Apollo Guidance, Navigation, and Control (GNC) Hardware Overview
• Terminology familiarization
• Top-level organization of the GNC system
• Caveats
 – Terminology not always consistent between various organizations (Program Office, Flight Ops, North American, Grumman, MIT, TRW)
 – Prime contractor terminology (North American, Grumman) used here
Agenda

• Review of basic GNC concepts
• Command and Service Module (CSM)/Lunar Module (LM) GNC organization
• Primary Guidance, Navigation, and Control (PGNCS) (mostly common to CSM and LM)
• CSM Stabilization and Control System (SCS) and other CSM-specific hardware
• LM Abort Guidance System (AGS), Control Electronics System (CES), and other LM-specific hardware
• Other common hardware
• Summary
• References
Review of Basic GNC Concepts

- Navigation: “Where am I?”
 - Inputs: sensor measurements
 - Outputs: vehicle state vector (position & velocity at a given time)
Review of Basic GNC Concepts

- **Navigation**: “Where am I?”
 - Inputs: sensor measurements
 - Outputs: vehicle state vector (position & velocity at a given time)
- **Guidance**: “Where am I going?”
 - Inputs: state vector from navigation
 - Outputs: required change in velocity, required attitude (for powered flight)
Review of Basic GNC Concepts

- **Navigation**: “Where am I?”
 - Inputs: sensor measurements
 - Outputs: vehicle state vector (position & velocity at a given time)
- **Guidance**: “Where am I going?”
 - Inputs: state vector from navigation
 - Outputs: required change in velocity, required attitude (for powered flight)
- **Control**: “How do I get there?”
 - Inputs: required change in velocity and/or attitude
 - Outputs: commands to flight control effectors (Reaction Control System (RCS) thrusters, engine gimbals, etc)
• Primary Guidance, Navigation, and Control System (PGNCS)
 – All guidance and navigation functions
 – Primary control functions
 – Takeover capability for Saturn S-IVB stage
• **Primary Guidance, Navigation, and Control System (PGNCS)**
 - All guidance and navigation functions
 - Primary control functions
 - Takeover capability for Saturn S-IVB stage

• **Stabilization and Control System (SCS)**
 - Backup control functions
 - Crew displays and manual controls
 - Interface between PGNCS and propulsion system

Command & Service Module (CSM) GNC Organization
Lunar Module (LM) GNC Organization

- Primary Guidance and Navigation Section (PGNS)
 - Primary guidance, navigation, and control functions
Lunar Module (LM) GNC Organization

- Primary Guidance and Navigation Section (PGNS)
 - Primary guidance, navigation, and control functions

- Abort Guidance Section (AGS)
 - Backup guidance and (rudimentary) navigation functions for lunar descent aborts, powered ascent, and rendezvous with CSM
Lunar Module (LM) GNC Organization

- Primary Guidance and Navigation Section (PGNS)
 - Primary guidance, navigation, and control functions
- Abort Guidance Section (AGS)
 - Backup guidance and (rudimentary) navigation functions for lunar descent aborts, powered ascent, and rendezvous with CSM
- Control Electronics Section (CES)
 - Backup control functions for PGNS
 - All control functions for AGS
 - Crew displays and manual controls
 - Interface to propulsion system for both PGNS and AGS
 Agenda

