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CRITICAL COMPRESSIVE STRESS FCR OQOUTSTANDING FLANGES

By .Eugene E. Lundquist and Eldbridge Z. Stowell

SUMMARY : : E

A chart is bregen»ud for the valuas of the coefficient
in the fTormula for the critical ‘compressive stréss at which
buckling mar be expected to oceur in outstanding fianges.
These flanges are flat rectangular plates supported along
the Ioaded edges, supported and elastically restrained
along one unloaded edze, and Tree alon3 the other unloaded
edge. : -

The mathematicsl derivations-of the formulas requlred
for the comstructioxn.of the chart are ziven.

INTRCDUCTION

In the design of stressed—-skin structures for air-
craft as well as in the desizn of compression members, it
is desirable to know the compressive stress at which buck-
ling occurs. In practice the structure is usually so im—
perfect or so eccentrically loaded that lateral deflection
starts with the vezinning of loading. Then lateral deflec-
tion starts with the beginning of loading, however, there
is usually a very pronounced increase in deflection at the
critical compressive stress for which duckling would have.
ocecurred had the structure been perfectly straight and cen-
trally loaded. The evaluation of this critical compres—
sive stress for a flat plate, with certain -conditions of
edge support, is discussed in this paper.

Wher a flat vlate is. loaded in compression, the. .two
loaded edges are either simply supported or restrained in
some maunner. If %the two unloaded edles are not supporited,

the plate is considered to e a column. ., Waen one, or both,
unloaded edges are also supoorted or restrained in some
manner, the critical compressive siress is Zreatly in-
creased over that for the nlate as a column. That the com
pPressive stress is increased when one, or both, edges are
supported or restrained in some manner has been recoZnized
for vears. Because of the importance of the edge condi-
tions, formulas based on the assumption that each edge of
the plate is free, simply supported, or fixed have Deen
emploved in design. (See the summary of these formulas
given in reference l.) ‘



A study of the theory and the more reliadle test data
on the buckling of plate elements in stressed-skin struc-
tures and comnression members, revealed the necessity for
a more careful consideration of the edge conditions of
Plates than has bsen previously attempted. Accordingly,
studies were made of the critical compressive stress for
I-, Z-, channel, and rectangular-tube sections in which
" Proper consideration was £ivaen to the interaction between
the individual parts of the cross section. (See refer-
ences 2, 3, ard 4., In order to make the results of the
work more generallwr applicable, studies were also made of
the basic plate elements that comprise these sectious,

All the desizn charts resulting from this investigation
were made available in 1938, The combination of the pres-—
ent paper with references 2, 2, 4, and 5 1ig a nore con=-
plete presentation of all this material. o

The bvasic element treated in this paper is a plate
simply supported along the loaded edges, supported and
elastically restrained against rotation along one unloaded .
edge and free along the renaining unloaded edge. This
basic element is representative of the outstanding flange
on the I-, Z-, and channel-section columns. In reference s
5 is treated the basic element representative of the webs
of these sections with elastic restraint along both unload-
ed edses.

The mathematical derivations required for the investi~
Sation of the present paper are given in appendixes A and
B, The results of practical use are given in the bodr of
the paper.

EVALUATION OF CRITICAL STRESS

Y

Within the elastic range.- Within the elastic range

in which the effective modulus of elasticity is Younzg's
nodulus, the critical compressive stress for for a thin
flat rectangular plate is expressed as (reference 6, D
731, eguation (214)) :

82 ™ 2 v
for = Eml 2 2 z (1)
) 12(1 - u e '

k . nondimensional coefficient that depends upon
conditions of edze restraint and shape of
.nlate .
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Tae 2435~T material delivered under specification
46492 almost alwavs has properties that are better than
the minimum required vroperties. The relationsihips bve-
tween f,, and £,,./M for the average 245~T material de-

livered are <given irn figure 2. This figure has been Dreg—
rared in the mznner described in reference 2, the colunn
curves for average 245~T material as Ziven in reference 8.
being used.

