Analysis of lunar highland regolith samples from Apollo 16 drive core 64001/2 and lunar regolith simulants – an expanding comparative database

Christian M. Schrader and Doug Rickman
Marshall Space Flight Center, Huntsville, AL

Douglas Stoeser
United States Geological Survey, Denver, CO

Susan Wentworth and Dave S. McKay
Johnson Space Center, Houston, TX

Pieter Botha, Alan R. Butcher, Hanna E. Horsch, Aukje Benedictus, and Paul Gottlieb
Intellection in Denver, CO and Brisbane, QLD
Outline

• Background of the lunar regolith simulant effort

• Apollo site and sample selection

• Results of QEMSCAN® modal analysis of lunar material

 – change in major mineral modal% with size fraction

 – comparison of major/trace minerals in sieved vs. thin section samples
Outline, cont.

- Results of analysis of simulants vs. Apollo samples
- Future, ongoing, and parallel work
In support of a future lunar outpost...

• This work is part of a larger effort to compile an internally consistent database on lunar regolith (Apollo samples) and lunar regolith simulants.

 – Characterize existing lunar regolith and simulants in terms of
 • Particle type
 • Particle size distribution
 • Particle shape distribution
 • Bulk density
 • Other compositional characteristics

 – Evaluate regolith simulants (Figure of Merit) by above properties by comparison to lunar regolith (Apollo sample)
Apollo 16 site

Station 4: 64001/64002

9/15/2008

BAE Systems, Marshall Space Flight Center
Station 4 samples
geochemical data from Korotev (1982) and Korotev et al. (1984)

64002
(Houck, 1982)

One thin-section
64002,6019: 5.0 – 8.0 cm

Eight sieved samples
64002,262: 5.0 – 5.5 cm

64001
(Basu & McKay, 1984)

One thin-section
64001,6031: 50.0 – 53.1 cm

Eight sieved samples
64001,374: 52.0 – 52.5 cm

9/15/2008

BAE Systems, Marshall Space Flight Center
Modal analysis of sieved grain mounts

As size decreases, glass modal% increases at the expense of mineral modal%.
Change in modal% by size fraction: 64002,262

All fractions: Plagioclase is increasingly depleted as grain size decreases. The 250-500 μm fraction is less enriched in other minerals than in the 64001 sample.

<20 μm fraction: All minerals are depleted relative to bulk sample: 29-43%. Glass is enriched relative to bulk sample: 30%.
Change in modal% by size fraction: 64001,374

<20 μm fraction: All minerals are depleted relative to bulk sample: 32-56%. Glass is enriched relative to bulk sample: 17%.

All fractions: Plagioclase, pyroxenes, and olivine are increasingly depleted as grain size decreases.
Modal analysis: thin sections versus integrated bulk grain mounts

- Minerals report as higher in thin section than in corresponding integrated grain mounts.
 - Edge effects/mixed phases in thin sections report as minerals?
 - Real effect from missing fractions in grain mounts?
 - Sampling error from sieving?

Glass shows less regular pattern.
Modal analysis: thin sections versus integrated bulk grain mounts

Trace Minerals:

- Given, the very low amounts of some trace minerals (<0.01 modal%), the consistency is encouraging.

- Some of these are especially important to In Situ Resource Utilization (ISRU) on the moon.
Unclassified material in QEMSCAN® modal analysis

The modal% of unclassified material:

- ranges from ~5-24% in any one analysis;

- tends to increase as size fraction decreases in grain mounts;

- is higher in integrated grain mounts than in thin sections
 - (is more material misclassified due to edge effects and phase mixing?)
 - (is this from another, unknown effect?)

Thin sections

64002,6019: 6.6% unclassified
64001,6031: 6.4% unclassified

Integrated grain mounts

64002,262: 8.4% unclassified
64001,374: 16.9% unclassified
Lunar simulants: Mare and Highlands

NU-LHT-1M lunar highlands simulant

JSC-1A lunar mare simulant
Overview: Major mineral modal comparison between simulants and 64001/6402

We are incorporating particle type data (e.g., the presence of agglutinates) and phase chemistry into these comparisons.

9/15/2008 BAE Systems, Marshall Space Flight Center
Overview: Trace mineral modal comparison between simulants and 64001/64002

We are incorporating particle type data (e.g., the presence of agglutinates) and phase chemistry into these comparisons.
Further and ongoing work

• Continue to analyze Apollo samples by total phase modal%.

• Incorporate particle type modal analysis by determining which phases are present in lithics, breccias, agglutinates, etc.

• Incorporate phase chemistry.

• Analyze simulants by these same techniques for comparison by Figure of Merit algorithms.
Parallel work

Characterizing particle size and shape distributions and bulk densities of lunar regolith and simulants for comparison by FoM.
References

