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CRITIC.LL COMFRESSIVE STRESS FOR FLAT RECTANGULAR PLATES
SUPPORTED ALONG ALL EDGES A¥D ELASTICALLY RESTRAINED
“AGAIHST ROTATION ALONG THE UNLOADED MDGES

By Bugene E. Lundquist and Elbridge Z. Stowell
SUMMARY

A chart is presented for the values of the coeffi-
cient in the formula for the critical compressive stress
at which buckling may be expected to occur in flat rec-
tangular plates supported along all edges and, in addi-
tion, elastically restrained against: rotatlon along the
unloaded edges. :

The mathematical derivations of the fdrmulas re-~
gquired in the construction of the chart are given.

INTRODUCTION

In the design of stressed-skin structures for air-
craft as well ag in the design of compression members,
it is ‘desirable to know the compressive siress at which
buckling occurs. In practice the structure is usually
s0o imperfect or so eccenirically loaded that lateral de-
flection starts with the beginning of loading. When
lateral deflection starts with the beginning of loading,
‘however, there is usually a very pronounced increase 'in
deflection at the critical compressive stress for which
buckling would have occurred had the structure been per-
fectly shaped and centrally loaded. The evaluation of
this critical compressive stress for a flat plate, with
certain conditlons of edge support, is dzscussed in this
paper.

When & flat plate is loaded in compression, the two
loaded edges are either simply supported or restrained in
some maaner: If the two unloaded edges are 'not supported,

" thé plate is-considered a columni When one, or both, of

the uiloaded edges isfalso”suppérted'or restrained in
some manner, the critical compreésive stress is greatly
increased over that for the plate as a column. That the
compressive stress is increased when one, or both, of the
edges is supported or restrained has been recognized for
years. Because of the importance of the edge conditions,
- formulas based on the assumpiion that each gdge of the



plate is free, simply supported, or fixed,have been em-~
ployed in design. (See the summary of these formulas
given in reference 1.)

A study of the theory and the more reliable test
data on the buckling of plate elements in stressed-skin
structures and compression members revealed the necessity
for a more careful consideration of the edge condition of
plates than has been previously attempted. Accordingly
studies were made of the critical compressive stress for
I-, Z-, channel, and rectangular-tube sections in which
proper consideration was given to the interaction between
the individual parts of the cross section. (See refer-
ences 2, 3%, and 4.) In order to make the results of the
work more generally applicable, studies were also made of
the basic plate elements that comprise these sections.
All the basic design charts resulting from this investi-
gation were made available in 1938. The combination of
the present paper with references 2, 3, 4, and 5 is a
more complete presentation of all this material.

The basic element treated in this paper is a plate
supported along the four edges, elastically restrained
‘against rotation along the unloaded edges but with no
restraint against rotation along the loaded edges. The
loaded edges are therefore considered to be simply sup-
ported according to the usual terminology. This basic
element is representative of the webs of I-, Z-, and
channel 'section columns, of the walls of a rectangular
tube, ‘ahd of the flat skin between..the stiffeners of a
stressed-fkin structure. The basic element representa-
tive of an outstanding flange with elastic restraint

against’ rotatlon along one unloaded edge is treated in
reference 5.~ . . e

mhe mathematlcal derivations required for the inves~
tigation of the present paper are given in appendlxes A
and B, The vesults of practical use are given in the body
of the paper. : C

Bernard-Rubensteinq‘fcfmeriy of:the NACA.siaff. ber-
formed ‘all .the mathematical derivations required for ap-
. pendix B, the presentation of whioh was. adapted to the

- purposes of this paper.\

E'VALUAT;OK”QE ‘CRITIGAL STRESS

Within the elastic range.~ Within the elastic range



in which the effective modulus of elasticity is Young's
modulus, the critical compressive stress fep for a
thin flat rectangular plate is expressed as {raference
6, p. 351, eguation (214)):

’ 2Ry R
fcr. = kﬂ t (l)

12(1=-p2)p2

where k nond1mén51onai coefficient that depends upon
conditions of edge restraint and shape of
plate

E Yogng,s_modulus _

t thickness of plate. .
b Poisson's ratio

b width of plate

, Beyond the elastic range.- When the plate is stressed
in compression beyond the elastic range, the effective

modulus of elasticity for the plate is less than Young's
modulus, If a single, over-all effective plate modulus
nE is substituted for Young's modulus E, the critical

stress, when the material of the plate is loaded beyond
its elastic range, can be obtained from eguation (1).

