
 1

IAC-08-D3.4-E5.4.5

MANAGING LARGE SCALE PROJECT ANALYSIS TEAMS
THROUGH A WEB ACCESSIBLE DATABASE

Daniel A. O’Neil

Aerospace Engineer, NASA
Huntsville, Alabama, USA
daniel.a.oneil@nasa.gov

ABSTRACT

Large scale space programs analyze thousands of requirements while mitigating safety, performance, schedule, and
cost risks. These efforts involve a variety of roles with interdependent use cases and goals. For example, study
managers and facilitators identify ground-rules and assumptions for a collection of studies required for a program or
project milestone. Task leaders derive product requirements from the ground rules and assumptions and describe
activities to produce needed analytical products. Disciplined specialists produce the specified products and load
results into a file management system. Organizational and project managers provide the personnel and funds to
conduct the tasks. Each role has responsibilities to establish information linkages and provide status reports to
management. Projects conduct design and analysis cycles to refine designs to meet the requirements and implement
risk mitigation plans. At the program level, integrated design and analysis cycles studies are conducted to eliminate
every “to-be-determined” and develop plans to mitigate every risk. At the agency level, strategic studies analyze
different approaches to exploration architectures and campaigns. This paper describes a web-accessible database
developed by NASA to coordinate and manage tasks at three organizational levels. Other topics in this paper cover
integration technologies and techniques for process modeling and enterprise architectures.

ACRONYM LIST
ACL – Access Control List
API – Application Programming Interface
ATA – Architecture Trades and Analysis
AT&T – American Telephone & Telegraph
BPEL – Business Process Execution Language
BPMN - Business Process Modeling Notation
CAIT – Constellation Analysis Integration Tool
CIM – Common Information Model
CMMI – Capability Maturity Model Integration
COI – Community of Interest
ESMD – Exploration Systems Mission Directorate
DEA – Data Exchange Agreement
DFD – Data Flow Diagram
DIO – Directorate Integration Office
DMTF – Distributed Management Task Force
DRM – Data Reference Model
FEA – Federal Enterprise Architecture
ICD – Interface Control Document
IDAC – Integrated Design and Analysis Cycle
IDE – Integrated Development Environment
IPT – Integrated Product Team
IDAC – Integrated Design and Analysis Cycle
IDE – Integrated Development Environment
LDAP – Lightweight Directory Access Protocol
MDA – Model Driven Architecture

MOA – Memorandum of Understanding
MVC – Model View Controller
NASA – National Aeronautics & Space Admin.
OASIS – Org. for Adv. of Structured Info. Stds.
OMG – Object Management Group
OWI – Organizational Work Instruction
PBS – Product Breakdown Structure
RAD – Rapid Application Development
SEI – Software Engineering Institute
SOA – Service Oriented Architecture
SSO – Single Sign On
SVG – Scalable Vector Language
TDS – Task Description Sheet
UML – Unified Modeling Language
URL – Uniform Resource Locator
WBS – Work Breakdown Structure
XML – eXtended Markup Language

ACKNOWLEDGEMENTS

The author thanks the following colleagues for their
contributions to the systems and activities described
in this paper’s case studies: Don Monell, Joshua
Arceneaux, Joel Abraham, Karen Murphy, Dennis
Bulgatz, Stephen Young, Jeff Crowe, Henri van den
Bulk, Tom Gormley, Leland Dutro, Lisa Murphy,
Adrianne Day, Sandeep Shetye, and Anita Prasad.

 2

INTRODUCTION
Managing the integration of enterprise
architecture requires orchestration of
business processes, standardizing common
information models, publishing reusable
code and service interfaces, and establishing
repeatable development and integration
practices. Often, people think in terms of
their discipline and express needs in that
vernacular. To understand processes of
several organizations, information model
developers translate narrative descriptions
into standardized diagrams so enterprise
architects can discover common capability
needs. Examples of common needs include:
• Project Management – Coordinating

budgets, personnel, schedule, and products
to meet requirements and mitigate risks

• Product Management – Transferring,
storing, translating, and configuring within
the context of a product breakdown
structure that spans all levels of a program

• Process Management – Defining
workflows, enabling approvals and
concurrence, changing a products status,
and notifying participants via e-mail

• Archiving – Aggregating designs,
software, and data files into configurations
and or compressing collections into files
with indices and product descriptions

• Collaboration – Capturing comments,
markups, revisions, discussions, and
teleconference support

• Searching and Filtering – Finding
information via key words, synonyms, and
context within indices, product structures,
and semantic information models

• Report Generation – Producing tables,
spreadsheets, schedules, and diagrams that
present data and relationships among
people, products, and processes

• Information synthesis – Integrating data
from multiple sources, plotting data,
creating visualizations, and displaying
results via portals and dashboards

This paper presents case studies about
database applications that provide these
capabilities. Other concepts covered in this
paper include business process modeling,
web services, model driven and service
oriented architectures, graphical notations,
application development tools and process.
Conclusions weave these concepts into an
enterprise architecture development process.