Figures gimilar to 1 and 2 of this vaper may ve pre-

rared for any material. Tae engineer usinrg this paper
must therefore decide whether the computation should De

based on minimum requiréd material properties or average
material properties.

'\l

Regardless of whether ¢ cr 2 is used, if the

igure 1
restraint against the rotation of the flange at its base
is near zero and A/b is greater than approximately 2.5,

it is recommended that the curve = T be used.
For all other values of the restraint, the curve N =
T+Z T - . o n :
—~—~~A/ should be satisfactory. In Figures 1 and 2 the

4
different equations involving T  merely identify differ-
ent curves that result from the relationships indicated.

The value of T is E/E, the ratio of the effective col-
umn modulus for vending failure at the stress Lo to

Young s modulus.

When the restraint azainst the rot tion apgroaches

zero, the T = —————— curve is recommended in recognition

of the fact that
buckling ariseg 1
The two curvés re

f,, and fcr/ﬂ

data indicate that

e resistance of the plate elements to
gely from their torsional rigidity.
mmended to ghow the relationship vetween
euld be used until future experimental

momd’

ifferent curves should be used,

o

b4

VALUATION OF k

The value of f,,./M at which buckling occurs is given

by equation (2), in which all of the quantities are known
excepb the value of the coefficient k. The values of k
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can be odtained from figure 3; fizgure 3(b) is & portion o
figure 3(a) plotted to a larger scale. In thals chart, k
is plotted against the ratio of the half-wave length to
the width A/b for different values of a parameter €,
termed the "restraint™ coefficient. (In reference §
Traver and MHarch refer to € as the "fixity" coefficient.
Im this paper € is called the restraint coefficient to
avoid confusion with the fixity coefficient ¢ for col-~’
unns. )

The restraint coefficient € depends upon the rela-
tive stiffness of *he plats and the restraining element
along the side edge of the vlate. The simplest conception
of € is obtained when the restraining element, or stiff-
ness, 1s assumed fto be replaced by an elastic medium in
which rotation at one point does not influence rotation at
another point. For tn*s tvype of restraining medium along
the edge of the plate, '

. . ' : 45,% E o
within the elastic rw“ﬁe € = —35— ‘ ()
. _ 45 .h
. " L2 o Q . (4)
beyond the elastic range € = “F5
i » .
where
S, stiffness per unit length of elastic re-
straining rnedium or moment reguired to
rotate a udit 1eﬁqth of elagtic medium
through one-fourth radian
D flexural rigidity of plate, per unit length
. - L3
[
Li2(1 - wo)d .
i coefficient to allow for a decrsase in D
due to the appnlication of siresses bevond
the elastic range
Ingsmueh as T ig a Function of stress, its value

for 245«T material can be obtained from fizure 4 or 5, de-
pending upon whether minimum required properties or aver-
age proverties are being used. The values of T,, Ty, Ty

f‘J

viso given in fizures 4 and 5 occur in appendix A.
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ro, € . is also zero ond the condition

zZe
or%t, or zero restraint, is obtained. If
e, € 1is also infinlite and the condition of
g d edge or of ianfinite restraint is obtained. There-
fore o variation of ¢ from zero to infinity will cover
all possible conditions of restraint at the side edge of
the plate. '

Figure 3 shows that for each value of € taere is 2o
value of A/bd for which k is a minimum. Strictly, a
whole number m of hnlf-wave lengths A nust exist ia
the, length of the plate =a. Hence,

A (5)
mb

Thus, %o read a wvalue of k¥ from Figure 3, it is neces—
sary to substitute m =1, 2, 3, etc., in equation (5)
until a value for A/b is obtained tant gives the small-
est value of k in fizure 3. This smallest value of k
is the one to be used in equation (1) or (2). This gen-
eral procedure will alwnys give the correct wvalue of k
for use in eguation 1) or {2) regardless of whether or
not S,, arnd hence €, is a function of tiae rnlf-wave

length A.
, and hence €, 1s
the general pro=—
k¥ can be used
A/b replaced

O
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Waen S,, and hence ¢, varies with A or A/,

figure 6 should not be used dut the general procedure as
applied to figure 3 should be used to obtain the correct
value of k for equations (1) and (2).
EVALUATION OF S, AND ¢