. The nondimensional coefficient 'n ‘has a value that lies
between zero and unity and is determined by the stress.
For stresses within the elastic range, n = 1. For a
more complete discussion and definition of mn, see refer~
ence 2. ... Co

o If mE, is substituted for E in equation (1), the
resulting equation cannot be directly solved for - fou. If
the equation is . divided by n, however, fcr/“ is given
directly by the geometrical dimensions of the. plate, ‘
'.'Young 8 modulus " E, -and Poisson's ratio . Thus

fcf . kﬂaEta
n 12(1—»5)1:2

- (2)

For a given material, the relationship between fer
and fgp/m tends to be fixed by the compressive stress-

strain curve. This relationship is discussed in refer-
ence 2, wherefit is shown how probable relationships be-



tween f,y and f,.fn are obtained from the column curve

for the material because column curves are more readily’
available then compressive stresg-strain curves. The
question is, therefore, what column formula should be used?
Equations (8) and (9) of reference 7 define column curves
that apply when the material Jjust satisfies the minimum
requirements of Navy Department Specification 4649a for
248-T aluminum alloy. The relationships between for and

and f_./n for this case are given in references 2, 3,
and 4 and in figure 1 of this paper.

The 245-~T material delivered under specification
46A9a almost always has properties that are better than
the minimum required properties. The relationships be-
tween fgp and fep/n for the averages 245-T material

delivered are given in figure 2. This figure has been
prepared in the manner described in reference 2, the col-
umn curves for average 24S5-T material as given in refer-~
ence 8 being used, _

Figures similar to 1 and 2 of this paper may be pre-
pared for any material. The engineer using this paper
nust thereforeddecide whether the computation should be
based on minimum required material properties or average
material properties.

rRegardless.pf whéther'figure'l or 2 is used, it is
T + '

recommended that tﬁe N o= curve,be used for all
values of restraint against rotation until future experi-
mental datd indicate that a different curve should be -
used,’ In"figuresl and 2 the different equations involving
T merely- 1dentify different curves.that. result _from the

relationships indicated. .The value of T E/E the
ratio of the effective column modulus for bending failure
at the stress fcr to Young'ls modulus.

EVALUATION OF k

The value of £ r/n at Whlch buckllng occurs is giv-

en by equation (2), in whlch all of the quantitles are
known except the value of the coefficient k.



Equal restraints on the side edges of the plate.-
The values of k for the case of equal restraint on each
side edge of the plate can be obtained from figure 3,
this is a special case of the general solution in ap-
pendix A for any restraint on either side edge of the
plate. In the chart of figure 3 k is plotted against
the ratio of half wave length to the plate width A/D
for different values of a parameter ¢, termed the
"restraint® coefficient. (Trayer and March in reference
9 refer to ¢ as the "fixity" coefficient. In the
present paper, restraint coefficient was chosen to avoid
confusion with the fixity coefficient ¢ for columns.)

The restraint coefficient € depends upon the rel-
ative stiffness of the plate and the restraining element
along the side edge of the plate. The simplest concep-
tion of ¢ is obtained when the restraining element, or
stiffener, i§ assumed to be replaced by an elastic medium
in which rotation at one point does not influence rota-
tion at another point. For this type of restraining me-
dium along the edge of the plate,

454

Within the elastic range € = 2 (3)
S4b
Beyond the elastic range € = 4 g (4)
- n4

where. S5, stiffneés per unit length of elastie restrain-
ing medium or moment required to rotate a
unit length of elastic medium through one-

fourth radlan,

'\D  flexural rlgldlty of plate, per unlt length

Et
‘le(l—uz)

n coeffioient to allow for a decrease in D.
due to the application of stresses beyond
the elastic range : »

Inasmuch as . n. is a function of stress, its value
for 245-T material can be obtained from figure 4 or 5,
depending upon whether minimum. required properties. or
average properties are being used. The values of T,,
Ta, Tz, also given in. figures 4 and 5 occur in appendix



If S0 is zerec, ¢ is also zero and the conditlon

of zero restraznt, or s1mple support, is obtained. If
So- is infinite, € .- is also infinite and the condition

of infinite restraint or of a fized edge is obtained.

