A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell.

The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li-conducting electrolyte, the composition of which was not disclosed at the time of reporting the information for this article. The lower-conductivity, lower-reactivity solid electrolyte used for passivation was lithium phosphorus oxynitride (commonly abbreviated “LiPON” but more precisely abbreviated Li$_3$PO$_y$N$_z$, where x, y, and z denote numbers that can differ from 1). The solid-electrolyte plates were 50.8-mm square with a thickness of 0.47 mm. Films of Li$_3$PO$_y$N$_z$ having thicknesses of the order of 1 μm were deposited on the plates by radio-frequency magnetron sputtering from an Li$_3$PO$_4$ target in an atmosphere of N$_2$. Pt and Cu electrodes were sputtered through a metal shadow mask, and the active lithium anode material was deposited by thermal evaporation through the same mask.

For comparison, some plates were not coated with LiPON and Li was deposited directly on them. In those cases, the deposited Li metal reacted immediately with the plates to form dark nonmetallic layers (see upper part of figure) that were electrically nonconductive. In contrast, for the plates that were first coated with LiPON and then with Li, films retained their metallic luster (see lower part of figure) and remained electrically conductive. Test cells containing Li anodes on LiPON-coated plates were constructed and tested by electrochemical impedance spectroscopy and cyclic voltammetry. The coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistances contributed by the LiPON layers were found to be small relative to overall cell impedances.

This work was done by William West, Jay Whittacre, and James Lim of Caltech for NASA’s Jet Propulsion Laboratory. Further information is contained in a TSP (see page 1), NPO-40478.

Organic/Inorganic Polymeric Composites for Heat-Transfer Reduction

John F. Kennedy Space Center, Florida

Organic/inorganic polymeric composite materials have been invented with significant reduction in heat-transfer properties. Measured decreases of 20–50 percent in thermal conductivity versus that of the unmodified polymer matrix have been attained. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. The present embodiments are applicable, but not limited to: racing applications, aerospace applications, textile industry, electronic applications, military hardware improvements, and even food service industries. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid process systems where heat flow through materials is problematic and not desired.

With respect to thermal conductivity and physical properties, these materials are superior alternatives to prior composite materials. These materials may prove useful as substitutes for metals in some cryogenic applications.

A material of this type can be made from a blend of thermoplastics, elastomers, and appropriate additives and processed on normal polymer processing equipment. The resulting processed organic/inorganic composite can be made into fibers, molded, or otherwise processed into usable articles.

This work was performed by Trent Smith and Martha Williams of Kennedy Space Center. For further information, contact the Kennedy Innovative Partnerships Office at (321) 861-7158.

Composite Cathodes for Dual-Rate Li-Ion Batteries

A battery could have both high charge capacity and high rate capacity.

NASA’s Jet Propulsion Laboratory, Pasadena, California

Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions.

The electrochemically active ingredients of the present developmental composite cathode materials are the following:

- Carbon-coated LiFePO$_4$, which has a spe-