Before it is vossible to determine Xk from figure 3
or 6, it is necessary first to evaluate the restraint co=
efficient €. The value of S, to be substituted in
equation (3) or (4) will depend upon the characteristics
of the structual member, or members, that provide the re-
straint. In this paper it is assumed that the restraint



is provided by a specially defined elastic restraining me-
dium. As a result of this assumption, it has been possi-
ble to derive the general chart of figure 3, which is inde~

pendent of the structure that provides the restraint.

The basic property of the elastic-restraining medium
-is that rota*ion at one point of the medium does not affect
rotation at ~nother point of the medium. In mony practical
probleng the elastic restraint is provided by a stiffener,
a plate, or some other structure for which rotation at one
point affects rotation ot another pcint. Cornsequently, the

evaluation of 'So in any given problen must take into ac—

count the effect of this interaction within the elastic re-
straining structure.

The formula for S, to ve used in any Siven prodlem
will depend upon the Lype of structural member that pro—
vides the restraint. Becaouse this entire subject of re-
strdint supplied to the side edge of a vlate has deen

ather superficially treated in the literature, it is bveing
made the subject of a series of papers by the NACA, the
first of whieh is reference 10. '

Langley tenmorial Aeronautical Lamorato*v
National Advisory Committee for Anronnutlcs,
Langley Field, Va.



APPENDIX A

SOLUTION BY DIFFERENTIAL EQUATION

The procedure for obtainirg the critical stress of a
plate uniformly compressed along two opposite, simply sup-—
ported edges is given in reference 6 (p. %37). In this
method, which was alsoc used by Dunn in reference 11, the
critical stress is found bv SDlVlﬁ% tne d¢‘°erent1al eqva~
tion expressing the equilidrium of the buckled plate. The
same method is applied in thls paper to the case in which
an elastic restraint against rotation is present along one
unloaded edge cof %the vplate, while the other unloaded edge
remains free to deflect and to rotate. For generality,
the elastic restraint is assumed to arise from an elastic
medium distridvuted alon@ the unloaded edge; this mediunm
has the basic property that rotation at onre point within
it does not influence the rotation at any other point.,

1o

Figure 7 shows the coordinate svstem and the plate
dimensions. The differential eqaaulon for the equilidbri-
un of a plate element is

2 4 2 ' ~4
£ —g—g = = D (Tl e + 27, =1 S T, 9—%) (A-1)
x o .

where
f uniformly distridbuted compressive stress
t thickness of plate

w deflection normal to plate

X longitudinal coordinate in direction of
applied stress
D flexural rigidity of plate, per unit length

N

¥y transverse ccoordinate across width of plate

Tys Tgs and T coefficients equal to or less

than uwnity



In equation. (A-1), the term T% (a w/0x ) is con-
cerned with the external forces cn the Dl@te tLat cause

. 4 . 4
buckling: whereas the term- - D T3 Q_E + 27T, 9w _ g4

resistance of tae

5
c-f-
B
®

[ )
B
c'-
]

H

=]

1
]

w .
- > is concerned with

Dlate to buckling The terms involving T; and Tz 1in
equation (A-1) are concerned with the loagit udinal and the
transverse bending, resnectively; whereas the term involv—
ing Ta is concerned principally with the torsional stiff-—

ness. The cdoefficier Ty, Tg. and Ty allow for the
the various terms as the plate

ts
change in the magnitude
e stic range. n the elastic

ig stressed bevond tae

The loaded edzes are simply supported and are not dis-
placed in the direction. w. OFf the several forms of the
general solution of ecuation (A-1), the following form was
selected as avppropriate for thils nroblem:

