Control of the diameter and chiral angle distributions during production of single-

wall carbon nanotubes

Pavel Nikolaev, ERC Inc. / NASA Johnson Space Center, Houston, TX

Many applications of single wall carbon nanotubes (SWCNT), especially in
microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap
semiconductor, etc.) Especially fascinating is the possibility of quantum conductors that require
metallic armchair nanotubes. However, as produced SWCNT samples are polydisperse, with
many (n,m) types present and typical ~1:2 metal / semiconductor ratio.

Nanotube nucleation models predict that armchair nuclei are energetically preferential
due to formation of partial triple bonds along the armchair edge. However, nuclei can not reach
any meaningful thermal equilibrium in a rapidly expanding and cooling plume of carbon clusters,
leading to polydispersity. In the present work, SWCNTs were produced by a pulsed laser
vaporization (PLV) technique. The carbon vapor plume cooling rate was either increased by
change in the oven temperature (expansion into colder gas), or decreased via “warm-up” with a
laser pulse at the moment of nucleation. The effect of oven temperature and “warm-up” on
nanotube type population was studied via photoluminescence, UV-Vis-NIR absorption and
Raman spectroscopy.

It was found that reduced temperatures leads to smaller average diameters,
progressively narrower diameter distributions, and some preference toward armchair
structures. “Warm-up” shifts nanotube population towards arm-chair structures as well, but the
effect is small. Possible improvement of the “warm-up” approach to produce armchair SWCNTs
will be discussed. These results demonstrate that PLV production technique can provide at

least partial control over the nanotube (n,m) population. In addition, these results have

implications for the understanding the nanotube nucleation mechanism in the laser oven.
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Production of armchair metallic nanotubes
Why are armchair nanotubes interesting?
Is it possible to make them?
Two approaches to affect the cooling rate of SWCNT nuclei
What about sample analysis?



Walking my dogs, Saturday September 13t. Hello, Ike!




What are single-wall carbon nanotubes?

MOLECULAR PERFECTION & EXTREME PROPERTIES

The strongest fiber possible

Thermal conductivity of diamond, anisotropic

The unique chemistry of sp? carbon

The scale and perfection of DNA

Selectable electrical properties: Metallics and Semiconductors
The ultimate engineering material

SWCNT behaves as a molecule and as a macro object at the
same time!




Let’s roll

 The graphene sheet can be rolled in
many possible ways

e Armchair, oo = 30°
e Zig-zag, o =0°

e |ntermediate, 0°<a<30°

Electrical properties depend on this.
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Rolling Graphite: n,m Vectors

Of the 864 distinct types between 0.7 and 2.8 nm diameter,
~ 1/3rd are semi-metals
~ 2/3rd direct band-gap semiconductors

Only 16 are armchair metals!

Even smaller fraction for typical PLV-produced SWNT in 0.9 — 1.6 nm diameter
range
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Nanotubes in microelectronic devices

Room-temperature
transistor based on

a single carbon nanotube
Sander J. Tans, Alwin R. M.
Verschueren & Cees Dekker,
Nature vol. 393, 7 May 1998

2005-2006

An Integrated Logic Circuit Assembled
on a Single Carbon Nanotube

Zhihong Chen, Joerg Appenzeller, Yu-Ming Lin,
Jennifer Sippel-Oakley, Andrew G. Rinzler,
Jinyao Tang, Shalom J. Wind, Paul M. Solomon,
Phaedon Avouris,

Science vol. 311, 24 March 2006

More recent and realistic proposals: Can we use
metallic SWNT as interconnects on microchips?



Metallic nanotubes
What are they good for?

sInterconnects on microchips — certainly an
excellent idea.

