
Developing an Approach for
Analyzing and Verifying
System Communication

IEEE Aerospace Conference 2009

William C. Stratton (JHU/APL)
Mikael Lindvall (FC-MD), Chris Ackermann (FC-MD),

Deane E. Sibol (JHU/APL), Sally Godfrey (GSFC)

Johns Hopkins University/Applied Physics Laboratory Space Department Ground Applications Group (JHU/APL)
Fraunhofer Center for Experimental Software Engineering Maryland (FC-MD)

Goddard Space Flight Center (GSFC)

NASA IV&V support through a Software Assurance Research Project (SARP)

Motivation
• Software systems in the aerospace domain…

– are inherently complex,
– operate under tight resource constraints,
– exist in systems of systems that communicate with each other to fulfill

larger tasks
• Reliable systems of systems require reliable

communications, but ensuring reliable communications is
difficult:
– systems developed independently
– ambiguities in the specification of expected communication behaviors
– issues in communications are often subtle and can go undetected

• Communications problems can lead to waste of space link
bandwidth and other precious mission resources

Organizational Approach
• NASA IV&V Software Assurance Research Program (SARP)

– Supports development of software engineering processes and tools
– Encourages collaboration between researchers and practitioners

• FC-MD researchers develop new processes and tools to
address communications problems

• JHU/APL practitioners provide communications scenarios
and test data for experimentation

• FC-MD and JHU/APL work as one team, using an iterative
process…

– Experiment with technology; apply to FC-MD testbed
– Evaluate technology; apply it to APL’s ground software systems
– Improve technology based on feedback, results
– Repeat

• Emerging processes and tools extend to NASA projects
– e.g. through the SARP Research Infusion program

Technical Approach
• Develop DynSAVE to detect communications problems

among systems by analyzing their communication behavior:
– Build on Fraunhofer’s proven Software Architecture Visualization and

Evaluation (SAVE) tool and process for static analysis of source code
– Enhance for dynamic analysis of run-time communication behavior

=> Dynamic SAVE (DynSAVE)

• The DynSAVE approach consists of three steps:
1. Monitor and record low level network traffic
2. Convert low level traffic into meaningful application messages
3. Visualize messages such that issues can be detected

SAVE Tool and Process
• SAVE supports static analysis:

– software architect creates models of the planned relationships among
abstract software components

– SAVE tool parses source code and lifts the actual relationships among
concrete software components

– SAVE tool annotates the architect’s models to show deviations from the plan
– software architect uses the SAVE tool to explore the deviations, drilling down

through the annotations to the source code
– source code and/or model are updated to eliminate the deviations

• JHU/APL and FC-MD have infused SAVE into the ground software
development process:

– used to analyze changes to legacy Common Ground software
– incorporated into new software development for next generation of JHU/APL

ground software systems beginning with Radiation Belt Storm Probes
(RBSP)

SAVE
Tool and Process

DynSAVE Tool and Process
• DynSAVE extends SAVE to support dynamic analysis:

– software architect creates models of the planned message sequences among
abstract systems

– actual messages are captured from network traces or low level
communications archives

– DynSAVE tool parses captured messages and lifts the actual message
sequences among concrete systems

– DynSAVE tool annotates the architect’s models to show deviations from the
plan

– software architect uses the DynSAVE tool to explore the deviations, drilling
down through the annotations to the messages

– systems and/or model are updated to eliminate the deviations
• JHU/APL and FC-MD have applied DynSAVE to mission data systems:

– used to analyze legacy Common Ground software client/server
communications (Aerospace 2008)

– currently analyzing CCSDS File Delivery Protocol (CFDP) communications
behaviors in RBSP and MErcury Surface, Space ENvironment,
GEochemistry, and Ranging (MESSENGER)

DynSAVE Approach to CFDP

8

The Common Ground System

Dynamic SAVE allows for structural and behavioral
Architectural analysis of systems of systems

GroundGround SatelliteSatellite

GroundGround SatelliteSatellite

Planned
Behavior

Actual
Behavior

Static StructureDynamic Structure Sequence Diagrams

Flight:
APL CFDP

RBSP

Ground:
GSFC CFDP

Missions
Operation

Center

Test Data

Does
implementation

behave as
expected?

Test Data

Does
implementation

behave as
expected?

