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Abstract 
Monolithic metallic copper alloy and NiCrAlY coatings were fabricated by either the cold spray (CS) 

or the vacuum plasma spray (VPS) deposition processes. Dynamic elastic modulus property 
measurements were conducted on these monolithic coating specimens between 300 K and 1273 K using 
the impulse excitation technique. The Young’s moduli decreased almost linearly with increasing 
temperature at all temperatures except in the case of the CS Cu-23%Cr-5%Al and VPS NiCrAlY, where 
deviations from linearity were observed above a critical temperature. It was observed that the Young’s 
moduli for VPS Cu-8%Cr were larger than literature data compiled for Cu. The addition of 1%Al to Cu-
8%Cr significantly increased its Young’s modulus by 12 to 17% presumably due to a solid solution 
effect. Comparisons of the Young’s moduli data between two different measurements on the same CS Cu-
23%Cr-5%Al specimen revealed that the values measured in the first run were about 10% higher than 
those in the second run. It is suggested that this observation is due to annealing of the initial cold work 
microstructure resulting form the cold spray deposition process.  

1.0 Introduction 
Combustion liner materials in a liquid hydrogen (LH2) fueled rocket engine experience extreme 

conditions due to a combination of environmental and thermo-mechanical effects, where the combustion 
flame temperatures in the chamber interior are about 3600 K whereas the backside of the 1 mm thick liner 
wall experiences cryogenic temperatures of 20 K [1,2,3,4,5,6]. Copper and its alloys have been
traditionally used as combustor liner materials in these regenerative rocket engines because of their high 
thermal conductivity to enable efficient heat transfer from the combustion flame to preheat the cryogenic 
LH2 flowing in the cooling channels. It is anticipated that the design of the next generation of reusable 
launch vehicles (RLVs) would use GRCop-84 (Cu-8(at.%)Cr-4%Nb) copper alloy liners due to its 
superior properties compared to other conventional copper alloys, such as NARloy-Z [

 

7,8,9]. However, 
uncoated copper alloy liners undergo environmental degradation due to a combination of the spallation of 
the copper oxide scale and “blanching”, which consists of repeated oxidation of the copper matrix and 
subsequent reduction of the oxide scale [6].  

The application of protective coatings on GRCop-84 and other copper alloy substrates can either 
minimize or eliminate many of the problems experienced by uncoated liners and significantly extend their 
operational lives in RLVs. This factor potentially translates to increased component reliability, shorter 
depot maintenance turn around time and lower operational cost. In addition, the use of a suitable top coat 
to act as a thermal barrier can allow the engine to run at higher temperatures thereby resulting in its 
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increased thermal efficiency. As a result, several types of ceramic [1,5] and metallic [10,11,12,13,14,15] 
coatings have been advocated as protective coatings for copper alloy liners. However, differences in the 
mechanical and thermophysical properties between the coatings and copper alloy substrates can lead to 
the development of large residual stresses and coating spallation as the coated liner experiences variations 
in temperature during processing and engine operation [16].  

Recently, it was demonstrated that CuCrAl and NiCrAlY coatings deposited either by the cold spray 
(CS) or the vacuum plasma spray (VPS) techniques are potentially viable coatings for GRCop-84 
combustion liners [14,15]. However, elastic moduli and thermophysical data for these sprayed coatings 
are either limited or nonexistent in the temperature range of interest for use in RLVs. Although some data 
on VPS alloys have been previously reported in the literature [17,18,19], it is noted that these properties 
are sensitive to compositional and processing variables. Thus, it is essential that thermophysical data be 
generated on coatings sprayed under processing conditions and for compositions similar to those 
developed for spraying the GRCop-84 liners in order to ensure reliable design models to be developed.  

The specific objectives of this paper are to report the temperature dependence of the dynamic, ED, and 
static, ES, Young’s moduli of CS and VPS monolithic Cu-Cr, CuCrAl, and NiCrAlY coating alloys 
between 300 and 1273 K.  

