ti$_{0.5}$/Sn$_{0.5}$)$_2$O$_2$ ceramics annealed for 48 h.
Shultz & Stubican, JACS, 53, 1970
Experimental

<table>
<thead>
<tr>
<th>Material</th>
<th>Purity</th>
<th>APS (nm)</th>
<th>SSA (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnO₂</td>
<td>99.9%</td>
<td>50</td>
<td>14.2</td>
</tr>
<tr>
<td>TiO₂ Rutile</td>
<td>99.99%</td>
<td>20</td>
<td>>30</td>
</tr>
<tr>
<td>Dopants</td>
<td>CoO, MnO₂, Ta₂O₅, In₂O₃</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- TiO₂/SnO₂: 50/50 mol %, 75/25 mol %, 25/75 mol %
- Powder Mixing
- Compaction Die Press
- Reactive Sintering 1250-1550 °C
- Anneal 72 Hrs

Thermal Conductivity

- Laser Flash Method - Thermal Diffusivity
- Standard
- Specific Heat - Cₚ - Laser Flash
- Thermal Conductivity (K = αρCₚ)

Seebeck/Resistivity

- ΔT 0-50 °C/Furnace RT-1000 °C

- ZEM-3

- 6-22 mm
- 4-8 mm
Sintering

50/50 TiO₂/SnO₂

1625 °C

75/25 TiO₂/SnO₂

1550 °C

SnO₂ Sintering-Inhibited

- Surface Diffusion <1100 °C
- Evaporation >1100 °C

SnO₂ → SnO + ½O₂(g)

SnO₂ Sintering-Controlled By SnO₂

Sintering Aids-SnO₂

- MnO, CoO, CuO, ZnO

CoO → Co_{Ti,Sn}'' + V'O

Ta₂O₅ & In₂O₃

Ineffective Sintering Aids

Ta₂O₅ → 2Ta^{•}_{Ti,Sn} + 2e' + ½O₂

In₂O₃ → 2In^{•}_{Ti,Sn} + 2V'O
75/25 TiO$_2$/SnO$_2$

Undoped

Large Grain

Small Grain

1% Ta$_2$O$_5$

Nano-ppts

Diffuse Composition Fluctuation
Compositions exhibit low κ – 1.7 to 6.8 W/mK
Observe no dependence on composition or post treatments
Spinodal Decomposition – κ reduction?
Best ZT \sim 0.05
Electrical Conductivity
75/25 TiO₂/SnO₂

- Ta₂O₅ & Nb₂O₅ - Increases σ
- No further σ increase above 2% dopant.
- In₂O₃, MnO & CoO – No σ increase

Activation Energy

<table>
<thead>
<tr>
<th></th>
<th>Undoped</th>
<th>1% Nb₂O₅</th>
<th>0.5% Ta₂O₅</th>
<th>1% Ta₂O₅</th>
<th>2% Ta₂O₅</th>
<th>4% Ta₂O₅</th>
<th>0.5% Ta₂O₅</th>
<th>1% MnO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.97 ev</td>
<td>0.25 ev</td>
<td>0.49 ev</td>
<td>0.22 ev</td>
<td>0.30 ev</td>
<td>0.26 ev</td>
<td>0.97 ev</td>
<td>0.30 ev</td>
<td>7.9 ev</td>
</tr>
<tr>
<td>1% Nb₂O₅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20 ev</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.99 ev</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1% CoO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6 ev</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.9 ev</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
ZT = \frac{S^2 \sigma}{\kappa T}
\]

σ to low
Seebeck Coefficient
75/25 TiO₂/SnO₂

- N-type
- Large Seebeck coefficients at low σ
- Increase Ta₂O₅ conc. reduces Seebeck coefficient
- Nb₂O₅ doping most effective in Seebeck reduction
Semiconductor

• Improve electrical conductivity by forming oxygen deficient material \((\text{Ti}_x\text{Sn}_{1-x})\text{O}_{2-y}\)

\((\text{Ti}_{0.5}\text{Sn}_{0.5})\text{O}_{2-y}\)

• Control the oxygen stoichiometry to increase \(\sigma\) and maintain a good Seebeck coefficient?

\[\text{H}_2\text{ Reduction} \quad 10^3 \text{ to } 10^4 \times\]
Effects of reducing conditions

$\text{(Ti}_{0.75}\text{Sn}_{0.25})\text{O}_{2-x}$

4% Ta

1% Ta
Mechanical Robustness

Undoped – 800 °C

1% Ta doped – 900 °C

4% Ta doped – 900 °C
Power Factor and Thermal conductivity

4% Ta$_2$O$_5$-800 °C

\[PF = S^2 \sigma \]
In Summary

- TiO$_2$/SnO$_2$ compositions exhibit low thermal conductivity. Nanostructured phases are observed.
- Improved electrical conductivity is observed for Ta$_2$O$_5$ doped (Ti$_{0.75}$Sn$_{0.25}$)O$_{2-x}$ reduced at 800 °C.
- Reduction of doped samples retained a low thermal conductivity (\approx2W/mK).
- 800 °C reduction increases the power factor by 1.69 – 2.76 for 4% Ta$_2$O$_5$ doping. However, ZT is <0.1.

Dense specimens with Sn-rich compositions need to be evaluated

Acknowledgements

Thomas Sabo
Raymond Babuder
Electrical Conductivity

\((\text{Ti}_{0.75}\text{Sn}_{0.25})\text{O}_{2-x}\)

- ≥800 °C treatment is required to enhance \(\sigma\).
- 4% Ta\(_2\)O\(_5\) produces the highest \(\sigma\).
- Significant effect on low temperature \(\sigma\).