CASE STUDY 1: CONSTELLATION ANALYSIS

INTEGRATION TOOL DATABASE
The Architecture Trades and Analysis
(ATA) Office within NASA’s Constellation
Program manages Integrated Design and
Analysis Cycles (IDAC). Each project (e.g.,
Ares, Orion) conducts Design and Analysis
Cycles (DAC) composed of technical trade
studies. An IDAC conducts studies to
integrate results from the DACs and
conducts technical trade studies at the
exploration architecture level. To manage
the myriad of studies, the ATA created a
Task Description Sheet (TDS) to plan the
study, define products, schedule reviews,
identify needed skills, and establish
workflows for approving and concurring on
the tasks. Before December of 2006, the
ATA used Microsoft Word® to create and
revise a TDS. Board discussions regarding a
task involved printing out hard copies of the
document and projecting it on the screen.
Board members would mark-up the hard
copies and provide them to the task manager
for integration into the TDS. The process of
incorporating the comments and getting
approval from the board could take days or
weeks.

When hundreds of TDS were
produced and scattered across several
directories on the Windchill® product life
cycle management system, ATA
management identified the need for a web
accessible database. Starting in September
of 2006, the Constellation Analysis

 3

Integration Tool (CAIT) development team
rapidly prototyped a database and deployed
an operational system by the end of the first
week in December 2006. Now, the board
reviews an individual TDS by projecting the
database record on a screen, provides
comments, and the task manager updates the
TDS during the meeting. In 2007,
subsequent deployments incorporated
reporting requirements from the Directorate
Integration Office (DIO) within NASA’s
Exploration Systems Mission Directorate
(ESMD) and workflow management
requirements from Level III engineering
teams that support the Ares project.

The CAIT database provides a
capability to create records of organizations,
teams, study collections, Task Description
Sheets (TDS), points-of-contact, data, and
disciplines. Information on TDS includes
completion status, covered requirements,
identified risks and issues, models and
simulations used, data providing
organizations, data needs of organizations,
associated ground rules and technical
baselines. Establishing linkages among
tasks, requirements, and risks is a primary
purpose of the database. Other databases
serve as the authoritative source for
requirements and risk data. Computer code
within CAIT imports this data to enable
linking and report generation. Managers use
the reports to monitor and manage design
and analysis cycles within the projects or
program.

THE CAIT USER COMMUNITY
Members of the CAIT user community
include:

• Study Managers
• Process Facilitators
• Task Description Sheet Authors
• Discipline Specialists
• Organizational & Project Managers

INTERDEPENDENT USE CASES
The CAIT community of use cases is
interdependent; each actor performs actions
that depend on an action performed by
another actor. Figure 1 presents the roles and
responsibilities of the CAIT user community
participants as well as the interdependencies
of their use cases. On the left side of the
diagram, a column identifies the roles and
disciplines. On the right side of the
diagram, a column identifies the goals
pursued by the roles or disciplines. Circles
within the diagram identify a particular use
case and arrows between the circles depict
dependencies.

Multiple scenarios derive from the
relationships among the use cases. Study
Managers establish study collections, define
ground rules and assumptions, and assign
the teams and organizations to the study
collection. These use cases depend on the
Organizational Manager to build teams and
assign responsibilities. Goals of a Study
Manager are to generate task status reports,
traceability reports, and coverage reports,
which depend on a Task Leader to link risks
and requirements; this action in turn depends
on the Study Manager to include the
requirements and risks in the study
collection. Traceability reports enable the
study manager to explain how certain data
products address a “To Be Determined”
within a requirement or mitigate a particular
risk. Coverage reports provide a study
manager with the capability to identify all of
the risks and requirements that have been
addressed by studies within a collection.

A Process Facilitator uses the
assigned responsibilities to create approval
and concurrence paths. Facilitators identify
the life-cycle milestones for a TDS and
identify the specific roles that approve or
concur on the activities and products
described in the task and produce a
workflow. Example milestones in the life of
a TDS include draft, baseline, product

 4

review, and archive. A workflow
management function within the application
automatically notifies the next person in the
work-flow about a required review. Also,
the system presents a list of TDS records
that require a review, approval, or
concurrence when the person logs into the
system. When a TDS author describes a
task, he or she uses the approval path

templates. Reports generated by Process
Facilitators include model and simulation
traceability reports that identify the
relationships between tools, data products,
tasks, risks, and requirements. Other files
generated by facilitators are schedules that
identify activities, products, and delivery
dates.

Figure 1 Interdependent Use Cases for CAIT

Task Leaders develop the contents of a TDS,
identify necessary data, link requirements
and risks, and identify needed discipline
specialists. A TDS serves as a contract
between a requesting organization and
performing organization; approval and
concurrence paths define the signature
blocks for this contract. A report function
can generate Microsoft Project® schedules
generated from the product descriptions,
product delivery dates, board reviews, and
workflows.