*Measurements on individual metallic SWNT on Si
wafers with patterned metal contacts

«Single tubes can pass 20 pA for hours

Equivalent to roughly a billion amps per square 28 LiSinm
centimeter! 20[
25

«Conductivity measured twice that of copper < 20

. . . . . = F
Ballistic conduction at low fields with mean free = 15
path of 1.4 microns 10l
«Similar results reported by many mli
«Common metals give away their electrons too easily at these S0 02 02 U6 OB 10 12 1a
conditions and oxidize away. sp?electrons are much more stable! V(V)

Dekker, Smalley, Nature, 386, 474-477 (1997). McEuen, et al, Phys.Rev.Lett.84, 6082 (2000)



Armchair metallic nanotubes

But nanotubes have final length
Can we make a good electrical conductor out of discontinued wires?
Answer — resonant quantum tunneling

An nteresting Teature of this junction 1s the sensitive de-
pendence of conductance on the contact length, L Figure 2
shows the conductance wvalues for armchair-armchair and
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0.6 5
e ) -
=~ 04 = 0
| 0.2 — -5
! 0.0 10
05 00 05 08-04 0 04 0.8
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FIG. 1. {ad A two-terminal nanotube junction can be formed by
bringing two tubes” ends together in parallel and pointing opposite
directions (I is the contact length). (b} The transmission coefficient
I of the two armchair tube | (10100 10,100 ] junction as a function
of energy E for I=64 A Interference of electron waves yields
resonances in transport. (¢} Current-voltage characteristics of the
CLOTOa=CT0.100 junction for =46 A

Alper Buldum and Jian Ping Lu, Phys. Rev. B 63, 161403 R (2001).



Armchair metallic nanotubes

Experimental evidence of resonant tunneling

Indirect indication of conductivity by measuring
lifetimes of photo-excited electrons

% "ﬂl‘i
1
- (‘!‘\\

Cooling mechanism is interaction with phonons —
just like electrical resistivity

Forward-scattering: Back-scattering:
twistons longitudinal acoustic phonons

Anomalously long life-times yield mean free path R/ T | /4,‘#\ 2
of 15 microns (10x single tubes) ‘ >

Based on bundles in ‘buckypapers’ — good local
symmetry and clean, but still based on mixture of
metals and semi-conductors

700+ L] Experiment
- —  TW scallering scenario
—— LA scattering scenario

600

5001

Results imply 10 — 25x better conductivity than
copper

4001

Electron gas temperature (K)

lattice temperature

300

1 1 L 1 L 1 I

0 1 2 3 4 5 5]
Pump-probe delay (ps)

Source: Tobias Hertel, et al, Phys. Rev. Lett. 84(21) (2000) 5002




SWCNT production by PLV at Johnson Space Center
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So far all optimization was centered
on increasing production rate and
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Nanotube nucleation in laser oven

arfiow | *Nanotube nucleation occurs in the 100 us — 1 ms time frame,

SWNT grow over extended periods

of time from a feedstock of aggregated Eutectic temp. Cm =

e s e [ | from carbon clusters and catalyst vapor.

IO ool o st O Short tubes «Carbon has much lower vapor pressure than metal catalyst
AL Puretzi Y. LD, conegan, A, ran, o, Fennycoo. nm .

Appl Py 470,15 2000 Cutf =22 «Carbon atoms condense first and form small graphene

Carbon clust.|metal h *’9”
Atomic/molecular vapor: atomic Ni, Co|clust. [ |

PREPSCN FRCFRC

C,C,,C,,Ni, Co PE | R

sheets that start closing into cages
*Without metal, cage closes into a fullerene ( ~40% vyield, and
1-3% in typical nanotube sample)

5x10'¢ carbon

SET

£
14 T g - - - -
. 5| £ *When metal atom lands on the edge, it satisfies dangling
7270 (N INFEETET BT 3 Lol oo™ bonds and prevents cage from closing
0 lps 10us 100us s B 10ms 100ms Is sy .
LR ds % _ *When cluster exceeds 500-600 carbon atoms, it's shape is

3 fixed kinetically, and the nanotube keeps on growing by
B adding incoming carbon clusters to the open end

*Formation of the nanotube nuclei with fixed (n,m) happens on the time scale of
100 us — 1 ms — very fast. Subsequent growth occurs on the few seconds scale
Interesting observation: armchair (h=m) nuclei are ~15% more stable

=X | energetically due to formation of triple bonds. However, equilibrium is not
reached due to the very fast nature of the nucleation

W BBEBE8

& Zig-zag > g, armchair T

«Can we affect nanotube nucleation?
sFaster nucleation — expansion into a colder gas ime
“Warm-up”: hit nanotube nuclei with more energy after the nucleation
time, slow down cooling, and let them to nucleate longer.