• Review of basic GNC concepts
• Command and Service Module (CSM)/Lunar Module (LM) GNC organization
• **Primary Guidance, Navigation, and Control (PGNCS)** *(mostly common to CSM and LM)*
• CSM Stabilization and Control System (SCS) and other CSM-specific hardware
• LM Abort Guidance System (AGS), Control Electronics System (CES), and other LM-specific hardware
• Other common hardware
• Summary
• References
• Three subsystems on each vehicle
 – Designed to operate independently
 – Computer and inertial subsystems almost identical between CSM and LM
• Computer Subsystem (CSS)
• Inertial Subsystem (ISS)
• Optical Subsystem (OSS)
• Apollo Guidance Computer (AGC)
 – Command Module Computer (CMC) on CSM
 – LM Guidance Computer (LGC) on LM
 – Identical hardware, different software (Colossus for CSM, Luminary for LM)
• Display and Keyboard (DSKY)
 – Two CSM DSKYs, one on main panel and one in Lower Equipment Bay (LEB)
 – One LM DSKY, on main panel
 – Only difference between CSM and LM are caution/status indicator lights (LM shown)
• **Inertial Measurement Unit (IMU)**
 - Stable platform for measurement of attitude and acceleration, isolated from case by three gimbals
• **Inertial Measurement Unit (IMU)**
 - Stable platform for measurement of attitude and acceleration, isolated from case by three gimbals
 - Inertial Reference Integrating Gyros (IRIGs) sense attitude changes
• **Inertial Measurement Unit (IMU)**
 - Stable platform for measurement of attitude and acceleration, isolated from case by three gimbals
 - Inertial Reference Integrating Gyros (IRIGs) sense attitude changes
 - Pulse Integrating Pendulous Accelerometers (PIPAs) sense velocity changes
Inertial Subsystem

- Navigation Base (NB)
 - Rigid mounting point for IMU, optics
 - CSM NB located in Lower Equipment Bay (LEB)
• **Navigation Base (NB)**
 - Rigid mounting point for IMU, optics
 - CSM NB located in Lower Equipment Bay (LEB)
 - LM NB located at top forward of LM ascent stage
• Coupling Data Unit (CDU)
 - 5-channel Analog-Digital and Digital-Analog converter
 - Data interface between computer and IMU, optics, and various controls and displays
Inertial Subsystem

- **Coupling Data Unit (CDU)**
 - 5-channel Analog-Digital and Digital-Analog converter
 - Data interface between computer and IMU, optics, and various controls and displays

- **Power and Servo Assembly (PSA)**
 - Central mounting point for power supplies, amplifiers, and other electronics
Inertial Subsystem

- **Coupling Data Unit (CDU)**
 - 5-channel Analog-Digital and Digital-Analog converter
 - Data interface between computer and IMU, optics, and various controls and displays

- **Power and Servo Assembly (PSA)**
 - Central mounting point for power supplies, amplifiers, and other electronics

- **Pulse Torque Assembly (PTA)**
 - Command/data interface to IMU accelerometers

- **Signal Conditioner Assembly (SCA)** (not shown)
 - Interface to instrumentation system
- Sextant (SXT)
 - 28x magnification, 1.8 degree field-of-view (FOV), dual lines-of-sight (LOS)
 - Collect star LOS data for IMU align
 - Collect star/horizon LOS data for cislunar navigation
 - Collect LM LOS data for rendezvous navigation
• Sextant (SXT)
 – 28x magnification, 1.8 degree field-of-view (FOV), dual lines-of-sight (LOS)
 – Collect star LOS data for IMU align
 – Collect star/horizon LOS data for cislunar navigation
 – Collect LM LOS data for rendezvous navigation

• Scanning Telescope (SCT)
 – 1x magnification, 60 degree FOV
 – Locate stars for subsequent SXT sightings
 – Collect landmark LOS data for orbital navigation
• **Sextant (SXT)**
 - 28x magnification, 1.8 degree field-of-view (FOV), dual lines-of-sight (LOS)
 - Collect star LOS data for IMU align
 - Collect star/horizon LOS data for cis/lunar navigation
 - Collect LM LOS data for rendezvous navigation
• **Scanning Telescope (SCT)**
 - 1x magnification, 60 degree FOV
 - Locate stars for subsequent SXT sightings
 - Collect landmark LOS data for orbital navigation
• **Minimum Impulse Controller (MIC)**
 - Located in LEB with optics
 - Mini-rotational controller provides fine RCS pointing control for optics sightings
LM Optical Subsystem