Discipline Specialists perform tasks
and produce products specified activities
specified in the TDS. They create data-
records that describe the contents and
location of the product files. Often, the TDS
Author will identify a need for existing data.
In these cases, the discipline specialist can
locate the existing files and revise the
needed data record to reflect the location of
those files. When an author identifies
needed data that does not exist, a new data
record provides a description for the

 5

discipline specialist. Also, Discipline
Specialists identify models, simulations, and
analysis tools used to generate the product
data. These use cases enable the Task
Leaders to achieve the goal of linking tasks,
products, and tools that mitigate risks or
refine requirements.

Organizational Managers depend on
the Task Leaders to select the approval and
concurrence paths so they can participate in
advancing the TDS through the life cycle.
To achieve the goal of generating progress
reports, the Organizational Manager and
Task Manager depend on the Study
Managers, Process Facilitators, and
Disciplined Specialists to accomplish their
activities.

CASE STUDY 2: DATA MAPPING ACTIVITY
The Constellation program established an
Information Systems Office in the summer
of 2008; this office manages an Integrated
Product Team (IPT) composed of
stakeholders throughout the program and
sponsored projects. To gain insight to the
existing capabilities, current processes, data
flows, applications, and infrastructure, the
IPT will produce “As-Is” diagrams. Initially,
the diagrams will be produced by a variety
of information modeling tools. Plans for this
effort include the development of a
centralized web-accessible database to
define data exchanges and automated the
diagramming process.

With a database that provides the
capability to identify all the data flows
across agency internal organizations, the IPT
and project offices can decide, which data
flows ought to be formalized. Often,
organizations formalize agreements in a
variety of documents ranging from a
Memorandum of Agreement (MoA) to an
Interface Control Document (ICD). Reports
from the data exchange database can
produce an agreement that can be signed by
two or more parties. Generically referred to

as a Data Exchange Agreement (DEA), the
generated document can be tailored to define
a variety of customer and supplier
interfaces. Example applications of a DEA
include synthesizing information from
multiple sources, archiving file collections,
exchanging files, or an interface between
two applications.

Data Fusion or Information Synthesis
A portal or dashboard fuses data or
synthesizes information from multiple
sources. A team developing a portal or
dashboard can write DEAs with each owner
of the source data. Without having to
address specific data fields and types, a
DEA provides a structured mechanism for
identifying needed data that can generate
data flow diagrams.

Archives
Organizations exchange archives containing
a variety of files. In this case the DEA
provides a table-of-contents for the archive
as well as descriptions of each file within the
archive.

Individual files
How often do you find your e-mail stuffed
with a ten megabyte status report or
presentation? Typical Organizational Work
Instructions (OWI) do not describe how to
store or transfer data. In this scenario, a
DEA can explain that instead of using e-
mail to transfer data, large working files go
into a Wiki and the e-mail message contains
a hyperlink to the file. Organizations
exchange specific types of individual files; a
DEA documents the applications, file types,
submission frequency and other information
that enables automated diagramming of data
flows.

Application Interfaces
Software applications exchange data to
integrate with user inputs or calculated

 6

values. A DEA can serve as a predecessor to
a more detailed ICD. Typical ICDs have two
tables that represent the two sides of the
interface columns within the tables identify
a variable name, type, upper and lower
bounds, and update frequency.

DEVELOPING & INTEGRATING APPLICATIONS
Integrating or developing applications
involves capturing requirements derived
from processes, and designing, developing,
and deploying the integrated code or new
applications. Process models, development
tools, and reusable code facilitate this
process.

Process Modeling
A business process models captures
organizational activities, data structures, and
data flows; analyzing an “As Is” or current
architecture model provides insights such as
bottle necks, redundancies, inefficiencies,
and other opportunities for improvement. To
develop “Go To” or target architecture,
determine which enterprise processes are
strategic. Conduct a Kaizen event to
streamline the processes; this event ought to
proceed as much as possible in parallel with
any enterprise architecture implementation.
In addition to optimized processes, a Kaizen
event can define management metrics.1

The Object Management Group
(OMG), a non-profit industry standards
consortium, originated the Unified Modeling
Language (UML) as a graphical notation for
object oriented software. Business Process
Modeling Notation (BPMN) is another
graphical standard managed by the OMG.
With these notations, organizations can
diagram their business processes and
supporting software.2

The Organization for the
Advancement of Structured Information
Standards (OASIS) manages the standard
Web Services Business Process Execution
Language (WS-BPEL). This orchestration

language enables organizations to specify
business process behavior based on Web
Services. Techniques exist for translating the
BPMN diagrams into BPEL code. Since the
release of the BPEL draft in the spring of
2003 all of the large vendors involved in the
development have announced product
support. Microsoft, IBM and BEA are all
going to support BPEL based orchestration.
As an orchestration language, the BPEL
provides constructs to describe arbitrarily
complex business processes. At the highest
level, a BPEL process defines the interaction
between partners. A process can interact
synchronously or asynchronously with its
partners, i.e., its clients and with the services
the process orchestrates.3

The building blocks for a BPEL
process are the descriptions of the parties
participating in the process, the data that
flows through the process and the activities
performed during the execution of the
process. BPEL processes can be executed
via their own Web service interface, or
through internal triggers defined inside the
process. An external trigger is a message
received on a port exposed by the process,
internal triggers are time driven and defined
inside the process.