2.0 Experimental Procedures  
2.1 Alloy Composition and Processing 

Gas atomized copper alloy powders were procured from Crucible Research, Inc., Pittsburgh, 
Pennsylvania, whereas the NiAl and NiCrAlY powders were obtained from Homogenous Metals, Inc., 
New York, and Praxair, Indianapolis, Indiana, respectively. The nominal compositions of the alloy 
powders were Cu-8(wt.%)Cr, Cu-26(wt.%)Cr, Cu-8(wt.%)Cr-1%Al, Cu-23(wt.%)Cr-5%Al, and Ni-
17(wt.%)Cr-6%Al-0.5%Y. Monolithic cylindrical coatings, typically 175-250 mm long and 19 to 25 mm 
thick, were fabricated by spraying the powders on rotating aluminum or steel mandrels by either CS or 
VPS. The Cu-23%Cr-5%Al coatings were cold sprayed at ASB Industries, Inc., Barberton, Ohio [20]. 
The Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, and NiCrAlY coatings were deposited by the vacuum plasma 
spray method at Plasma Processes, Inc., Huntsville, Alabama. The coated mandrels were hot isostatically 
pressed (HIP) between 1073 and 1273 K under argon gas pressures varying between 100 and 210 MPa for 
times varying between 1 and 4 hr.  

Specimens were machined from the sprayed cylinders by electrodischarge machining (EDM). 
Dynamic Young’s moduli measurements were made on specimens with dimensions 50x4x3 mm by the 
impulse excitation technique (IET) [21,22,23] using a commercially available GrindoSonic MK5I test 
equipment equipped with a furnace and an environmental test chamber. The theoretical foundations of 
this technique for measuring elastic constants are described elsewhere [21,24,25]. The measurements 
were conducted between room temperature and 1273 K under flowing Ar. The bar specimen was 
supported at two points corresponding to its vibrational nodes, which occur at distances of 0.224 L, where 
L is the specimen length, from each end of the specimen. A small ceramic projectile propelled by low 
pressure Ar was used to lightly apply a mechanical impulse load on the specimen, and the generated out-
of-plane fundamental resonant frequency, fR, of the bar in flexure at absolute temperature, T, was recorded 
by an acoustic microphone at the desired rate. The specimen temperature was increased at 100 K/hr, and 
the resonant frequency, time and temperature were automatically recorded every 5 K by a computerized 
data acquisition system. The uncorrected Young’ modulus was determined from the equation [21,22,24] 

 ED = [0.9465*{M*(fR)2/w}] (t/L)3 T1  (1) 

where M is the mass of the specimen in gm, and w and t are the width and thickness, respectively, of the 
specimen in mm, and T1 is a correction factor related to the Poisson’s ratio, ν, through  
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A value of ν = 0.33 was assumed in evaluating T1. It has been recommended that the values of ED be 
corrected for effects due to thermal expansion using [22] 
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where EDT and ED0 are the Young’s moduli are at test temperature and room temperature, respectively, f0 
is the resonant frequencies at room temperature, respectively, αT is the average coefficient of thermal 
expansion (CTE) and ΔT is the temperature differential between test temperature and room temperature. 
The values of αT in eq. (3) represent the average linear thermal expansion between room temperature and 
test temperature. Based on experimental measurements of αT [26], applying the temperature correction 
given be eq. (3) to the experimental data resulted in a maximum decrease in the magnitude of ED by about 
1.5 to 2.0% at the highest test temperature, which is insignificant in most applications. Thus, the values of 
ED reported in this paper do not include corrections for CTE.  

Dynamic and static Young’s moduli measurements were conducted on sprayed monolithic coating 
alloys. The static moduli were determined on round tensile NiCrAlY specimens with a gage length of 
25 mm and gage diameter of 6.3 mm using point contact extensometers under engineering strain rates 
varying between 10–6 to 10–4 s–1. Since the magnitudes of ES were independent of strain rate, the strain 
rates at which static moduli data were generated are not distinguished in this paper. These tests were 
conducted either in air in the case of NiCrAlY or under flowing Ar in the case of the copper alloys 
between room temperature and 1273 K. There was insufficient material of the near full density Cu-26%Cr 
(V2-03-524) batch to produce specimens of sufficient length for dynamic Young’s modulus 
measurements.  