A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E.
Fischer, and R. E. Smalley, Science 273, 483 (1996).
Y. H. Lee, S. G. Kim, and D. Toméanek, Phys. Rev. Lett. 78, 2393 (1997).
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Nanotube production at lowered temperature.

30 2" oven material
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i Fig. 4. (Color online) Photoluminescence mapping of dis-
5 persed SWNTs in sodium dodecyl benzenesulfate (SDBS) so-
lution. (a) HiPco nanotubes. (b) SWNTs prepared in nitrogen
atmosphere. (¢) SWNTs prepared in Ar atmosphere.
0 .
0.8 1.0 1.2 1.4 1.6 1.8
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Fig.5. a The diameter distibution of SWNT made in the 27 zysiem
(1200=C). b The diameter distribution of SWNT made in the 4" sysiem
Rh/Pd catalyst, 1150 °C
Co/Ni catalyst, 1200 and 1100 °C (vs. normal 1400 °C)

1.A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodriguez- S. Suzuki, N. Asai, H. Kataura, and Y. Achiba, Eur. Phys. J. D 43, 143
Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, (2007).
A. M. Rao, P. C. Eklund, and R. E. Smalley, App. Phys. A 67, 29 (1998).

So, we decided to try 1100, 1000 and 900 °C temperatures.

Everything else — the same: Co/Ni catalyst (1 at. % each). Argon buffer gas at 500 Torr pressure and 100
sccm flow rate. Green/IR ablation laser combination (2nd and 1st harmonics of Nd:YAG lasers) with 50 ns
pulse delay, 1.6 J/cm? energy density each and 60 Hz repetition rate.



Preparing these samples was easy.
What needs to be done to understand how temperature influences SWCNT population?

Absorption spectra: too much overlapping of the spectral features
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Discriminate semiconducting tubes with the help of photoluminescense .

Full PL maps on J-Y Spex Fluorolog 3-211 equipped with an LN,-cooled InGaAs NIR detector. 5 nm
excitation step, 3 nm detection step, 5 nm slits.

*Only 12 - 14 semiconducting tubes.

In order to measure peak amplitudes precisely, each peak is fitted wit 2-d Lorentzian
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1000 1050 1100 1150 1200 1280 1300 1350 1400 1450 1500 1200 1280 1300 1380 1400 1450 1500



Resulting chiral maps: semiconductors only

900 1000 1100




Metallic tubes: no PL makes similar analysis impossible.

On absorption spectra each metallic peak is a superposition of several possible tubes —
impossible to deconvolute

Raman:

514 nm excitation is reasonably in tune with first peak. Will also excite large

diameter semiconductors on Sz, transition

633 nm excitation is reasonably in tune with 2" and 3" peaks

RBM frequencies are much better known and reproducible.

0.5

0.45 1

0.4 1

0.35 1

0.3 1
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0.2 1

0.15 1

0.1

0.05 1

——No warm-up
m marks

514 nm

633 nm

Example: 1000 C sample
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Raman spectra deconvolution

514 nm
1000C
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Curve 8
Curve 9
Curve 10
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Signal

Cenbre Width Height % Gaussian
2232 s 337,709 365367
z1z.8 = 41,1601 1,63325
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Excitation for 875 nm emission
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2621, 123 2128 s 117,501 0. 525304 Mixed | 524,423
321.ces 13,1 2165 s 1827, 16 8.87517 Mixed 22304
248374 11,5 208, 2 7 6021 | ecz 652 12,8479 Mixed e59s,95
338,801 10,7 198.5 s 251175 o Mixed 315635
111548 2.3 199,5 7 5390, 14 20,9555 Mixed S5264,2
Sses.6 15,0 195,35 s 2738, 15 41,4336 Mixed 258121
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255726 13,4 1915 702425 10721 34,772 Mixed 105331
10504, 1 12,6 195,7 2 sag4, 02 1, 26744 Mixed ezedz.8
ieav.ez 11,8 1788 75771 z192 55 o. 102185 Mixed 27501
22411 10,10 171 s 574,503 o Mixed 10983, 3

