Ares I First Stage: Powering Exploration

Bruce Tiller, 1 First Stage Deputy
NASA Marshall Space Flight Center, MSFC, AL, 35812

and

Alex S. Priskos, 2 First Stage Element Manager
NASA Marshall Space Flight Center, MSFC, AL, 35812

Abstract

The mission of the National Aeronautics and Space Administration (NASA) is not simply to maintain its current position with the International Space Station and other space exploration endeavors, but to build a permanent outpost on the Moon and then travel on to explore ever more distant terrains. The Constellation Program will oversee the development of the crew capsule, launch vehicles, and other systems needed to achieve this mission. From this initiative will come two new launch vehicles: the Ares I and Ares V. The Ares I will be a human-rated vehicle, which will be used for crew transport; the Ares V, a cargo transport vehicle, will be the largest launch vehicle ever built. The Ares Projects team at Marshall Space Flight Center (MSFC) in Huntsville, Alabama is assigned with developing these two new vehicles. The Ares I vehicle will have an in-line, two-stage rocket configuration. The first stage will provide the thrust or propulsion component for the Ares rocket systems through the first two minutes of the mission. The First Stage Team is tasked with developing the propulsion system necessary to liftoff from the Earth and loft the entire Ares vehicle stack toward low-Earth orbit. Building on the legacy of the Space Shuttle and other NASA space exploration initiatives, the propulsion for the Ares I First Stage will be a Shuttle-derived reusable solid rocket motor. Progress to date by the First Stage Team has been robust and on schedule. This presentation provides an overview and update on the design and development of the Ares I First Stage Propulsion system.

Solid Rocket Motor Test
Ares I
First Stage: Powering Exploration

Bruce K. Tiller
Ares First Stage Deputy

Alex S. Priskos
Ares First Stage Manager
Marshall Space Flight Center

Agenda

◆ Introduction
◆ Schedules
◆ First Stage Progress to Date
◆ First Stage Current Challenges
◆ Conclusion
Introduction

- Building on the legacy of the Space Shuttle and other NASA space exploration initiatives, the propulsion for the Ares I First Stage will be a Shuttle derived reusable solid rocket motor.
- Significant progress has been made to date by the Ares First Stage Team.
- This brief status provides an update on the design and development of the Ares First Stage propulsion system.

The Ares Launch Vehicle Stacks

- Ares I: 2,044.0K lbm (927.1 mT)
- Ares V: 8,167.1K lbm (3,704.5 mT)
Ares I First Stage Overview

- Legacy motor casings, aft skirt
- New forward structures
 - Forward Skirt
 - Forward Skirt Extension
 - Aeroshell
 - Frustum
- Metal and composite materials
- Shuttle-derived five-segment solid rocket motor
 - Increased performance
 - Extensibility to Ares V

![Thrust trace comparison: Shuttle versus Ares I](image)

Ares First Stage Upgrades

- Increased number of fins from 11 to 12 in fwd segment
- Burn rate lowered to meet Ares I requirements

![Added Segment](image)

- Propellant chambers on aft and center segments
- Modified height and thickness to prevent bore choking
- Wider throat and nozzle extension for increased mass flow

![Modified insulation and liner formulations](image)

- Modifications to the motor were made to:
 - Improve performance (thrust)
 - Improve reliability
 - Eliminate hazardous materials
 - Replace obsolete materials

![Improved motor configurations](image)
Ares I Lunar Mission Profile

- **Main Engine Start**
 - Time: 126.9 sec
 - Altitude: 58,456 m (191.8K ft)
 - Mach: 5.88

- **Main Engine Cutoff (MECO)**
 - Time: 591.8 sec
 - Burn Duration: 465.0 sec

- **Orbital Insertion**
 - Altitude: 129,600 m (70 nmi)
 - ~20.4 x 185,200 m (~110 x 100.0 nmi) = 217

- **Solid Rocket Booster (SRB) Separation**
 - Time: 125.8 sec
 - Altitude: 57,463 m (188.5K ft)
 - Mach: 5.86
 - Max Altitude: 101,704 m (333.7K ft)

- **Launch Abort System (LAS) Jettison**
 - Time: 156.9 sec
 - Altitude: 82,177 m (269.6K ft)
 - Mach: 7.18