Methods and Tools
Producing an “As-Is” business process
model involves domain experts explaining
their processes and modeling experts
creating diagrams of those processes. An
iterative interview, diagram, review, and
revise process involves facilitators or model
developers conducting interviews with
groups subject matter experts. If facilitators
conduct the interviews, they collect the
information and provide it to the model
developers. Interpreting the interview
transcripts and modeling tools, the
developers create the diagrams, and present
them to the domain experts. To reduce time
and interpretation errors, the diagramming

 7

experts can participate in the interviews and
create the models during the interview.
Benefits of the process and information
modeling tools include standards, validation
of data and exchanges among entities, and
code generation. Disadvantages include the
cost and training required for sophisticated
tools and the increased workload for the
diagramming team as the organization
researches more business processes.

The Data Mapping Activity,
presented in this paper, offers an alternative
approach of using a web-accessible database
with form based surveys. Facilitators
provide training on how to use the database
and the domain experts create records to
describe their processes and products. Code
in the database creates graphic command
scripts to produce business process and Data
Flow Diagrams (DFD). Automated graph
drawing tools like GraphViz, developed by
AT&T Research, generate diagrams of
graphs and networks from text descriptions.4
Diagrams can be generated in the Scalable
Vector Graphics (SVG) for, which is based
on eXtended Markup Language (XML).
Several process and information modeling
tools import and export XML based files,
which allow round-trip engineering between
the two methods.

SERVICE ORIENTED ARCHITECTURE AND
MODEL DRIVEN ARCHITECTURE

The OMG defined Model Driven
Architecture standards and terminology for
integrating and evolving enterprise-scale
software systems; as an approach to
application design and implementation,
MDA encourages efficient use of system
models in software development and it
supports reuse within system families.
Models abstract physical systems and allow
engineers to focus on important details.
With system models, engineers can predict
system qualities, analyze the impact of

changes to properties, and communicate key
characteristics to stake-holders.5

Service Orient Architecture (SOA)
allows loose coupling among software
applications. A computer program,
categorized as a service, performs work for
another computer program referred to as a
service consumer. Two architectural
constraints enable services to achieve loose
coupling. First, each participating software
program incorporates the services’
interfaces. Second, an extensible schema
defines the vocabulary and structure of
messages passed through service interfaces.
Messages must describe rather than instruct
because the service provider is responsible
for solving the problem. Messages have to
adhere to a format, structure, and vocabulary
understood by all participating programs.
Extensibility allows addition of new services
and messages. A centralized registry of
services enables service consumers to find
service providers.6

APPLICATION INTEGRATION WEB SERVICES

Analysis of process models, data exchange
agreements, and requirements associated
with application integration requests reveal
common web service needs. The CAIT
development team, working with experts in
enterprise architectures and service buses,
identified needs for the following web
services:

Common Account Request Service
Typically, each web application requires an
individual to submit an account request
form. If the integration framework offers
several applications then filling out the
request form for each application can
become tedious. An ideal service is to
provide a one-stop-shop for filling out a
single account request form. Access
privileges will have to be determined by
contract and organization. Enterprise
applications that span multiple computer

 8

programs will have to be aware of the user’s
privileges when accessing various databases.

Access via the Central User Interface
Applications presented via centralized
Graphical User Interface (GUI) or web
portal as a part of the integration framework
must have a process for providing help-desk
support. If an application is linked to the
integration framework user interface and
someone has a problem, they will probably
call the help desk for the integration
framework. The help desk needs instructions
or a script to assist the user with basic
problems such as resetting a password. For
more difficult problems, the help desk needs
contact information for transferring the call
to the development or operations team for
application.

Account Authentication Service
A central authoritative source of information
about civil service and contract personnel
would prove to be a powerful integration
tool. An external account authentication
service would enable other application
developers to check accounts against a
centralized Lightweight Directory Access
Protocol (LDAP) database contained in or
accessed by the integration framework.
Using the account authentication service,
external applications would send a request to
the integration framework to check the
profile of a user. A response from the
integration framework would indicate
whether the incoming credentials match the
profile in the framework’s LDAP database.
If a corresponding record does not exist in
the authoritative authentication database
then a verbose error message is returned to
the external application.

Single-Sign-On Service
Doesn’t get frustrating to have to enter a
different user name and password each time
you open a different application? A Single-

Sign-On (SSO) service, for tightly coupled
applications, would use the integration
framework’s LDAP to authenticate user
access. For external loosely integrated
applications, the integration framework
could provide an SSO services that enable
users to synchronize their user names and
passwords with the framework’s
authoritative LDAP database. Working the
account authentication service, this service
receives a request from the external
application. The external application’s
Access Control Lists (ACL) has accepted
the log-in and the framework has checked
the username and password against the
LDAP. This SSO service automatically logs
into the framework so the user does not have
to enter the credentials again. In the near
term, this service could be one-way,
meaning that the SSO only works if the
person logs into the framework GUI or
portal first. Eventually, the service could be
bi-directional, meaning that a person could
log-into the framework GUI or the external
application.