- **Alignment Optical Telescope (AOT)**
 - 1x magnification, 60 degree FOV
 - Collect star LOS data for IMU align
• Alignment Optical Telescope (AOT)
 – 1x magnification, 60 degree FOV
 – Collect star LOS data for IMU align
 – Fixed elevation, movable in azimuth to six detent positions for sky coverage while on lunar surface
• Alignment Optical Telescope (AOT)
 – 1x magnification, 60 degree FOV
 – Collect star LOS data for IMU align
 – Fixed elevation, movable in azimuth to six detent positions for sky coverage while on lunar surface

• Computer Control and Reticle Dimmer (CCRD) Assembly
 – MARK and REJECT pushbuttons for AOT sightings
 – Reticle light intensity adjust
• Review of basic GNC concepts
• Command and Service Module (CSM)/Lunar Module (LM) GNC organization
• Primary Guidance, Navigation, and Control (PGNCS) (mostly common to CSM and LM)
• **CSM Stabilization and Control System (SCS) and other CSM-specific hardware**
• LM Abort Guidance System (AGS), Control Electronics System (CES), and other LM-specific hardware
• Other common hardware
• Summary
• References
• Translation Control (TC)
 – Three-axis CSM RCS translation control
 – Rotate T-handle counterclockwise to initiate launch abort
 – Rotate T-handle clockwise to switch from PGNCS to SCS control
• Rotation Controls (RC)
 – Three-axis CSM RCS rotation control or Thrust Vector Control (TVC)
 – Push-To-Talk (PTT) trigger
• **Gyro Assemblies (GA1, GA2)**
 – Each contains three Body Mounted Attitude Gyros (BMAGs)
 – Can provide output signals proportional to either angular rate or angular displacement

• **Gyro Display Coupler (GDC)**
 – Integrates GA data to produce backup attitude reference

• **Flight Director Attitude Indicators (FDAI)**
 – Display of CSM attitude, attitude errors, and rates
 – Rates from BMAGs, attitude from either IMU or GDC
• Gimbal Position/Fuel Pressure Indicator (GP/FPI)
 – Thumbwheels to manually trim Service Propulsion System (SPS) pitch and yaw gimbals prior to burn
 – Needles display gimbal angles
 – Also displays fuel/oxidizer pressures for Saturn S-II and S-IVB stages
• **Gimbal Position/Fuel Pressure Indicator (GP/FPI)**
 – Thumbwheels to manually trim Service Propulsion System (SPS) pitch and yaw gimbals prior to burn
 – Needles display gimbal angles
 – Also displays fuel/oxidizer pressures for Saturn S-II and S-IVB stages

• **Attitude Set Control Panel (ASCP)**
 – Thumbwheels to set pitch, yaw, and roll attitudes
 – Attitude error reference for display on FDAI
 – Attitude reference for GDC
• Electronic Display Assembly (EDA)
 – Interface between various data sources and FDAIs/GPI
• Electronic Control Assembly (ECA)
 – Analog autopilot logic
- Thrust Vector Servo Amplifier (TVSA)
 - Interface to SPS gimbal actuators
• Reaction Jet and Engine Control (RJ/EC)
 – RCS solenoid drivers and logic circuits, SPS ignition control
CM Entry Monitor System (EMS)

- Displays data for monitoring a PGNCS entry and/or manual control of a PGNCS-fail entry
- ΔV monitoring and backup shutdown during SPS burns
- Raw display of VHF ranging data during rendezvous
CSM Very High Frequency (VHF) Ranging

• VHF ranging developed to supplement sextant (SXT) data for CSM rendezvous navigation at ranges up to 606 km (327 nmi)
 – Used existing VHF comm system for duplex link
 – Used Entry Monitor System (EMS) for data display
 – First flight Apollo 10 in 1969