Therefore a variation of ¢ from zero to infinity will
cover all possible conditions of restraint at the side
edge of the plate. ‘

Figure 3 shows that for each value of € there is
a value of A /b for which %k is a minimum. Strictly,
a whole number m of half wave lengths A must exist
in the length of the plate a. Hence,

A a ‘
== (5)

Thus, to read a value of k from figure 3, it is neces-
sary to substitute m = 1, 2, 3, etc. ‘in equation (5) un-
til a value for A/b is obtained that gives the smallest
value of Xk in figure 3. This smallest value of k is
the one to be used in equations (1) or (2). This general
procedure will always give the correct value of k for
use in equation (1) or (2) regardless of whether or not

S¢, and hence ¢, is a function of the half wave length A.

For the special case in which 8,, and hence ¢,
is independent of the half wave length A, the general
procedure described for obtaining a wvalue for k can be
used to construct a new chart, with the abscissa X/b
replaced by a/b, This new chart is given in figure 6.

#hen S,, and hence ¢, varies with- A or A/b,
figure 6 should not be wused,but the general procedure as
applied to figure 3 should be used to obtain the correct
value of k for equations (1) and (2).

Unequal restraints on the side .edges of the plate.-
The charts of figure 3 and 6 were drawn on the assumption
that equal restraints exist along . each gide edge of the
plate. If unequal restraints exist along gach side edge,
the method for egual restraints is applied, and one side
restraint is used first and then the other. The average
of the two values of k thus obtained is a reasonably
good appromimation of the true value of k. This average
may be either the arithmetic mean, (k + kg)/2, or the
geometric mean, Mk ks, The value of k[ as given by each
of these averages is compared with the true value of k.




in table I for a number of special cases. For all of the
cases except the last three in table I, the walues of Lk,
and kp were read at the wvalue of: A/b that gave the
minimum k. In the last three cases, the values of k,
and: ks were read at the same value of A/b.:

Inspection of table I shows that, when the values of
k, and kp are read near the minimum points of the

- ecurves for - €4 tand €3, respectively, the arithmetic

mean. generally gives smaller errors than the geometric
mean, although either one gould be used without serious
error in practical problems. On the other hand, if the
values of k, and kp are read at the same value of
Ab, the arithmetic mean gives definitely larger errors.
It is therefore recommended that the geometric mean be
used when the value of A/b 1is fixed. ZEither method may
be used when the values of k,; and kp are read near
the minimum points.

When the critical compressive stress for unequal
restraints is found by the method of the geometric mean,
the error in k, and hence the error in the critical
stress for problems in the elastic range, is less than 3
percent. DBeyond the elastic range, it is more conservative
to average the two critical compressive stresses than to
average the corresponding values of k and then to ¢om~-
pute the critical compressive stress.

EVALUATION OF S, AND ¢

Before it is possidble to determine k from figure 3
or 6, it is necessary first to évaluate the restraint co~
efficient €.  The value of S, to be substituted in
‘equation (3) or (4) will depend upon the charaoteris ics
of the striuctural member, or members,:that provide 3
restraint, ‘In this paper it is assumedthat the restraint
is provided by a specially defined elastic .restraining
medium. As a result of this assumption, it has been pos-
sible to derive the general chart of figure 3, which is
independent of the structure that provides the restraint.

The basic property of the elastic restraining mediunm
is that rotation at one point of the medium does not af-
fect rotation at another point of the medium., In many
practical problems the elastic restraint is provided by a
stiffener, a plate, or some other structure for which ro-
tation at one point affects rotation-at another point.



Consequently, the evaluation of 8y 1in any given problem
nust take into account the effect of this 1nteraction
within the elastic restrainlng structure.

The formula 1or Sg to be used in any given problem
will depend upon the -type of structural member that pro-
vides the restraint.. Because this entire subject of the
restraint supplied to the side edge of. a plate has been
rather superficlally treated in the literature, it is be-
ing made the subject of several papers by the FACA, the
first of which is reference 10, - ~

e,

Langley Memorlal aerbnautlcal Laboratory,
National Advisory Committee for Aeronautics,
Langley Fielda, Va.