External Application Data Transport Service
An enterprise service bus within the
integration framework enables applications
to exchange data via a common interface.
This capability reduces the N^2 number of
interfaces to N number of interfaces because
each application development team only has
to create an interface for the Enterprise
Service Bus (ESB). Extending the data
exchange services to external applications
involve publishing an Application
Programming Interface (API) for the
integration framework. The API should
provide sample code and bindings to a
variety of languages.

External Application File Upload Service
If the integration framework contains a
tightly coupled document repository, it can
provide a service to exchange files with

 9

other applications in the framework. For
external, loosely applications, the integration
framework can provide a file exchange
service that works with the account
authentication service to verify access rights
of the user. Referencing a PBS, the file
exchange service could determine where to
upload the file in the repository and return a
Uniform Resource Locator (URL).
Applications could have a drop-box where
users could bulk-upload or drag-n-drop files.
A polling loop within the application could
periodically call the file exchange service.
The service could determine where to store
files based on a naming convention. If a file
does not meet the naming convention, the
service returns an error. To retrieve files
from the repository hosted libraries, the
application would request a file via the
URL, the file exchange service verifies
access rights with authorization service and
allows the repository to download the file.

CAPABILITY MATURITY MODEL
Watts Humphrey developed the Capability
Maturity Model (CMM) in 1987 for the
Department of Defense’s Software
Engineering Institute (SEI) at Carnegie
Mellon University.7 The most recent
version, CMM Integration (CMMI), defines
five levels of maturity for software
development processes.

Level One: Processes have ad hoc
approaches, methods, notations, tools and
produce unpredictable results. Management
tends to be reactive and success is highly
dependent on the skills of the team.

Level Two: processes are repeatable.
The organization applies discipline to
managing requirements, planning projects,
monitoring and controlling processes.
Processes include managing supplier
agreements and configurations and assuring
product and process quality through
measurement and analysis. Processes focus
on project-level activities and practices.

Level Three: Processes are defined
and documented with consistent, cross-
project disciplines to establish organization-
level activities and practices. Efforts
emphasize evolution of requirements from
multiple stakeholders, evolutionary design,
continuous integration, and change
management. Management plans include
verification, validation, risk management,
training, and decision analysis and process
definition.

Level Four: processes are
quantitatively managed. Historical results
for Level Three projects can be exploited to
make trade off, with predictable results
among competing dimensions of business
performance (cost, quality, timeliness).
Focus areas include performance setting,
benchmarks, and project management based
on statistical quality control methods.

Level Five: Processes are optimized
and rapidly reconfigurable. The organization
learns, adapts, and continuously improves
through quantitative assessments. Focus
areas include causal analysis and resolution,
proactive fault avoidance and best practice
reinforcement.8

Reusable Code Libraries
Given the recurrence of required functions
such as security, search, agreements,
synthesis, workflows, and report generation,
planning and designing code for reusability
can save development costs in future
projects. Ongoing integration activities
associated with custom applications can
identify potential code base candidates for
reuse. To produce a reusable software
library, the development teams need to
generalize software classes, refine the code
so it stands alone or has minimum
dependencies, and document the interfaces.
Categorizing code by functionality and
design patterns enables the development
team to decompose new problems and match
the functions and patterns.

 10

An example of an application
architectural design pattern is the Model
View Controller (MVC), first described by
Trygve Reenskaug in 1979. In the MVC
pattern, the user interface is isolated from
the business logic so that either can be
worked on without affecting the other.
Applications based on the MVC pattern can
be adapted to new business logic or
redesigning the user interface for different
communities.9

Rapid Prototyping
Integrated Development Environments
(IDE) and Rapid Application Development
(RAD) frameworks enable prototyping and
early demonstrations that engage customers.
An IDE offers editors that color coding and
completion, which reduces syntax errors.
Other features include code libraries and
integrated debuggers. A RAD offers
graphical user interface design tools, code
generators, and a framework of folders and
libraries. Applying these concepts of
reusable code, design patterns, IDEs and
RADs to application development enables
the development team to focus on the unique
requirements that derive from an
organizations process, data flows, and
products.

FEDERAL ENTERPRISE ARCHITECTURE
 DATA REFERENCE MODEL

The Federal Enterprise Architecture (FEA)
standard provides a Data Reference Model
(DRM) that enables information sharing and
reuse across the federal government; this
standard facilitates description and
discovery of common data and promotes
uniform data management. The DRM
abstract model is an architectural pattern to
optimize agency data architectures.
Standardization areas of the DRM focus on:
• Data Description: Provides a means to

uniformly describe data, thereby
supporting its discovery and sharing.