3.0 Results and Discussion 
3.1 Density Measurements 

Table 1 gives the bulk density, ρexperimental, for the different coatings1 measured at room temperature. 
Microstructural observations of Cu-26Cr (V2-02-27B) revealed that it had a relatively higher amount of 
porosity compared to the other sprayed coatings, which were nearly 100% dense. The porosity content of 
this batch was determined to be about 35% from a comparison of the bulk and immersion densities, where 
the latter was determined to be 8337 Kg/m3. The theoretical density, ρtheoretical, was estimated to be 
8410 Kg/m3. This high level of porosity was attributed to non-optimized processing conditions for this 
alloy. Although the density of NiCrAlY (V2-02-27E) is similar to the experimental values of 6900 to 
7500 Kg/m3 [18,27] and theoretical value of 7000 Kg/m3 reported for plasma sprayed NiCrAlY [27], this 
batch had a larger amount of porosity than NiCrAlY (V2-03-528), which was 100% dense. The porosity 

                                                 
1The bulk density measurements were conducted at the Thermophysical Properties Research Laboratory, Inc. 
(TPRL), West Lafayette, Indiana. 
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content of the NiCrAlY batch V2-02-27E was estimated to be about 7% based on a comparison of its 
density with that of the NiCrAlY batch, V2-03-528.  

 
TABLE 1.—MAGNITUDES OF ROOM TEMPERATURE BULK DENSITY  

OF DIFFERENT SPRAYED MONOLITHIC COATINGSa  
Nominal coating  

compositionb 
Batch I.D. Processed  

condition 
Bulk density c   

(kg/m3) 
Cu-8%Cr-4%Nb GRCop-84 Extruded 8945 
Cu-8%Cr V2-03-134 VPS 8598 
Cu-26%Crd V2-02-27B VPS 5450 
Cu-8%Cr-1%Al V2-05-27 VPS 8546 
Cu-23%Cr-5%Al Cu23Cr5Al CS 7575 
NiCrAlYd V2-02-27E VPS 7161 
NiCrAlY V2-03-528 VPS 7711 

aThe bulk density measurements were conducted at the Thermophysical Properties Research Laboratory, Inc. (TPRL), 
West Lafayette, Indiana 

bAll compositions are in wt.%. 
cCalculated from the ratio of the mass to the geometric volume of the specimen. 
dThese specimens had various amounts of porosity. All other sprayed specimens were close to 100% density. 

 

3.2 Vacuum Plasma Sprayed Coatings 
3.2.1 Cu-Cr Coatings 

Figure 1 shows the decrease in ED with increasing T for the Cu-8Cr and Cu-26Cr monolithic coatings. 
Owing to the limited solid solubility of Cr in Cu [28], the Cu-Cr alloy can be considered to be a 
mechanical mixture. Fig. 1 also shows the predicted values, EROM, calculated from the rule of mixtures 
(ROM) model: 

 EROM = VCr ECr + (1 – VCr) ECu (4) 

where VCr is the volume fraction of the Cr phase, and ECr and ECu are the Young’s moduli of pure Cr and 
Cu, respectively. The temperature dependence of ECr and ECu were calculated from the equations 
published by Frost and Ashby [29] and Raj and Langdon [30] for the Young’s moduli of Cr and Cu, 
respectively. The density-corrected data for Cu-26Cr are also shown, where the experimental values were 
corrected by multiplying them by (ρtheoretical/ρexperimental).  

The Young’s moduli for the two alloys decrease almost linearly with increasing temperature similar 
to other materials [29,31]. The density-corrected and uncorrected experimental data could be well 
represented by the equation [32] 

 ED = E0 – (∂ED/∂T) T (5) 

where E0 is the extrapolated Young’s modulus to absolute zero2 and (∂ED/∂T) is the rate of change of 
Young’s modulus with absolute temperature. The magnitudes of E0 and (∂ED/∂T) determined from linear 
regression analyses of the experimental data between 300 and 750 K are given in Table 2, where Rd

2 is the 
coefficient of determination. Above 750 K, the data deviated from the regressed lines to lower values 
presumably due to the effects of significant atomic diffusion. The presence of Cr particles in Cu-8%Cr 
increases the magnitude of ED above that for Cu [30] by about 12% at room temperature but their effect 
decreases with increasing temperature so that the ED for both materials are comparable above 900 K.  
 