• Prime sensor in the event of LM RR fail or CSM active rendezvous
• Review of basic GNC concepts
• Command and Service Module (CSM)/Lunar Module (LM) GNC organization
• Primary Guidance, Navigation, and Control (PGNCS) (mostly common to CSM and LM)
• CSM Stabilization and Control System (SCS) and other CSM-specific hardware
• **LM Abort Guidance System (AGS), Control Electronics System (CES), and other LM-specific hardware**
• Other common hardware
• Summary
• References
• Abort Electronics Assembly (AEA)
 – AGS computer
• Data Entry and Display Assembly (DEDA)
 – Display/keyboard
• Abort Sensor Assembly (ASA)
 – Strapdown (fixed to LM body) inertial navigation system
 – Attitude and velocity data to AGS
 – Mounted to nav base with IMU and AOT
• Attitude Controller Assemblies (ACAs)
 - Manual attitude control
 - Landing point redesignation capability during final approach phase
 - Push-To-Talk (PTT) trigger
• Thrust/Translation Controller Assemblies (TTCAs)
 – Left-right and in-out deflection: provide Y and Z axis RCS translation
 – Up-down deflection:
 • X axis RCS translation when THROTTLE/JETS lever in JETS position

Up deflection: +X RCS translation

Down deflection: -X RCS translation

THROTTLE/JETS lever in JETS
• **Thrust/Translation Controller Assemblies (TTCAs)**
 - Left-right and in-out deflection: provide Y and Z axis RCS translation
 - Up-down deflection:
 - X axis RCS translation when THROTTLE/JETS lever in JETS position
 - Descent Propulsion System (DPS) throttle control when THROTTLE/JETS lever in THROTTLE position
• Attitude and Translation Control Assembly (ATCA)
 – RCS logic and drivers
 – Analog autopilot for AGS
• Rate Gyro Assembly (RGA)
 – Vehicle attitude rate data when under AGS control
• Descent Engine Control Assembly (DECA)
 – Controls descent engine ignition, gimbaling, and throttling
- Gimbal Drive Actuators (GDAs)
 - Drive descent engine pitch/roll gimbals
• Ascent Engine Arming Assembly (AEAA)
 - Arm/fire ascent engine remotely for LM disposal
• S&C Control Assemblies
 – Process ignition commands for descent and ascent engines
• Gimbal Angle Sequencing Transformation Assembly (GASTA)
 – Transforms IMU gimbal angles for display on FDAI (not shown)
LM Rendezvous Radar (RR)
Range, range rate, and angle (shaft & trunnion) data automatically to LGC, manually to AGS

CSM RR Transponder
Increases RR range capability to max 750 km (405 nmi) compared to skin-track

LM Radar Subsystem Hardware
• **LM Landing Radar (LR)**
 - Slant range and velocity data for control of descent to lunar surface
• Review of basic GNC concepts
• Command and Service Module (CSM)/Lunar Module (LM) GNC organization
• Primary Guidance, Navigation, and Control (PGNCS) (mostly common to CSM and LM)
• CSM Stabilization and Control System (SCS) and other CSM-specific hardware
• LM Abort Guidance System (AGS), Control Electronics System (CES), and other LM-specific hardware
• **Other common hardware**
• Summary
• References
Orbital Rate Display – Earth And Lunar (ORDEAL)

- FDAI display of pitch attitude with respect to local horizontal
- Not tied to nav state - uses altitude rotary knob and earth/lunar switch to determine orb rate

No ORDEAL
Orbital Rate Display – Earth And Lunar (ORDEAL)

- FDAI display of pitch attitude with respect to local horizontal
- Not tied to nav state - uses altitude rotary knob and earth/lunar switch to determine orb rate

With ORDEAL
Docking Aids

• Crewman Optical Alignment Sight (COAS)
 – Line-of-sight (LOS) reference and gross range/range rate cues during final approach and docking
 – Could be used as backup to optics for navigation sightings
Docking Targets

- Lateral/angular alignment cues during final approach
- Exterior LM-mounted target for CSM-active docking (nominal)
- Interior CSM-mounted target for LM-active docking
• Primary guidance and navigation systems were mostly common to both vehicles
• Almost no redundancy in CSM guidance and navigation (mostly in optics subsystem)
• LM had redundant guidance for aborts
• Redundant control systems on both vehicles allowed manual and limited automatic control in the event of primary system failure
 – Mission Control Center provided guidance and navigation functions for this case
References

• *Apollo Training: Guidance and Control Systems - Block II S/C 101,* 15 September 1967.