/ Ay ay : 7
w o= &Cl cosh fg + Cs ginh ?? + Gz cos =
N mX
+ 04 sin ££-> cos - (A-2)
where
o ,/,T ] /’] N/ TR T
JNS Te N T TANR/NTE 5/
/ 7
/ R /T T
sen /2 Bz JELE (D) e
) J T x J 73 o/ \ Ta
and
2v. 2. .
. 12(1 - poin f
B o= — ER. (A"‘S)
1T E 3%

Equation (A=2) satisfies the boundarv conditions at the
loaded edges and sgives real valuves for bota o and B

near the dbuckling stregs f = Tap:
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Gg, 03, and 04

The valuses of the coofficlents OC1,
are to be found from the boundary conditions along the side
edges of the plate, The value of A, the half-wave length
of the buckle pattern, is found from the condition that
there must be an integral number of half-wave lengths in

the length a of the plate; taus

- 2 . oA
A= = (A—-6)
where m=1,-2, 3, etec,
In the' elastic range, where T, = Ty = T5 = 1, the
values of o and B are
o S — .
a,::'rr/-;-z /:;\'l‘}: (A"',?)
v 4/

m
1

= 1‘{/~7‘i+/° |  (A-8)
/L .

The solutlion given by equation (A=2) was selected %o
satisfy the boundary conditions of no defléction and sim-
ple support (no moment) alonz the loaded edges. The bound-
ary coanditions alons the urloaded side edges have also to
be satisfied. The boundary conditions along the unloaded
side edzeg are:

<w)y=o = 0 - (A~9)
I -2 ;\2 \.,_ 7 Dor ™\
p ¥, 2¥, = 45 (X A-10)
ETCIL o \ay/ (
\ /‘V‘:Q ::,":O
-1 NE
"7 °F y=b
3 3. 1
DI8TH 4 (o L) -BIW =0 (A-12)
 dr® 3x oy
=D
where S is the stiffrness per unit length of. the elastic
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restraining medium or the moment required to rotate a unit

length of the medium through one~fourth radian.

From equations (A-9) and (A-10) are obtained:

. €
= g (as + 80,)

Q
[

i

i

where

From equations (A-11) and (A-12), are obtained:

-

Cs | p sinh o + ;EQLS—E (p cosh a + g cos B){
- o + B d
- Cs | q sin B - —§§£—~§ (p cosh a + g cos B) | =
L a + B N
Ca (qa cosh oo + ——%-&_ _ (4o ginh o - pB sin B)
2! 2 V& L
L a + B o

-

- G ) @__E P _" . jl__
4 |pB cos B -~ —z"—=—= (qa sinh a -~ pB sin B)J—G
B

. &

- where

o]
[H
Q
D
1
=
/>,{:l
o'
N’

]

¢ = B% + C%?)

(Aglza

(A-14)

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)

The Dduckled form of equilibrium of the plate is ob-
tained when the determinant formed by the coefficients of
Cz and Cz in equations (A-16) and (A-17) equals zero.

Thus,

=]

. 2 '
(p"+q ) aB cosh @ cos B + 2pqaB

2 2 2 - .

(a® + B%) (p®B sinh o cos B = q®a cosh o sim B)
- s ' ' '

+ € |

+ (p2p2—~¢Za®) sinh « sin B_J =0

(A-20)
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This equation establishes the critical compressive stress
for an outstanding flange elastically restrained against
rotation at one unloaded side edge. Thus equation (A=20)
was used to establish the exact values of k 3iven in
tadble I.