• Data Context: Facilitates discovery of
data through an approach to the
categorization of data according to
taxonomies. Additionally, enables the
definition of authoritative data assets
within a Community of Interest (COI).

• Data Sharing: Supports the access and
exchange of data where access consists of
ad-hoc requests (such as a query of a data
asset), and exchange consists of fixed, re-
occurring transactions between parties.
Enabled by capabilities provided by both
the Data Context and Data Description
standardization areas.10

COMMON INFORMATION MODEL STANDARDS
The Distributed Management Task Force
(DMTF), an industry organization,
established the Common Information Model
(CIM) as an object oriented architecture for
depicting and tracking complex
interdependencies and associations among
software objects. Interdependencies include
logical network connections, physical
devises, transactions, and database servers.
A specification and schema constitute the
CIM, which define details for integration
with other management models, and actual
model descriptions. CIM is a common data
model of an implementation-neutral schema
for describing overall management
information in a network or enterprise
environment.11 Examples of CIM objects
include Database, Device, Event, Security,
Metrics, Network, Policy, System, Support,
and User. Organizations can use the CIM as
templates and guidelines for defining the
data structures and integrating the schemas
of the applications within their enterprise
architectures. Vendors can extend CIM's
common definitions to exchange
semantically rich management information
between systems throughout the network.12

 11

CONCLUSIONS
Concepts discussed in this paper include:
• Common organization capability needs
• Case studies about data base development

activities to define customers, suppliers,
tasks, products, and data flows, and
potential applications of a data exchange
agreement

• Business process modeling methods, tools,
technologies, and Kaizen events

• Model driven and service oriented
architectures and a defined set of services

• Maturation of agile software development
processes, code libraries, design patterns,
and rapid application development

• Government and Industry data definition
standards.

Weaving these concepts into an enterprise
architecture integration plan and a
documented repeatable process involves the
following steps:
1. Establish procedures for collect, model,

and graph processes and data.
2. Establish a development environment

with IDE, RAD tools, and code libraries.
3. Identify interdependent communities.
4. Create process models that identify

customers, suppliers, data flows, tools,
storage, and security levels; apply
BPMN, DFD, and other notations.

5. Formalize DEAs where necessary.
6. Identify common needs and define

service requirements to meet the needs.
7. Develop web services, document

interfaces, and deploy code libraries.
8. Identify data context, structure, types,

flows, and frequencies; apply UML,
entity relationship and other notations.

9. Map the data to a central WBS or PBS
and map the data structures to the CIM

10. Determine the strategic processes and
conduct Kaizen events to optimize them.

11. Develop BPEL code to orchestrate the
web services to integrate applications.

12. Apply the CMMI to mature this process.

REFERENCES
1. An Assessment of the Degree of Implementation

of the Lean Aerospace Initiative Principles and
Practices within the US Aerospace and Defense
Industry, Thomas E. Shaw, Alexander Lengyel,
Greg Ferre, pg.44, 47, February 2004
http://dspace.mit.edu/handle/1721.1/7320

2. Object Management Group, Business Process
Modeling Notation, last modified August 15,
2008
http://www.bpmn.org/

3. Web Service Orchestration with BPEL,
Christoph Schittko, XML Conference and
Exposition, December 7-12, 2003
http://www.idealliance.org/papers/dx_xml03/pap
ers/04-06-01/04-06-01.html

4. GraphViz, released by AT&T under the
Common Public License, December 11, 2004
http://www.graphviz.org

5. An introduction to Model Driven Architecture
Part I: MDA and today's systems, Alan Brown,
17 Feb 2004
http://www.ibm.com/developerworks/rational/lib
rary/3100.html

6. What Is Service-Oriented Architecture, Hao He,
September 30, 2003

 http://www.xml.com/pub/a/ws/2003/09/30/soa.html
7. Sidebar: Watts Humphrey on Software Quality

Software quality guru provides advice on
implementing the Capability Maturity Model,
Gary Anthes, March 8, 2004
http://www.computerworld.com/softwaretopics/s
software/story/0,10801,90799,00.html

8. CMM vs. CMMI: From Conventional to Modern
Software Management, Walker Royce
http://www-
128.ibm.com/developerworks/rational/library/co
ntent/RationalEdge/feb02/ConventionalToModer
nFeb02.pdf

9. Model View Controller, Wikipedia, Last
modified on August 15, 2008

 http://en.wikipedia.org/wiki/Model-view-controller
10. Federal Enterprise Architecture Data Reference

Model, Version 2.0, November 2005
http://www.whitehouse.gov/OMB/egov/docume
nts/DRM_2_0_Final.pdf

11. Computer Information Model Tutorial,
Distributed Management Task Force and WBEM
Solutions, Inc., Copyright 2002-2003
http://www.wbemsolutions.com/tutorials/CIM/ci
mtutorial.pdf

12. Common Information Model (CIM) Standards,
Distributed Management Task Force, Inc.,
June, 20 2008
 http://www.dmtf.org/standards/cim/