APPENDIX A

, SOLUTION BY DIFFERENTIAL EQUATION

The prbéedure for obtaining the ‘critical stress of a
plate unlformly comprevsed along two - opp031te, simply -
supported edges is given in reference (p. 337). 1In this
method, which was also used by Dunn‘in reference 11, the
critical stress is found by solving the differential equa-
tion expressing the equilibrium of the buckled plate. The
same method is applied in the present paper to the case in
which unequal elastic restraints against rotation are
present along the unloaded side edges of the plate. For
generality, the slastic restraint is assumed to arise from
an elastic medium distributed along the unloaded edges;
this medium has the basic property that rotation at one

point within it does not influence the motatian at any
other point.nh . . . .

Figure 7 shows the coordinate system and the plate

d1m6n31ons. The dlfferential equation for equllibrlum of
a plate element is -

- - %y - d%w ‘ 54‘")
o(nFreen e gy e

whergv f uniformly distributed compressive stress



t ‘thlckness of. plate
w deflectlon normal to plate

X longltudinal coordinate in dlrecﬁlon of "applied
stress:

D flexural rigidity of plate, per unit length
vy transverse coordinate. across width of plate

Tys Tz, and Ty coefficients equal to or less
than unity ‘ ' o

In equation (A-1) the term ft(3®%w/9x®) 1is concerned
with the external forces on the plate that cause buckling;
( 3w % w 2w
whereas the term =D (7, + 2Tp e 4+ T, g ) is
\t a s ® ox®ay? > ay*
concerned with the internal resistance of the plate to
buckling. The terms involving T, and Ta in egquation

(4~1) are concerned with the lonvitudinal and the trans-
verse bending, respectively, whereas the term involving
Tz 1is concerned principally with the torsional stlffness.
The coefficients T,, Tz, .and Tz allow for the change
in the magnitude of the various terms as the plate is .
stressed beyond the elastic range. In the elastic range
T1=T2=Tz=ll

The loaded edges are 51mp1r supported and are not
displaced in the direction w., Of the several forms of
the general solution of equation'(A-l) the following form
was selected as appropriate for this problem;

@1cosh-ﬁg+ stinh~—£4-03cos §z4-0 sin ->cos %é (a-2)

where o ;éﬁ~/r Ts 2 / 7\) ,a. ~&> (A~3)
- 12(1-p®)b%s (4-5)

REL®

Eguation (4-2) satisfies the bousdary conditions at the
loaded edges and gives real values for both o and - B
near the buckling stress f = f,q.
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The values of the coefficients Cys Co, 03, and C,
are to be found from the boundary conditions along the
side edges of .the plate. The value . of A, the half wave
length of the buckle pattern, is found from the condition
that there must be an integral number of half wave lengths
in the length a of the plate; thus

& ' -
A== (a-8)
where m = 1, 2, 3, etc.
In the elastic range, where T, = Tp = Ty = 1, the

values of o and P are : ‘
b /b | ' -

ww/;./-x + Wk | (4-7)

A (a-8)
A A , | ‘

_ The solution given by equation (4-2) was selected to
satisfy the boundary conditions of no deflection and sim-
ple support (no moment) along the loaded edges. The
boundary conditions along the unloaded side edges have
also to be satisfied.. The boundary condltlons along the
unloaded side edges are:

a
it

®
]

(W), _b'=o0 (4-9)
s-2=0
S .p=0  (a-10)
. ,y’g ’
P Y P o
(SFr5F )y =44va(5§); b (4-11)
e y:-——- : '-_y‘="‘~
e e - ) . 2
' 2 2 o
m(%-’g’- + .g.;g = 4sa< ) (4-12)

“where Sy -and 8z are the respectlve stiffnesses per
-unit length of the elastic restraining mediums or the

moments required to rotate a unit length of the medium
through one-fourth rdadian. . :
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From equations (4-9) and (4-10) are obtained

: cosh %
Cy = = G, 5 (4-13)
cOog =
s h a’
sinnh —
Ca = - Cp : (a-14)
sin E
2

From equations (A4-11) and (A-12) are obtained

~

: S ' ~ 7
Cy | (a® + B®)cosh §-+ 4];b { & sinh % + B cosh % tan-%)’
L *

r ' < q
—Czt(m3+ﬁa)sinh%4-é%%3 <a cosh %-B sinh % cot %)j = 0 (a-15)
' . 45,1 7 a o g