The condition of simple support (no restraint) along
the supported edge is degcridbed by € = O. For this spe-
cial case, the problem is to find the smallest value of
k% O that will satisfy equation (A-20) when € = O,

A convenient method for determining this value of k 1is,
first to solve for «¢:

€ - . . (a®+82)(p®B sinh o cos B-q®a cosh o sin B)

(p®+g®)aB cosh o cos B+2pq@8+(p252—q2m2)sinh o sin B

(A-21)
When € = 0, either :
C(,a + Ba = 0 (A.-'EE)
or ' '
p®B sinh « cos B ~ g%a cosh « sin B = O T (A-23)
or

(p%+q®)aB cosh o cos B+2pqaB+(p2B2-q®al)sinh a sin B=o

(A=24)

Equation (A~22) is true only if Xk = O, which can de
true only if the compressive stress f is zero. ZEgqua-
tion (A-24) applies only if k = o, which can be true
only if the compressive stress £ 1g infinite. Conse-
quently, if a finite value of Xk # 0, for which € =0
exists, equation (A-23) must be satisfied.

The special case of o fixed side edge (infinite re-

straint along the supported edge) is described by € = o.
Equation (A-21) shows that, if € = o, either
a® + B2 = o (A-25)
or o T
2 . 2 . ~
P°B sinh o cos B - g0 cosh o sin B = o (A-258)
or

(p%+q®)af cosh o cos B+2pqu$+(paea—q3d3)sinh o sin B=0

(A-27)



s
[¥5]

Equation (A~25} is true only for k = o, which can be

true only if the compressive stress f is infinite. Equa-
tion (A-26.) cennot be true for a finite value of k.

Hence if a finite value of k, for which € = o exists,
equation (4-27) must be satisfied.

APPEWDIX B

SOLUTION BY ENERGY METHOD

Because the exact solution of the differential equa-
tion Ziven in appendix A does not lend itself to a direct
calculation of k, as in the case of the energy method of
solution, an enersy solution was made to aid in the con-
struction of the chart of figure 3. The energy method
gives approximate walwes for %k, the asccuracy of which
depends upon how closelrv the assumed deflection surface
describesg the true deflection surface.

The energy method as anplied to the calculation of
critical compressive stress, is given in refersnce 5 {pe
327). The plate is stadle when (Vy + Vp) > T, and un-
stable when (V, + V5) < T, where T 1is the work dome Dy
compressive forces on the plate, V; 1is the strain ener-
gy in the plate, and Vs is the strain energy in the elas-
tic restraining medium along one side edge of the plate.
The critical stress is obtained from the condition of neu-
tral gtability:

T o= Vv, +. 7V, o (B-1)

w is the deflection normal to the plate at any
point X,y in the plane of the plate shown in figure 7,
and S, 1s the stiffness per unit length of the elastic
restraining medium or moment required to rotabte a unit
length of elastic medium through one~fourth radian, then
T, V,, and Vo are given by the following equations. (see
reference 6, eguatioans (199) and (201}, and reference 9,
equation. (73)): . - , '

b AJ2

P
! /.

Ih

i
¢

-1

2 ‘, .
@:zz> | - 5.
i % \5x dx ap (B=2)
o =A/2 ‘

, oo L
‘ . P
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b A/2 ,r
S R 2
v. =2 /] </5°W 3w
1 2 J i \a_g;g aya
o -aR |
2 2 2
/a W) dw oW \
+ 2(1 - - dxd, (B=3)
( w) | \axav 3x® 3y?2 | 7
J
A /2 .
as. P T 1
= -0 | (oW -
=2 [ (8 | (B-4)
e i =0 !
~AN/2 L 3
In order to evaluate T, V,, and V,, it is necessary

to assune a deflected surface w consigtent with the
boundary conditions. These boundary conditions at the side
edges of the plate are, in the coordinate system of figure
7

(w)__ = 0 (B~5)

¥=0
p (x 22w\ (aw\ -6
\Oya ’ 3x"Jy oo aV/yno (5-8)

%y | aaw\ '
D = + = Be?
<557'C‘ p’ axa/ r=~o O ( )
3 3 =
D [.a___ﬂ + (2 — p) _....a__-..E_- = 0 (B-S)
dy*® 3x° Oy -