                                                 
2It is important to note that the magnitude of E0 is likely to be higher than the actual value of ED at 0 K [31]. 
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TABLE 2.—REGRESSION PARAMETERS DESCRIBING THE TEMPERATURE DEPENDENCE  
OF THE YOUNG’S MODULI FOR MONOLITHIC COATINGS 

Nominal coating 
compositiona 

Batch I.D. Processed 
condition 

E0 
(GPa) 

∂ED/∂T 
(GPa/K) 

Rd
b 

Cu-8%Cr V2-03-134 VPS 142.0 0.060 0.997 
Cu-26%Crb V2-02-27B VPS 110.0 0.030 0.995 
Cu-26%Crc V2-02-27B VPS 169.8 0.047 0.998 
Cu-8%Cr-1%Al V2-05-27 VPS 158.7 0.065 0.988 
Cu-23%Cr-5%Al Cu23Cr5Al 

(specimen 3) 
CS 

(Run 1) 
166.0 0.071 0.989 

Cu-23%Cr-5%Al Cu23Cr5Al 
(specimen 3) 

CS 
(Run 2) 

147.3 0.059 0.995 
 

NiCrAlYb V2-02-27E VPS 221.8 0.057 0.999 
NiCrAlY V2-03-528 VPS 232.7 0.060 0.998 

aAll compositions are in wt.%. 
bThese specimens had various amounts of porosity. All other sprayed specimens were close to 100% density. 
cDensity-corrected equation. 

 
 

The uncorrected values of ED for Cu-26%Cr are similar to the mean regression data for pure Cu [30] 
and lie below the experimental data for Cu-8%Cr due to the fact that this batch had a considerable amount 
of porosity. However, the density-corrected values for Cu-26%Cr with a calculated value of VCr of about 
30 vol.% Cr are higher than those for Cu-8%Cr for which the calculated VCr ~ 9 vol.%. An examination of 
Fig.1 shows that the values of ED predicted by the rule of mixtures are significantly higher than the 
experimental data especially for Cu-26%Cr.  

3.2.2 Effect of Al addition 
Figure 2 compares the temperature dependence of ED for Cu-8%Cr-1%Al with those for Cu [30] and 

Cu-8%Cr. The data for Cu-8%Cr-1%Al shown in Fig. 2 represent the average values of measurements 
made on two specimens. It is noted that these two sets of data almost overlapped each other between 300 
and 1000 K thereby indicating excellent reproducibility in the measurements. The magnitudes of ED for 
the alloys exhibit an inverse linear dependence on absolute temperature, where the values of E0 and  
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(∂ED/∂T) are given in Table 1. It is clear from Fig. 2 that the addition of 1% Al to Cu-8%Cr results in a 
significant increase in the elastic modulus by 12 to 17% between 300 and 1000 K through its influence on 
E0; its effect on (∂ED/∂T) is relatively insignificant (Table 2). Since Al exists in solid solution in Cu at this 
relatively low compositional level, this increase in ED can be attributed entirely due to a solid solution 
effect. Noting that the densities of Cu-8%Cr and Cu8%Cr-1%Al are similar (Table 1), an examination of 
eq. (1) suggests that the lattice distortion due to the presence of Al atoms in the Cu lattice most likely 
increased the magnitude of fR over the base alloy.  

3.2.3 NiCrAlY Coatings 
Figure 3 compares the magnitudes of dynamic and static Young’s moduli for the two batches of 

NiCrAlY coatings. The data of Cook et al. [19,33] for an alloy of similar composition are also shown in 
the figure for comparison. The data are well represented by eq. (5) between 300 and 1000 K. The two sets 
of data for batch V2-03-528, which are nearly identical, lie above the data for batch V2-02-27E consistent 
with their higher density (Table 1). The differences in the magnitudes of Young’s moduli determined for 
batches V2-02-27E and V2-03-528 varied between 2.5 and 7.5% in the temperature range 300 to 1150 K 
primarily reflected in the magnitudes of E0 rather than (∂ED/∂T). The values reported by Cook et al. 
[19,33] are in excellent agreement with the magnitudes of ED determined for batch V2-02-27E. The static 
moduli values are lower than the dynamic moduli and exhibit more scatter especially at the higher 
temperatures.  