- **ESM Panel Jettison**
 - Time: 153.9 sec
 - Altitude: 79,997 m (262.5K ft)
 - Mach: 7.01

- **Upper Stage Reentry and Breakup**

Ares I First Stage DDT&E Schedule

<table>
<thead>
<tr>
<th>First Stage</th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARES Milestones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Stage Milestones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage & Encel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avionics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TVC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
First Stage Progress to Date

- Successful Preliminary Design Review Completed in June, 2008
- Major Test Programs
 - Parachute drop tests
 - Stage separation pyrotechnics
- Substantial Hardware and Tooling in Process
- Several Major Items Manufactured
 - Modal survey inert (MSI) segments
 - Modal survey loaded (MSL) segments
 - Process simulation article 2 (PSA) Nozzle
 - Demonstration motor (DM-1) Nozzle
 - DM-1 segments through insulation
- Ares 1-X Support
 - Motor segments being instrumented
 - Pyrotechnics for flight termination system and separation under qualification testing
 - Fifth segment simulator under construction
 - Aft skirt mods to install ballast and deceleration motors are underway
 - Progressing toward KSC deliveries

Ares I Drop Test Status

- Three-stage recovery system.
- The Ares I Deceleration Subsystem consists of a 11.5 ft. pilot, a 68 ft. drogue, and three 150 ft. main parachutes.
- Completed 3 pilot and 2 single main basic performance drop tests to date.
 - Measure parachute drag areas and inflation loads at various reefed positions
- Conducted one drogue basic performance test in July.
- First basic performance test of a cluster of 3 main parachutes scheduled for January 2009.
- One design load and one overload test for the pilot, drogue, and main will be conducted in 2009 & 2010.
- All remaining drogue and main tests will be heavy drops using the Jumbo Drop Test Vehicle (JDTV).
 - JDTV drop weight will be between 36K to 80K lbs.
Drogue Drop Test

Parachute Test Apparatus
Extraction from Aircraft

1st Drogue Drop Test (DDT-1)
July 24, 2008
Length 2:40
Full-Scale Separation Test

Full-Scale Separation Test Hardware Dry Fit

Full-Scale Separation Test Article in Test Stand

Full-Scale Separation Test Build-up

Successful Full-Scale Separation Test is Complete Measured Tip-off Loads, Shock, and Functionality of Separation System

MSL Aft Segment Silastic J Removal

New Silastic J Removal Tooling Positioned on MSL Aft Segment

MSL Aft Segment Silastic J Removal
MSL Forward Segment Inhibitor Depression Mold Removal and Propellant Trimming

Before Trimming

After Trimming

RSRMV Hardware

DM-1 Hardware Refurbishment

DM-1 Fwd Exit Cone Machining
RSRMV Nozzle Hardware

DM-2 Fwd End Ring Housing Machining
DM-2 Throat Housing Machining
DM-2 Fwd Exit Cone Housing Machining
DM-2 Nose Inlet Housing Machining

Tooling — Forward Core

Loading -401 Assembly into Lathe
-401 Assembly Rough Machined
Welding Stub Fins To Core
Assembling Fin To Core
Assembled Forward Core
MSL Fin Tooling Removal
T-97 Static Test Stand

T-97 static test stand upgrade and refurbishment nearing completion for DM-1 assembly and testing

- Aft test stand disassembled, refurbished and reconfigured
- Lift stand complete
- 47 load cells calibrated
- MSFC dead weight calibrator
- 45 1.75-in bolts Inconel
- 1-97 facility paint and refurbishment
- Mid-Span Support – delivery to T-97
- Strengthened overload plates

Mitigation for Thrust Oscillation

- First Stage motor internal oscillating pressures could potentially excite resonant conditions in the Ares integrated stack.
- Because we will not know for sure until we fly, contingency designs are underway today.
- A senior team just completed a detailed study and made recommendations that are now being implemented.
- Mitigation detunes the vehicle by reducing its overall stiffness and adding a moving mass to actively suppress the oscillation.
Conclusion

- Ares First Stage design progress is robust (PDR complete).
- Ares I-X hardware is in fabrication.
- Recovery system testing is well underway.
- Separation testing has begun.
- DM-1 static firing is still slated for the middle of 2009.

Questions

www.nasa.gov/ares