IAC-08-D3.4-E5.4.5

MANAGING LARGE SCALE PROJECT ANALYSIS
TEAMS THROUGH A WEB ACCESSIBLE DATABASE

Presenter: K. Bruce Morris
Manager, Exploration & Space Operations

Programs & Projects Office,
Marshall Space Flight Center,NASA

Bruce Morris@nasa govBruce.Morris@nasa.gov

Author: Daniel A. O’Neil
Aerospace EngineerAerospace Engineer,

Marshall Space Flight Center, NASA
daniel.a.oneil@nasa.gov

Presentation ContentsPresentation Contents

• Common Capability NeedsCommon Capability Needs

• Composition of an Analysis Community

• Interdependent Use Cases

R f Th O i i l L l• Reports for Three Organizational Levels

• Integration Technology Concept Mapteg at o ec o ogy Co cept ap

• Conclusions: An Enterprise Architecture Process

Common Capability Needs
• Project Management – Coordinating budgets, personnel, schedule, and

products to meet requirements and mitigate risks
• Product Management – Transferring, storing, translating, and configuring

within the context of a product breakdown structure that spans all levels of a
program

• Process Management – Defining workflows, enabling approvals andProcess Management Defining workflows, enabling approvals and
concurrence, changing a products status, and notifying participants via e-mail

• Archiving – Aggregating designs, software, and data files into configurations
and or compressing collections into files with indices and product descriptions

• Collaboration – Capturing comments, markups, revisions, discussions, and
teleconference support

• Searching and Filtering – Finding information via key words, synonyms, and
context within indices, product structures, and semantic information modelscontext within indices, product structures, and semantic information models

• Report Generation – Producing tables, spreadsheets, schedules, and
diagrams that present data and relationships among people, products, and
processes

• Information synthesis – Integrating data from multiple sources, plotting data,
creating visualizations, and displaying results via portals and dashboards

Composition of the Analysis Community
Study Managers
• Establish study collections such as a Integrated Design and Analysis Cycle (IDAC).
• Select organizations, teams, Task Description Sheets (TDS), data
• Define ground rules and assumptions for the studies and identify review boards

Process Facilitators
• Identify milestones within the life-cycle of a TDS
• Identify roles involved in moving the TDS through its life-cycle
• Determine whether those roles concur or approve the TDS to promote it to the next milestone
• Create approval paths to be selected by TDS authors

Task Description Sheet Authors
• Describe the task objectives and assign the TDS to a study collection
• Link risks to be mitigated or requirements to be fleshed-out by the tasks
• Link initialization data and identify task products
• Specify dates for products and milestone dates

Discipline Specialists
• Conduct activities described in the TDS and produce data files which they upload to WindchillConduct activities described in the TDS and produce data files, which they upload to Windchill
• Describe products in data records and record the Windchill hyperlink to the actual files
• Participate in the reviews of TDS and receive notification when a TDS of interest changes

Organizational & Project Managers
• Review, concur, or approve a TDS that affects personnel in their organization or work package
• Generate status reports of tasks performed by their organization
• Generate traceability and coverage reports that identify risks & requirements analyzed in tasks
• Generate traceability of models and simulations, used in tasks, to Constellation requirements

EstablishAssign Define Generate

Interdependent Use Cases
Study Managers

IdentifyEstablish
Study

Collections

Assign
Teams &

Organizations

Define
Ground rules &

assumptions

Traceability
& coverage

reports
Status Reports

Identify
Requirements

Documents

Identify
Milestones &

roles

Create
Approval

Path templates
Generate
Schedules

Generate
Model & Sim
Traceability

Reports

Facilitators

Schedules &

Describe
Tasks &

Select path
Link Risks &

Requirements

Link Models
& Simulations

Identify
Needed

Data

Task Leaders
Process Reports

Produce Store data Describe data
& link to

Identify
Models &

Specialists

Task Plan with
Relationships to Risk & Req.

data In Windchill & link to
Source files

Models &
Simulations

Org. & WBS Managers

Linkable published data

Build
Teams &

Organizations

Approve or
Concur on

TDS

Assign
Responsibilities

Generate
Organizational
Status reports

Relational reports about
organizations and products

Generated Reports
Reports generated by the Constellation Analysis Integration Tool (CAIT) Database
support three levels of NASA organizations.

• Level 1, Headquarters
– Summary Task Description Sheet (TDS) status reports

• Level 2, Constellation Program
– Detailed TDS status reports
– Requirements coverage reports that map TDS to requirementsq g p p q
– Risk coverage reports that map TDS to risks
– Models and Simulations traceability reports

• Level 3, Project Offices
– Task Description Sheet with signature blocks
– Detailed product schedules compatible with MS ProjectDetailed product schedules compatible with MS Project
– Excel spreadsheet export for detailed analysis