Peer 2:
GSFC CFDP

Peer 1:
GSFC CFDP

04-15-2008 dynSAVE 11

CFDP – A Mission Data System Protocol

• CFDP software provides reliable downloads
of recorded on-board data

– The implementation is distributed across flight
and ground systems

– The protocol runs on top of unreliable CCSDS
command and telemetry layer

• At APL, CFDP is mostly automated, but…
– Operators turn off CFDP uplink during critical

command load sequences
– Operators freeze and thaw timers so that

pending transactions don’t time out between
contacts

• Improper CFDP operation can lead to
unnecessary retransmissions, wasting
precious downlink bandwidth

04-15-2008 dynSAVE 12

DynSAVE monitoring of CFDP
• DynSAVE monitors macro-level behaviors of the

CFDP protocol without affecting flight or ground
software

• DynSAVE could detect behaviors that are
indicative of improper CFDP operation, for
example:

– timers were not frozen and uplink was disabled on
the ground for an extended period, causing multiple
retransmissions when the uplink was finally
enabled again

• DynSAVE could detect behaviors that are
indicative of issues in CFDP implementation, for
example:

– sender continues to send file data after the
transaction has been cancelled

• These types of behaviors can go undetected (file
transfers still work) but are important to detect
(they can result in data loss!) D
yn

S
A

V
E

X

X

Planned CFDP Sequence

Rules:
1.Check that received FD are not NAKed *
2.Check for duplicate FDs *
3.Check that we have all FDs upon FIN *
4.Check that identical NAKs are not sent back-to-back unless timer went off

Actual CFDP Sequence
Metadata: 0-499999
FileData: 0-996
FileData: 997-1993
FileData: 1994-2990
FileData: 2991-3987
FileData: 3988-4984
FileData: 4985-5981
FileData: 5982-6978
FileData: 6979-7975
FileData: 7976-8972
FileData: 8973-9969
FileData: 9970-10966
FileData: 10967-11963
FileData: 11964-12960
FileData: 12961-13957
FileData: 13958-14954
FileData: 14955-15951
FileData: 15952-16948

FileData: 482548-483544
FileData: 483545-484541
FileData: 484542-485538
FileData: 485539-486535
FileData: 486536-487532
FileData: 487533-488529
FileData: 488530-489526
FileData: 489527-490523
FileData: 491521-492517
FileData: 492518-493514
FileData: 493515-494511
FileData: 494512-495508
FileData: 495509-496505
FileData: 498500-499496
FileData: 499497-499999
EOF: Condition Code=No Error
ACK(EOF): Condition Code=No Error
NAK: 19940-20937;27916-28913;36889-37886;56829-
59820;72781-73778;76769-77766;82751-85742;101694-
102691;111664-112661;115652-116649;121634-
122631;130607-131604;139580-140577;146559-
147556;153538-154535;155532-156529;170487-
171484;197406-198403;203388-204385;220337-498500

Mapping CFDP data
• The sniffed CFDP data is low level (packets)
• Concepts are often encoded

– Few message names in clear text
– Many are not: e.g. Cancel

• If third bit in EOF control message then Cancel

• Parameters are always encoded
– E.g. bit 4 – 16: Time stamp

• Communications are often interleaved
– E.g. Files sent and received concurrently

• Our parser maps low level data to high level
messages and values, identifies & separates
interleaved communications

Actual CFDP Sequence
captured in test lab

Needed FDs: 502
Sent FDs: 840
Potential Waste: ~70%? – Further analysis needed.

Sample Rule:
Never re-request a package
that already was received

Conclusion:
Deviates from specification
for certain configurations!
Decision: Use, but with
different configuration

Zoom in on CFDP sequence

Rule 2 Violation:
duplicate FD!

Flight:
APL CFDP

MESSENGER

Ground:
JPL CFDP

Missions
Operation

Center

Live Data

Current
Configuration

has issues

Ground:
GSFC CFDP

Flight:
APL CFDP

MESSENGER

Ground:
JPL CFDP

Missions
Operation

Center

DynSAVE

=?