When buckling occurs, a restraining moment will be
applied to the plate zalong the edge ¥y = 0; the magnitude
of the moment will depend upon the stiffness of the elastic
restrairing medium. If the elastic medium offers no re-—
straint against rotation, this moment will te zero and the
rlate will swizng about the edge v = 0, as adout a2 hinge.
In thigs case the plate will remain essentially flat across
its widthe On the other hand, if the elastic medium offers
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infinite restraint against rotation, the plate will not
rotate along the edge y = O, and the plate will deflect
across its width into a shape similar to that for a canti-
lever beam, JFor any restraint of the elastic medium be-
tween zero and infinity, the deflection curve across the
width of the plate is taken as the sum of the straight
line and the cantilever-deflection curve. In the direction
of the length, the usual sine curve indicated by tae solu-
tion of the differential eguation is used. Thus the de-
flection surface assumed for the plate is, in the coordi-
nate system of figure 7,

r \5 % 3
! Ng 7y AN <X
=< A= 4+ Bl — + — +
TEy L\b/ 1\y,) T °e b>
TV TX
+ a <—-) }-cos —= (3-9)
*\yp/ ] A _

where A and B are arditrary deflection amplitudes and
a; = ~ 4.963, ap = 9.852, and ayz = = 9.778. These val-

ues of a;, ap, and as were selected Dby taking the pro-

portion of two deflection curves that fave the lowest crit-—
ical compressive stress for a fixed edge flange for which

B = 0.3. These two deflection curves were for a cantilever
beam with lateral uniform load and for a lateral load pro-
poertional to y.

The condition B = 0, represents the case of a sim-
ply suvported or hinged edge at ¥y = O. The case of 4 =
0 represents the condition of a clamped edze at § = 0.

The ratio A/B 1is therefore a measure of edge restraint
and is related to the restraint coefficient ¢ through
the boundary condition 2iven in equation (B-86). Substibu-—
tion of w as given by equation (3—=9) into eguation (B~6)
gives: :

€

_E_ B3-10)
A . (

55}
1}

where, by definiticen,

o4

(B=11)

|
ol
|
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Substitution of the value of B as given in expression
(B~10)into the deflection equation (B-9), gives:

4

. .\3
w 2a3 L&b + oay (;)_ *az (3)
+ az ﬁy) ]}»cos nx (3-12)

Equation (B~12) shows how the shape of the deflection sur-—
face is affected by the restraint coefficient €. This
equation is used in the eveluation of V,, Vs, and T.
Taus,

. o
S 2ot (1 Ca€ , CSof >f (3-13)
cag 4a3® ’
VzAaﬁ@&..M;(m)zﬁi'ﬁ(@ s - uo
X 2TA L 5 \ A 212 \a 2 7 H %
Cy
e® Tey /mbN\° 3 :
+ 7} Le <;\ + /_’LTEB Ce W 07]} {B~14)
\’\A )
2 DA€ ' ‘ ¢
vV, = A 2AS (B~15)
2 8b° '
where
lv. /2 al Bam laz\‘\
Cqy = o (= + == 4 —B g L2812 0,235
AR - = 0.23594
>
Cy = :"’; (1 + asy + 8n 8,3\ = 0.79546
cq = ;1_. (6 + 5a, + 4ap + Baz) = 0.89395
5
1 a,=2 2a a 2a,a a 8 a
Co = - (L . 22 N 2 2 1895 5. L 22
ag® M1 9 9 7 7 5 5
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+ 2

7 5

- |
12 &%oo 144 a2 + 48a, + 12a,% + l6ajay + 4aj

+ B80a; + 20a, + 36a,a, + 12aga3) = 0.56712

+ § az® + Ba, + %g 8, + 4a,ap + 5a3a3> = 0.17564

1 : 2
) (5 + 9a3y + 8ap + 7agz + 4a;” + 7ajap * b6ajag
8z
+ 3a,2 + Bagas + 2az°) = 0.19736

a,c, = = 2,3158

It is permissidble to substitute the values of T, Vi
V., as ziven by equations (B=14) to (B-~16) into equa-
(B~1), only when the applied stress f has its crit-
value f,p. After this substitution, it is found that