Capability Maturity
Model Integrated

Model Driven
Architecture

Integration Technology
Concept MapModel Integrated

Level 1: Ad Hoc
Level 2: Repeatable

Level 3: Documented
Level 4: Quantitative
Level 5: Optimized

Applies process models
to integrate applications

Service Oriented
Architecture

Applies web services

Web Services
Collection of software
routines that perform

services for applications

p p

E t i

Business Process
Execution Language

A computer language to
describe related activities Federal Enterprise

Architecture

pp
to integrate applications

pp

Code Libraries
Process
Modeling

Diagram business
processes

Enterprise
Architecture

Integrated applications that
enable business processes

B i P

Standard for data description,
data context, & data sharing

Code Libraries
Reusable code, documented

& generalized for creation
of new applications

Business Process
Modeling Notation
A graphical language to

describe processes

Integrated
Development
Environment

Coding editor, debugger,
compiler and libraries

Unified Modeling
Language

Common
Information Model

A il D l t

compiler, and librariesLanguage
Graphical notation for

software entities

A library of software entities
defined in UML

Agile Development
Emphasis on meeting customer
needs instead of documentation

and process

Rapid Prototyping
Iterative approach of

development and demonstration

Rapid Application
Development

Code frameworks, utilities,
and libraries

Conclusions
A Process for Enterprise Architecture IntegrationA Process for Enterprise Architecture Integration

1. Establish procedures for collect, model, and graph processes and data.

2. Establish a development environment with IDE, RAD tools, and code libraries.s ab s a de e op e e o e , oo s, a d code b a es

3. Identify interdependent communities.

4. Create process models that identify customers, suppliers, data flows, tools, storage,
and security levels; apply BPMN, Data Flow Diagrams, and other notations.y ; pp y , g ,

5. Formalize Data Exchange Agreements where necessary.

6. Identify common needs and define service requirements to meet the needs.

7. Develop web services, document interfaces, and deploy code libraries.

8. Identify data context, structure, types, flows, and frequencies; apply UML, entity
relationship and other notations.

9. Map the data to a central WBS or PBS and map the data structures to the CIM

10. Determine the strategic processes and conduct Kaizen events to optimize them.

11. Develop BPEL code to orchestrate the web services to integrate applications.p g pp

12. Apply the CMMI to mature this process

Back-Up ChartsBack-Up Charts

Data Classes in the CAIT Database

Task Description Sheet Related Classes

Requirements TBx
Collection

Title

TDS
Title
Description

A study collection has
a comment set of
ground rules and
assumptions that apply
to the tasks within that

Requirements
Title
Description
Document Paragraph
TBx list
Analysis Status
Create
Revise
Select

Title
Description
Requirement
Analysis Status
Rationale
Create
Revise
Select
Delete

Title
Description
Ground Rules
Organizations & Teams
Tasks
Create
Revise
Select
Delete

Expertise List
Activities List
Data Item List
Signatures List
Requirements
Risks
Tools
Create
ReviseT k D i ti Sh t

collection. Also, the collection
includes the requirements
documents reference in the
tasks.

Delete Delete

Risks
Title
Description
Likelyhood & Impact
A l i St t

Analysis Tools
Title
Description
Owner

Save-As
Change State
Delete

Task Description Sheets
define the a particular study
plan and link requirements
risks, and tools to be addressed
or used in the analysis.

Analysis Status
Mitigation by this task
Create
Revise
Select
Delete

Version
Link to location
Create
Revise
Select
Delete

Expertise
Title

Experts produce the data
generated by models,
simulations, or analysis
tools used in the analysis.

Data records identify
reference files, data
needs, and existing
product dataDescription

Manager
Create
Revise
Select
Delete

Activity
Title
Description
Start date
Stop date
Create
Revise
S l t

Data
Title
Description
Owner

product data.
Product data derives

from models, and
simulations.

Activities define Select
Delete

Delivery Date
External Link
Create
Revise
Select
Delete

Activities define
the effort to
produce a data
product

Derives from

Is a
collection of

Analysis Process Management Classes

Workflow
Title
Organization
Linked List

User Account
Name
Organization
Authorities

Everyone starts with the Draft
authority. Administrators
and managers can assign
additional authority.
Certain roles or authority

A work-flow is a list of selected
individuals who have the authority
to change the state of a TDS to
Provisional Concur Baseline or

Create
Revise
Select
Delete

Linked List
Create
Revise
Select
Delete

Authorities

Authorities

have the privilege to
build a Workflow.

Provisional, Concur, Baseline, or
Close.

Organization
Title
Description

TDS
Title
Description
Expertise List
Activities List

Create
Revise
Select
Delete

Type
Privileges

A new authorities or roles
table provides the capability
To define privileges to change
the state of a TDS create

Create
Revise
Select
Delete

p
Workflows

Data Item List
Signatures List

Create
Revise
Save-As
Change State
Delete

Deletethe state of a TDS, create
a work flow, or assign authority
to an individual. Each Expertise record

has a manager with the
authority to commit the
time of the experts.

Expertise
Title
Description
Manager
Create
Revise

Activity
Title
Description
Start date

Schedulers
and ProjectRevise

Select
Delete

Start date
Stop date
Create
Revise
Select
Delete

and Project
Managers
create Activity
records.

Derives from

Is a
collection of