Strategy: Shadow Mode

Test to be conducted
in May 2009

Life Cycle Support

System
Architecture

Use DynSAVE to
Specify and Test
Communication

Add to ICD

Sub-System
Development

Use DynSAVE to
Develop and Test

based on ICD

System
Integration and Test

Use DynSAVE to
test based

on ICD

Initial use of Dyn SAVE

Summary
• Analyze, Visualize, and Evaluate

– structure and behavior using static and dynamic info of
– individual systems as well as systems of systems

• Drive R&D by needs from JHU/APL NASA missions
– Use open testbed for experimentation
– Evaluate together with APL in their context

• Transfer technology when mature
• Future:

– Add time information and constraints (current activity)
– Add planned sequence diagrams to ICD
– Use for analysis of Delay Tolerant Network Management

	DynSAVE-SARP-Aerospace2009Submitted.pdf
	Developing an Approach for �Analyzing and Verifying�System Communication��IEEE Aerospace Conference 2009����
	Motivation
	Organizational Approach
	 Technical Approach
	SAVE Tool and Process
	SAVE�Tool and Process
	DynSAVE Tool and Process
	DynSAVE Approach to CFDP
	Test Data
	Test Data
	CFDP – A Mission Data System Protocol
	DynSAVE monitoring of CFDP
	Planned CFDP Sequence
	Actual CFDP Sequence
	Slide Number 15
	Mapping CFDP data
	Actual CFDP Sequence �captured in test lab
	Zoom in on CFDP sequence
	Live Data
	Strategy: Shadow Mode
	Life Cycle Support
	Summary

	aerospace2009finalsubmittedCameraReady.pdf

Developing an Approach for

Analyzing and Verifying

System Communication

IEEE Aerospace Conference 2009

William C. Stratton (JHU/APL)

Mikael Lindvall (FC-MD), Chris Ackermann (FC-MD),

Deane E. Sibol (JHU/APL), Sally Godfrey (GSFC)

 Johns Hopkins University/Applied Physics Laboratory Space Department Ground Applications Group (JHU/APL)

Fraunhofer Center for Experimental Software Engineering Maryland (FC-MD)

Goddard Space Flight Center (GSFC)

NASA IV&V support through a Software Assurance Research Project (SARP)

*

Motivation

		Software systems in the aerospace domain…

		are inherently complex,

		operate under tight resource constraints,

		exist in systems of systems that communicate with each other to fulfill larger tasks

		Reliable systems of systems require reliable communications, but ensuring reliable communications is difficult:

		systems developed independently

		ambiguities in the specification of expected communication behaviors

		issues in communications are often subtle and can go undetected

		Communications problems can lead to waste of space link bandwidth and other precious mission resources

		

*

Organizational Approach

		NASA IV&V Software Assurance Research Program (SARP)

		Supports development of software engineering processes and tools

		Encourages collaboration between researchers and practitioners

		FC-MD researchers develop new processes and tools to address communications problems

		JHU/APL practitioners provide communications scenarios and test data for experimentation

		FC-MD and JHU/APL work as one team, using an iterative process…

		Experiment with technology; apply to FC-MD testbed

		Evaluate technology; apply it to APL’s ground software systems

		Improve technology based on feedback, results

		Repeat

		Emerging processes and tools extend to NASA projects

		e.g. through the SARP Research Infusion program

*

 Technical Approach

		Develop DynSAVE to detect communications problems among systems by analyzing their communication behavior:

		Build on Fraunhofer’s proven Software Architecture Visualization and Evaluation (SAVE) tool and process for static analysis of source code

		Enhance for dynamic analysis of run-time communication behavior => Dynamic SAVE (DynSAVE)

		The DynSAVE approach consists of three steps:

Monitor and record low level network traffic

Convert low level traffic into meaningful application messages

Visualize messages such that issues can be detected

*

SAVE Tool and Process

		SAVE supports static analysis:

		software architect creates models of the planned relationships among abstract software components

		SAVE tool parses source code and lifts the actual relationships among concrete software components

		SAVE tool annotates the architect’s models to show deviations from the plan

		software architect uses the SAVE tool to explore the deviations, drilling down through the annotations to the source code

		source code and/or model are updated to eliminate the deviations

		JHU/APL and FC-MD have infused SAVE into the ground software development process:

		used to analyze changes to legacy Common Ground software

		incorporated into new software development for next generation of JHU/APL ground software systems beginning with Radiation Belt Storm Probes (RBSP)

*

SAVE

Tool and Process

DynSAVE Tool and Process

		DynSAVE extends SAVE to support dynamic analysis:

		software architect creates models of the planned message sequences among abstract systems

		actual messages are captured from network traces or low level communications archives