2 4+ g* n 24202 inh —+ B cosh — —)
1[(@ B2) cos —+—5— (@ sinh 2 B cosh — 5 J

(02+82)sinnS + 2520 sh Eo inh & BN - -
f?g;[(a +B )31nh2+ = <a cosh - B sinh 3 cot 3 } = 0 (a-16)

The buckled form of equilibrium of the plate is ob-
"tainéd when. the determlnant formed by the coefficient of

Cy " and Caj 1n equations" (A-l5) and (A-ls) equals zero.
Thus - X

'[(&é+§a)-f€1<é tanh%#-ﬁ tan —> [( 2482) + €5 (a coth-— -B cot )]

+:Ed3+ﬁaj+€é<g tanh§+-6 tan~>J!-(a +ﬁ2)+e1<é coth—-ﬁcot B)] =0 (a-17)

- where
45,0 o
€= — | (a-18)
452D
€y = — (4-19)

-D
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, Bgual restraints on the 31de edgeg of the glate.
When ¢€; = €3 = €, equation (A—l?) reduces to

[a.2+[32+ € <or, tanh -§+ g tan -— -1 a+B2 + ¢ <or, coth-—- Bcot —)} =0 (A-—20)

The'SYmmetrical buckled form of equilibrium is obtained by
setting the first of these factors equal to zero:

a? + B2 + ¢ /a tanh & 4+ B tan BN 0 (A-21)
: \\ 2 2/

This equation is the same as equation (14) of reference
11l. The antisymmetrical buckled form of equilibrium is
obtained by setting the second factor in equation (4-20)
equal to zero:

2 / < . s BN 2 -
a® + B® + ¢ {a coth s B cot 5 ) 0 (A-22)

Of these two buckled forms the symmetrical form given by

equation (4-21) will occur at the lower critical stress.

Therefore equation (4-21) was used to establish the exact
values of k given in table II,

The condition of both side edges fixed is described
by € = o, for which case equation (A-21) becomes

a tanh % + B tan % =0 - - (A-23)

It is of interest to compare this equation with the eQua—
tion given by Timoshenko in reference 6 (p. 345). In
Timoshenko's equation the symmetrical and the antisymmetri-

cal factors have not been separated as they have been in
this paper.:', . . .

The conditlon of both side edges simply supported
(no restraint) is described by ¢ = 0. "'For this special
case, the problem is to find the smallest. value of k # O
that will satlsfy equation- (A-21) when ¢ = 0., A conven~-
ient method for determining this value of k is first to
solve for €3 o T

. : a? + 52‘ ) .
€ = - ('A"'24)

i

o tanh 2 ; g tanhE\
2 2



- 13

When X = 0, it is observed that af + B2 = 0 and hence

€ = 0., All values of k greater than zero give a finite,
positive value for of + PB? as well as for o tanh a/2.
Consequently, the only values of k. greater than zero

that can make ¢ = 0 are those values that render B tan B/2
infinite. The smallest value of B that causes P tan B/2
to be infinite is B = 'm., Therefore the smallest value of

"k - that gives B = n' is obtained by substituting B =

in‘equation (A-4), o e

__/5;./......+/..._ u)( "_;Tf._;._)__ | ;<';-25>

N AW Tx A

M o= wW
from whlch the value o; k for € = 0‘ is
: . ” 1 ’Tgb.? /ba{"ﬁ
K = 7.4 | —— 4 —2 = | - (A
< = T@l[fb/K + T, A § Kk I< ) ‘ ( A26)

This eqﬁation~shows that k is a functlon of’the
half wave length AN . If the plate is long, A/b will ad-
Just itself so as to cause %X +to have its minimum value,

J— :
4

This value of A/b is. /li, which gives
J T

kmihfﬁ 20T, + o Tsz) ! . . ;(AfZV)
. In the elastic range in which T, = Tz =-Ts = 1,° theée
equatlons give N/b = 1 and- kpin = 4. : w DT

Unequal restraints on the side edges of the plate.-
When the restraint coefficients €, and €3 at the two
side edges of the plate are unequal, equation (4-17) must
be used to establish the value of k and hence the criti-
cal value of the compressive stress f. This method of
establishing k 1is long and cumbersome. & much shorter
and more easily applied method is therefore desirable for
practical application. - The recommended short method given

in the main patt of this paper . glves good approxzmate val-
ueS. i
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APPENDIX B
SOLUTION BY ENERGY METHOD FOR EQUAL SIDE RESTRAINTS® .