3.3 Cold sprayed coatings 
The magnitudes of ED decreased linearly with increasing absolute temperature for cold sprayed Cu-

23Cr-5Al alloys between 300 and 700 K (Fig. 4). The data for VPS Cu-8Cr-1Al are shown for 
comparison. Deviation from linearity was observed above 700 K. Interestingly, the Young’s moduli were 
higher for specimens tested in the first run, “Run 1”, compared to measurements made in the second run, 
“Run 2”. As shown in Fig. 4, these differences were quite reproducible in repeat tests. Noting that the 
cold spray process involves extensive deformation of the powder particles during the deposition process 
[34], the higher values of ED observed in “Run 1” can be attributed to a highly cold worked state of the 
coating. Thus, the decrease in the magnitudes of ED in Run 2 can be attributed to the effects of annealing  
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as the specimens were heated from room temperature to about 1000 K in Run 1. Although the Young’s 
moduli for Cu-23Cr-5Al are comparable to those for Cu-8Cr-1Al below 700 K in measurements made in 
Run 1, they exhibit a relatively steep drop with increasing temperature above 700 K dropping to values 
well below those for Cu-8Cr-1Al. Significantly, increasing the amount of Al from 1 to 5% and the Cr 
from 8 to 23% has a negligible effect on the magnitudes of ED for these two alloys below 700 K.  

The precise reason as to why ED for Cu-23Cr-5Al decreases below that for Cu-8Cr-1Al above this 
temperature is still unclear but two possible causes could be considered. First, the increasing dissolution 
of the α-Cr precipitates with increasing temperature may have caused the observed decrease in ED. 
However, since the maximum solid solubility of Cr in Cu is only about 0.89(at.%) [28], it does not appear 
probable that Cr dissolution can account for the present observations especially since VPS Cu-8Cr-1Al 
does not show a similar significant decrease in ED with increasing temperature. Second, extensive 
secondary recrystallization of the (Cu,Al) matrix resulting from the prior deformation of the powder 
particles and the presence of the α-Cr phase may have resulted in strong annealed texture in the 
specimens. Since it is well known that elastic moduli are sensitive to texture, this explanation appears to 
be the most plausible in the present instance.  

4.0 Summary and Conclusions  
The temperature dependence of the dynamic Young’s moduli of several copper alloy and NiCrAlY 

monolithic coating alloys fabricated either by the cold spray or vacuum plasma spray process were 
measured by the impulse excitation techniques between 300 and 1000 K. Tensile static moduli 
measurements were also conducted on the NiCrAlY coating in the same temperature range. The Young’s 
moduli decrease with increasing temperature, where this decrease is linear at low and intermediate 
temperatures. The Young’s moduli for Cu-8%Cr were higher than compiled data for pure Cu [30] below 
1000 K but below the values predicted by the rule of mixtures. The experimental values of Cu-26%Cr 
coating exhibited values similar to the compiled literature values presumably due to a large amount of 
porosity. However, the density-corrected data were significantly higher than the values for pure Cu and 
Cu-8%Cr. The addition of 1%Al to Cu-8%Cr significantly increased the dynamic Young’s modulus of 
the alloy presumably due to a solid solution effect. There was no significant difference in the Young’s 
moduli data for the as-received cold sprayed Cu-23%Cr-5%Al and vacuum plasma sprayed Cu-8%Cr-
1%Al coatings below 700 K thereby suggesting that the variations in the Al and Cr content between the 
two alloys did not affect ED. However, the magnitudes of ED for the cold sprayed Cu-23%Cr-5%Al 
determined in the second run of measurements were lower than the values obtained on the as-received 
material in the first run presumably due to the effects of annealing on the as-received cold worked 
microstructure of the alloy. The dynamic Young’s moduli for the NiCrAlY coating were reproducible and 
larger than the static moduli for the coating.  
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