		DynSAVE tool parses captured messages and lifts the actual message sequences among concrete systems

		DynSAVE tool annotates the architect’s models to show deviations from the plan

		software architect uses the DynSAVE tool to explore the deviations, drilling down through the annotations to the messages

		systems and/or model are updated to eliminate the deviations

		JHU/APL and FC-MD have applied DynSAVE to mission data systems:

		used to analyze legacy Common Ground software client/server communications (Aerospace 2008)

		currently analyzing CCSDS File Delivery Protocol (CFDP) communications behaviors in RBSP and MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER)

*

DynSAVE Approach to CFDP

*

The Common Ground System

Dynamic SAVE allows for structural and behavioral

Architectural analysis of systems of systems

Ground

Satellite

Ground

Satellite

Planned

Behavior

Actual

Behavior

Static Structure

Dynamic Structure

Sequence Diagrams

*

RBSP

Missions

Operation

Center

Test Data

Does implementation behave as expected?

Flight:

APL CFDP

Ground:

GSFC CFDP

*

Test Data

Does implementation behave as expected?

Peer 2:

GSFC CFDP

Peer 1:

GSFC CFDP

*

04-15-2008

dynSAVE

*

CFDP – A Mission Data System Protocol

		CFDP software provides reliable downloads of recorded on-board data

		The implementation is distributed across flight and ground systems

		The protocol runs on top of unreliable CCSDS command and telemetry layer

		At APL, CFDP is mostly automated, but…

		Operators turn off CFDP uplink during critical command load sequences

		Operators freeze and thaw timers so that pending transactions don’t time out between contacts

		Improper CFDP operation can lead to unnecessary retransmissions, wasting precious downlink bandwidth

*

04-15-2008

dynSAVE

*

DynSAVE monitoring of CFDP

		DynSAVE monitors macro-level behaviors of the CFDP protocol without affecting flight or ground software

		DynSAVE could detect behaviors that are indicative of improper CFDP operation, for example:

		timers were not frozen and uplink was disabled on the ground for an extended period, causing multiple retransmissions when the uplink was finally enabled again

		DynSAVE could detect behaviors that are indicative of issues in CFDP implementation, for example:

		sender continues to send file data after the transaction has been cancelled

		These types of behaviors can go undetected (file transfers still work) but are important to detect (they can result in data loss!)

DynSAVE

X

X

*

Planned CFDP Sequence

Rules:

		Check that received FD are not NAKed *

		Check for duplicate FDs *

		Check that we have all FDs upon FIN *

		Check that identical NAKs are not sent back-to-back unless timer went off

*

Actual CFDP Sequence

		Metadata: 0-499999

		FileData: 0-996

		FileData: 997-1993

		FileData: 1994-2990

		FileData: 2991-3987

		FileData: 3988-4984

		FileData: 4985-5981

		FileData: 5982-6978

		FileData: 6979-7975

		FileData: 7976-8972

		FileData: 8973-9969

		FileData: 9970-10966

		FileData: 10967-11963

		FileData: 11964-12960

		FileData: 12961-13957

		FileData: 13958-14954

		FileData: 14955-15951

		FileData: 15952-16948

		FileData: 16949-17945

		FileData: 17946-18942

		FileData: 18943-19939

		FileData: 20937-21933

		FileData: 21934-22930

		FileData: 22931-23927

		FileData: 23928-24924

		FileData: 24925-25921

		FileData: 25922-26918

		FileData: 26919-27915

		FileData: 28913-29909

		FileData: 29910-30906

		FileData: 30907-31903

		FileData: 31904-32900

*

		FileData: 430704-431700

		FileData: 432698-433694

		FileData: 433695-434691

		FileData: 434692-435688

		FileData: 435689-436685

		FileData: 436686-437682

		FileData: 437683-438679

		FileData: 438680-439676

		FileData: 439677-440673

		FileData: 440674-441670

		FileData: 441671-442667

		FileData: 442668-443664

		FileData: 443665-444661

		FileData: 444662-445658

		FileData: 445659-446655

		FileData: 446656-447652

		FileData: 447653-448649

		FileData: 448650-449646

		FileData: 449647-450643

		FileData: 450644-451640

		FileData: 451641-452637

		FileData: 452638-453634

		FileData: 454632-455628

		FileData: 455629-456625

		FileData: 456626-457622

		FileData: 457623-458619

		FileData: 458620-459616

		FileData: 459617-460613

		FileData: 461611-462607

		FileData: 463605-464601

		FileData: 464602-465598

		FileData: 465599-466595

		FileData: 466596-467592

		FileData: 467593-468589

		FileData: 468590-469586

		FileData: 470584-471580

		FileData: 471581-472577

		FileData: 472578-473574

		FileData: 473575-474571

		FileData: 475569-476565

		FileData: 476566-477562

		FileData: 477563-478559

		FileData: 478560-479556

		FileData: 479557-480553

		FileData: 480554-481550

		FileData: 481551-482547

		FileData: 482548-483544

		FileData: 483545-484541

		FileData: 484542-485538

		FileData: 485539-486535

		FileData: 486536-487532

		FileData: 487533-488529

		FileData: 488530-489526

		FileData: 489527-490523

		FileData: 491521-492517

		FileData: 492518-493514

		FileData: 493515-494511

		FileData: 494512-495508

		FileData: 495509-496505

		FileData: 498500-499496

		FileData: 499497-499999

		EOF: Condition Code=No Error

		ACK(EOF): Condition Code=No Error

		NAK: 19940-20937;27916-28913;36889-37886;56829-59820;72781-73778;76769-77766;82751-85742;101694-102691;111664-112661;115652-116649;121634-122631;130607-131604;139580-140577;146559-147556;153538-154535;155532-156529;170487-171484;197406-198403;203388-204385;220337-498500

*

Mapping CFDP data

		The sniffed CFDP data is low level (packets)

		Concepts are often encoded

		Few message names in clear text

		Many are not: e.g. Cancel

		If third bit in EOF control message then Cancel

		Parameters are always encoded

		E.g. bit 4 – 16: Time stamp

		Communications are often interleaved

		E.g. Files sent and received concurrently

		Our parser maps low level data to high level messages and values, identifies & separates interleaved communications

*

Actual CFDP Sequence

captured in test lab

Needed FDs: 502

Sent FDs: 840

Potential Waste: ~70%? – Further analysis needed.

Sample Rule:

Never re-request a package that already was received

Conclusion:

Deviates from specification

for certain configurations!

Decision: Use, but with different configuration

*

Zoom in on CFDP sequence

Rule 2 Violation:

duplicate FD!

*

MESSENGER

Missions

Operation

Center

Live Data

Current Configuration

has issues

Flight:

APL CFDP

Ground:

JPL CFDP

*

MESSENGER

Missions

Operation

Center

=?

Strategy: Shadow Mode

Test to be conducted

in May 2009

Ground:

GSFC CFDP

Flight:

APL CFDP

Ground:

JPL CFDP

*

Life Cycle Support

System

Architecture

Use DynSAVE to

Specify and Test

Communication

Add to ICD

Sub-System

Development

Use DynSAVE to

Develop and Test

based on ICD

System

Integration and Test

Use DynSAVE to

test based

on ICD

Initial use of Dyn SAVE

*

Summary

		Analyze, Visualize, and Evaluate

		structure and behavior using static and dynamic info of

		individual systems as well as systems of systems

		Drive R&D by needs from JHU/APL NASA missions

		Use open testbed for experimentation

		Evaluate together with APL in their context

		Transfer technology when mature

		Future:

		Add time information and constraints (current activity)

		Add planned sequence diagrams to ICD

		Use for analysis of Delay Tolerant Network Management

*

Process

ﬁ F Tool

Satellite

Miss

CFDP.

n
Operation
Center w

Satelite

Ground Station

Client A Client B

interaction ClientServer

| tsafe.server

et

tsafe.dient

notifyClent
gefFightData
dispatchEvent
P S—
paintComponent

M(Fie_Size)

) il

Toop

NAK, Gaps]

D"
|

N
ACK(FIN)

U

M(500,000)
a7
——
EoT
P
ACK(EOF)

NAK(20 Gaps)

o270
—_—
NAK(20 Gaps)

FDU109
NAK(14 Gaps)

Fori2

NAK(2 Gaps)
02
||
N

FORE

[remw)

Needed FD:502 |
Sent FD: 840
Waste: ~70%

By
6]
6]
6]
6]
6]
6]
6]
6]
6]
6]
6]
6]
6]