Because the exact solution of the differential equa-
tion given in appendix A does not lend itself to a direct
calculation of k, as in the case of' the energy method of
solution, an energy solution was made to aid in the con-
struction of the chart of figure 3. The energy method
gives approximate values for k, the accuarcy of which
depends upon how closely the assumed deflection surface
describes the true deflection surface.

The energy method as applied to the calculation of

+ critical compressive stresses is given in reference 6

(p. 327). The plate is stable when (Vi + V) > T and
unstable when (Vy + Vp) < T, where T is the”work done
by the compressive forces on the plate, V3 1is the strain
energy in the plate, and Vg is the strain energy in

two elastic restraining mediums at ‘the edges of the plate.
The critical stress is obtained from the condition of
neuvtral stability:

T =V, + Vg | . (B-1)

If w 1is the deflection normal to the plate at any

point x,y in the plane of the plate shown in figure 7
and - S, =“Sl = 83 (see appendix A), then T, V,, and

V2, are given by the following equations. (See reference
?, §q?at10ns (199) and (201) and reference 9, equation
?73). ;

. N : ) b/2 Z\f,'a » > ' v - -
L s , J ‘.—/ o s
- e ~A/3_
b/a .A/ { ' N |
- =‘E s J/‘aaw ﬂ( i_ Pw Pw | ixdy
YT oa / / t& 3x? OXBy ox® 3y ? J
~b/2 =N/ (B 3)
A2 2 Az
1 ; ~ R:&3 7 r/aw> e
Vsy==< 485 — | dx + 4S8 { =— axh (B~4)
® 2 ] ° . y y,_-_-E.__? ° {.\ ay y:—-tl_;
2 2
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In order to evaluate T, V;, and Vp, it is neces-
aary to assuvme & deflected surface w consistent with the
boundary conditions. These conditions specify that along
the two side edges of the plate thers be (1) no deflec-
tion and (2) equal restraint against rotation. The side
edges will therefore be subjected to equal and opposite
edge moments. A plate with no restraining moments at its
edges buckles in the form of a sine curve across the
plate. A beam with equal and opposite end moments deflects
into a circular arc, Both the sine curve and the circular
arc satisfy the condition of zero deflection at the side
edges of the plate. Consequently, for the deflection
curve across the width of the plate, a curve given by the
sum of a circular arc and a sine curve was selected. In
the direction of 'the length, the usuwal sine curve indicated
by the solution of the differential equation is used. Thus
the deflection surface assumed for the plate is, in the
coordinate system of figure 7,

!-4A 2 ba\ /4A ’ Ty _’ X
= | — - — f 2= B\ LA B-5
w L1a <y /'+\ + ) cos D Jcos -~ ( )

-

"where A and B are arbitrary deflection amplitudes.

The combination of & and B in equation (B-5) was
selected so that A = 0 would represent the condition of
simply supported side edges and 3B = 0, the condition of
fixed side edges. The ratio A/B is therefore a measure
of edge restraint and is related to the restraint coeffi-
cient € ' through the boundary condition:

02y 32y

D 577 * B 5TF )b = 484 \gyug_g (B-6)
2 T2

e e

Subétitutiog of w . as given by equation (3—5) into equa-
tion (B-fﬁ,)_g,ives_'"” o A Lo C

8 , . h
where, by definition, .
| 454b
€ = B-8
= ( )

Substitution of the value of A as:gifen by expression
(B-7) into equation (B-5) gives
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W (y - — (} +-> cos oL cos %; (3-9)

This new equation for w shows how the shape of the
deflection surface is affected by the restraint coeffi-
cient ¢. This equation is used in the evaluation of T,
V., and Voo Thus

2 g ’ 2
_ Rz T bt [ m2c? < ) 1 < €> } _
T B Ty 17A 1+ ’ * 5 1+ 3 | f (B 10)