Excitation is off-resonance:

Use excitation profile and assume that linewidth
and overtone tail scale with the transition energy
RBM frequencies are known to shift due to
bundling, etc. However it is possible to find an
*ancor” tube ((9,6), (13,1) in this case) and
determine the RBM frequencies of the other tubes
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Resulting chiral maps: semiconductors AND metallics.
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The larger diameter tubes have chiral angles closest to arm-chair (30°)



Does this observation agree with the nucleation model?

E. , is to a good approximation independent of tubulet radius
(determined by 5 pentagons in a hemisphere).

. E, = ¢L/R, where g is bending stiffness of a graphene sheet, L is
length of the cylinder, and R is tubulet radius.

E. = 27R¢,, where g, is energy of the open edge per unit length.

- Minimization of the energy with respect to R for a fixed number of
carbon atoms N yields:

E=E.+E +E,
1/3
L\ R ~(Ng /g)ls.
% 8:8:8 8:8:8 Therefore, decrease in the edge energy ¢, will lead to increase in the

diameter of a nanotube nucleus.

& Zig-zag > g, armchair

If &, armchair < g, zig-zag, nuclei with the edge closest to arm-chair
structure will nucleate largest diameter nanotubes.

A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D.
T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273, 483 (1996).



“Warm-up” approach: what should be the energy density and time delay?

Time delay: 500 us. (decided rather arbitrarily)

Energy density:

Green energy: 1.6 J/cm?

-UV: avoid secondary ablation

-UV energy varied, looking at increase in C," emission on top of

black body continuum. Secondary ablation threshold ~0.1 J/cm?

for 500us delay.

Oven temperature: 1000 °C. We need to bring SWCNT diameter
within the reach of spectroscopy tools.
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® 0.5 ms delay, Green only
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Some C2* emission
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Nanotube population: is it enriched in armchair structures as a result?

Discriminate semiconducting tubes with the help of photoluminescense .

Full PL maps on J-Y Spex Fluorolog 3-211 equipped with an LN,-cooled InGaAs NIR detector. 5 nm
excitation step, 3 nm detection step, 5 nm slits.

*Only 14 semiconducting tubes.

*Maps appear similar. In order to measure small differences, each peak is fitted wit 2-d
Lorentzian

No warm-up With warm-up
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* No warm-up .
4 O With warm-up (_) P L d a.ta.-
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(9,7), (9,8), and (8,7) increase with warm-up
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12,4 ° .
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Chiral map.




514 nm Raman spectra deconvolution 633 Nm

S33

] | With “warm-up”

| ' S | 9,6

Curve Nare Centre Wickh Height % Gaussian Type Area ]l Curve Nare Certre WLQ,lO Height % Gaussion T,,DIE 13;,:‘2';
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(8,8), (10,7), and (9,6) increase with warm-up
-all have chiral angles >23°, close to armchair

(12,6), (11,5), (13,4) and (14,2) decrease with warm-up
-all have chiral angles <20°

(9,9) did not change
(15,0) and (13,1) increase with warm-up: smallest chiral angles
No clear diameter dependence

(12,0), (11,2) and (10,4) are not present on Raman spectra
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Conclusions

«Semiconducting nanotubes close to armchair structure increase
*Metallic nanotubes close to armchair structure increase
1 zig-zag metallic tube also increase

*The effect of “warm-up” on nanotube population is small, but definitely noticeable, considering
that type population in PLV production is highly reproducible.

eLonger warm-up is needed. 5 ns pulse is only enough to raise temperature by ~180k for 100 us at
most.

eLong-pulse laser? UV Hg flash lamp? Intensity ramp?

*Optimization with respect to the time delay. Nanotube nucleation timeline is still unknown. 500 us
time delay used in this work is no more than an educated guess.
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