2 2
— ko Ezt = . (3“16)
12(1 - p ) D
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Eguation (B-17) was used to calculate the values of
%k listed in the colunns desiznated (a) of tadle I. With
.these values of k¥ ag a guide, a nunber of correct values
of k were obtained by satisfying equation (A-20) of ap—
pendix 4. In this nanner the errors in k as givén hy
equation (B-17) were established at isolated points.
Fron this kpowledge of the errors, corrcctions were nade
to 2ll the vaelues of %k =given in columns (a) of table I.
These corrected values of k, which are recomnmended, arc
listed in the columns desiznated (b) of table I. The rec—
omnended valuecs of k were usged in the construction of
figures & and 6. ' :
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TABLE I. - VALUGR> OF k IN TH®: EUCKLING FORMULA FOR OUTSTANDING FLANGES ELASTICALLY RESTRAINED AT THE BASE
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¢ > (a)Q 8(b) (s) ? () | (a) (o} | (s} ) | (a7 (b) (a) (b) (a) (&) (a)] {b) | Ta] (%) (a] : ®)
c :

0 1.988 [°1.954] 1.660 | 1.651} 1.b26| 1.102|1.065] 1.047 0.870 { 0.858 0.752 { 0.742{ 0.676 | 0.669 0.586 | 0.582 | 0.537 |%0.533
225 1.991 | 1.957| 1.663 | 1.634{ 1.430 ®1.Losl1.071] 1.053} .878 866 .762 L7531 .689 | .682 605 © eo1 565 562
255 1.994 | 1.959] 1.667 | 1.639 1.433 1.408/1.077] 1.059| .885 L8730 772 L7631 .701} .69L b2l 620 .592 .589
.25 c 713 706 643 638 gg ga
:E 1.999 | 1.965(1.673 | 1.6L3} 1Ll 1.416]1.087] 1.069] .899 791 782 725 718 .260 255 6y | o ’ZO
.5 808 677 2 666 .663
.6 12.00L ] 1.968 1.6 1.649 1.448] 1.420f1.097} 1.0 .912 0 799 wt !l .o “6ol, ¢ goe 6
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1:2 G -89 19 780 75 >

1% 12,0201 1.983 1.7021 1.669} 1.L75] .49} 1,13 1.116] .96% 873 86l | .82 525 : é . .

z.g 2.03& 1.292 1,710 {%1.680] 1.487 1.)&%1 1.1514 1.133 985 © 502 893 | .36 859 | 0.8591 %0 858 .Blg ' éé é%g ggé
5.0 |2.051 | 2.0081.732] 1.696| 1.508] 1.48141.160 1.162 1~022 1 950 S9L1 b .926 | 919 L9331 .92 .962 .95 1.027 1.060

5.0 12.076 | 2,033 1.760 1.724] 1.8L0| 1.513} 1.221] 1.203} 1.07 1 1.018 §1.009 {1.010 {1.003] 1.036} 1.030{ 1.086 | 1.079 | 1.239 | 1.230

10 2.115 | 2.069{1.801{ 1.763} 1.585| 1.557} 1.279 1.261) 11491 1 1.109 {1.100 1.122 | 1.1151 1.172f 1.165] 1.2,8 | 1.2% 1.)263 1.5

20 1.525 1.309§ 1.20 1 1.162 {1.73 1,211 {1.200 0 1.2791 1.271{ 1.375 1.353 1.436 | 1.619

50 1.5681 1.5507 1 258 1.22). t1.243 11.235 [1.28 {1.2771 1.365} 1.355) 1077 | 1..63 | 1.773 | 1.747