2 m* AN -1 2
(TN {[ 120< > (3§>‘ M } ¢

€ de
+ <1 + ~)<h + A ) [ Y Aalier ] (B-11)
2
V, = B? E§%£L5 o , (B-12)

It is permissible to substltute these values into
equation (B-1) only when the compressive stress. f has
its. eritical value fcrf From this- subst;tutlon,

N s Thl et
fop = (B-13)

where ;
Cmg>2 : o
A 1 1) 2 < c)(‘b A ( >i 2¢
+ +—| € - S et ey
120 <31.b>2 s S T \ME A NT *?j (g___)
k= A A
‘ s o v
G- HC D 36 8
136 1+ 5 )t 1+

" Equation (B-14) was used to calculaté:the values of
k listed in the columns designated (a) of table II., With

(B=14)
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these values of %k as a guide, a number of correct values
of k were obtained by satisfying equation (A-21) of ap-
pendix A, In this manner the errors in k as given by

" equation (B-14) were established at isolated.points. From

this. knowledge of the.errors, correétions were made to all
the values of k given in columns (a) of table II. These
corrected values of 'k, which are recommended, are listed
~in the columns designated (b) of table II, The recommended
values of k were used in the construction of figures 3
and 6.
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TABLE I.- COMPARISON OF APPROXIMATE AND EXACT VALUES OF k FOR
A PLATE WITH UNEQUAL ELASTIC RESTRAINTS AT THE UNLOADZID EDGES

é and k fof €, !> and k for €s True value Arithmetic mean| Geometric mean
b of k fronm
€, le - equation ky+ky Brror - _Error
o A/ D k, A/b kg (a-17) =75 (percent) k=/kike (percent)
01 0 1.0001 4.00 1.000 2.00 4,00 4.00 0 4.00 0
01 5 1.000 ] 4.00 . 805 5.12 4,57 4.56 ~-.22 4,53 -.88
1| 5 .922 ] 4,34 . 805 5.12 4.74 4,73 -.21 4,71 -.63
2! 6 .876 | 4,60 .805 5.12 4,86 4,86 0 4,85 -.21
31 5 .845 | 4.81 .805 5,12 4,96 4,97 .20 4,96 0
41 5 .823 | 4.98 .805 | 5,12 5.08 5,05 0 5,05 0
5 5 ,865 1| 5,12 . 805 5,12 5,12 5.12 0 5.12 0
0120 1.000 1 4.00 0.719 6.086 5,03 5.03 0 4,92 ~2,19
2120 .876 | 4,60 .719 6.06 5.31 5.33 .38 5.28 -.56
5120 .805 1| 5,12 719 6.08 5.58 5.59 .18 5,57 -.18
10 120 .755 | 5.60 .719 | 6.08 5.83 5.83 0 5.83 0
20 120 .719 | 6,06 .719 6.06 6,06 6.086 0 6.06 0
0} o 1.00 4,00 0.666 6.98 5.42 5.49 1.29 5.28 -2.58
3] .845 | 4.81 .6066 6.98 5.82 5.99 1.38 5.79 -.52
10| » .755 | 5,60 .6686 6.98 6.25 6.29 .64 6.25 0
40 | o ,696 | 6.43 . 666 6.98 6.69 .71 . 30 6.70 .15
o | .666 | 6.98 . 666 6.98 6.98 6.98 0 6.98 0
0| 0..658 4,79 0.65 6.98 5.67 5.89 3.88 5.78 1.94
0| 1.00 4,00 1.00 8.59 5.74 6.29 9.58 5.86 2.09
018 1.50 4,69 1.50 8,920 6.51 6.79 4.30 6.46 - 77

61
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NACA , Table 2
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NACA Figs. 1,2
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Figure 1.- Variation of foy with fgp/m for 248-T aluminum alloy
of minimum required properties. (When fopr/m <19,600

1b/sq in., m = 1 and fop = fop/Me)
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Figure 2.- Variation of fop with fgop./n for 248-T aluminum alloy
of average properties. (When fo/n<16,700 1b/sq in.,
n =1 and for = for/M-)
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NACA | Figs. 4,5
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Figure 4.- Variation of #,, 7., 7., and m with the compressive
stress, f, for 243-T aluminum alloy of minimum
required properties.
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Fig., 7
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Figure 7.- Rectangular plate under edge compression.