100 A 1.671 | 1.6L3 1.38L c1.566 1.27 1.2671,267 |1.260 11.312 [1.305] 1.399 1.367| 1.51 1.500
w 2.200 | 2.150{1.895 [°1.852]1.686 | 1.658]1.L03 |"1.385] 1.300 1.289[;.293 £1.287 1.3 [1.3371 1.436/C 1.2l | 1.55 1.5 N P
A
22 . : ( )6 O(b) ( 7 (b) ( )8 . (b) ( )9 : 1 1 )10 O( ) 1.0 12.5
¢ (p)l (a) (b) a a o 5 5
0 o(%()n 0(335 g 4@% o.b}éb o.ﬁbe Lol |0 u%5 G.451 | 0.L46 P05 ) hzs 5 1;.28 8 5 EBLL Ofgg (a) [§%)) (ﬁgl
95 513 | .511{ .50L 502 .509| .507 521 +52010.539 10.539) .562 | .962 {0.588 |0.587 19 1618 | 0.670 J0.669| 750
170 .sus it o.sh2| .537| .B35) .5L2 | .5ho| .563] 561 .59 -29& 635 1°.6351 683 | .682 | .738 | 7371 .800 798 | .90l [°.903 |1 02
15| .863 | .560! (5611 .5501 .679 | LE77| .B1b | .EL | .BOT | .bGO) 725 | .729) .Bo2 | .801 | .88 | .88z .o77 | .97k |1.135[1.130(1:30
.2 581 578 Zsu Z 2] .615 613 668 | .66 éa L1355 21 § .820| .918 | .917 {1.028 [1.026) 1.1i50 1.11? 1387 [1.382 [1.298
250 599 296 or| .6o5f .65l 6 79| 717 0 05 .911 | .910(1.032 [1.0%0 {1.169 |1.166| 1.320 | 1.31f | 1.574 1 569 |1.645
37| -ble i) .30 .627) .G85 | 6821 .69 46T ST 1o -87111.000 | 098 11.10k 11,1061 11,306 | 1.302 1.%87 1.% 0| 1.791 1.781|2.13
i 650 6471 J67L L6TL .553 g of 8661 .86l 1.006 |{“1.003|1.171 {1. 1.361 {1.357 1.57 [1.560 | 1.610 1°1.802 | 2.209 2.195
-2 7ig| .71l 018 Lei -2520 30132 | 1 128 Lﬁ% 1-}352 1.569 11.563 |1.831 |1, ZE} 2.121 | 2.112 | 2.610 |2.551
6y .maz] .710 .556 12 880 | .875:1.008 1 1.0L3 1.231; 1.248 11.090 11.08711.770 11.761 12.078 |2.06
.8 372 681 .852 28} .999 992:1.218 | 1.210 1.% n 1.%g!+ 1.79% 1'382 2.148 J2.13L

1.0 8271 .823} .903 89711.109 |1.09911.375 {1.3631 1. 9Z 1.681 {2.072 |2.051
1.2 .969 962{1.211 |1.167]1.522 {1.505 | 1.89 1,872
1.51 9491 .943]1.060; 1.052/1.352 |1.355 1.724 c1.700 2,170 | 2.13%%

2.0 11.052 | 1.04441.19 [°1.184]1.559 |1.559{2.019 1.986
3.0 15:3 1.i0§ }%83 %223 1.890 {1.863
01, 1.43 . .65

18 1.745 1.75 2.085] 2.060

20 :

50 I ;

100 H l ;
® 2.296 | 2,237 |

8yailues obtained from the energy method. brecommended values. CValues gbtained from the exact solutlon of the differentiul equation.
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Figure 1.- Variation of f,. with f,./m for 248-T aluminum

alloy of minimum required properties. (When
for/N<19,600 1b/sq in., m = 1 and .= fop/m -)
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Figure 4.- Variation of 7y , To 5 Ty s and n with the °

compressive stress, f , for 245-T aluminum
alloy of minimum required properties.
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NACA Fig, 7
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Figure 7.~ Outstanding flange under edge compression.





