Command & Service Module Communications
Objectives

1. Define System Capabilities
2. Describe the S-Band & VHF Systems
3. Discuss Communications during:
 1. Pre-Launch
 2. Ascent
 3. In-Flight
 4. Entry
 • Closing Remarks
• Communication System Capabilities
 – CSM-Earth
 • 2-way Voice & Data (S-Band & VHF)
 • Television Downlink
 • Precise Vehicle Tracking
 – CSM-Lunar Module (LM)
 • 2-way Voice & Data
 • VHF only
 – CSM-Extra Vehicular (EV) Members
 • Voice capability with EV members
 • VHF only
CSM – Earth Communications (S-Band)

- 2-Way Voice
- Telemetry & Command
- Vehicle Ranging
- TV Downlink
CSM – Earth Communications (VHF)

2-Way Voice

Telemetry Only
CSM – LM Communications (VHF)

2-Way Voice

Telemetry Only

LM Ranging
CSM - EV Crewman Communications (VHF)
Objectives

1. Define System Capabilities
2. Describe the S-Band & VHF Systems
3. Discuss Communications during:
 1. Pre-Launch
 2. Ascent
 3. In-Flight
 4. Entry
• Closing Remarks
S-Band Communications

• S-Band System Overview
 – Data Rates
 – Operating Frequencies

• Major System Components
 – Pre-Modulation Processor
 – Unified S-Band Electronics
 – S-Band Power Amplifier
 – S-Band Antennas
S-Band System Overview

- Data Rates
 - Transmit:
 - 51.2 kbps High-Rate Data (Shuttle 128 kbps)
 - 30kHz Voice Sub-Carrier
 - Receive
 - 70kHz Command Sub-Carrier
 - 30kHz Voice Sub-Carrier

- Frequencies
 - Transmit 2287.5 MHz
 - Receive 2106.4 MHz
Major S-Band Components

- **Pre-Modulation Processor (PMP)**
 - “Brains” of the Comm. System

- **Unified S-Band Equipment (USBE)**
 - Transmitter & Receiver

- **S-Band Power Amplifier (PA)**
 - High, Low, and Bypass modes

- **S-Band Antennas**
 - 1 Deployable High Gain Array
 - 4 Omni-Directional’s, mounted 90° apart
S-Band Antenna Locations

4 Omni-Directional Antennas

High-Gain Array
S-Band System Block Diagram

BASIC SPACECRAFT SYSTEM FOR CM

- UPLINK VOICE
- UPDATA
- CM VOICE
- LM RELAY VOICE
- EM VOICE & BIOMED
- TELEVISION
- PCM TLM
- EM KEY

PMP

PM MODULATION PROCESSOR

PM RECEIVER

PM EXCITER

FM EXCITER

FINAL AMPLIFIER AND SWITCHING CIRCUITRY

PA

ANTENNAS

HI-GAIN ANTENNA

OMNI-ANTENNA
VHF System Overview

• What did it provide?
 – Data and Voice capabilities with Ground Stations, LM, and EV Members
 – Max reliable range of 1500 nautical miles

• Data Rates
 – 51.2kbps to Ground Sites
 – 1.6kbps to/from LM and EV crewman

• Frequencies
 – Transmit 296.8Mhz, Receive 259.7Mhz
 – Simplex & Duplex Modes
Major VHF Components

• VHF Transmitters & Receivers
 – Provided AM and FM capability

• VHF Multiplexer
 – Allowed up to 6 VHF transmitters or receivers to utilize the same antenna simultaneously

• VHF Antennas
 – 2 “Scimitar” Antennas, mounted 180° apart
 – 2 Deployable Recovery Antennas
 – 1 Deployable HF Antenna (Block I Only)
VHF Antenna Locations

- 2 Recovery Antennas
- 2 Scimitar Antennas
- 1 HF Antenna
Objectives

- Define System Capabilities
- Describe the S-Band & VHF Systems
- Discuss Communications during:
 - Pre-Launch
 - Ascent
 - In-Flight
 - Entry
- Closing Remarks
Pre-Launch Communications

- Launch Umbilical
 - Provided 2-way voice, telemetry, and television from the launch pad

- Merritt Island Ground Station
 - Manned Space Flight Network (MSFN) Station
 - Provided 2-way voice, telemetry, command and ranging capabilities
Ascent Communications

- **Ground Sites (MSFN Sites)**
 - Ground Sites around the world that provided S-Band, VHF, Command, and Ranging capabilities

- **Apollo Ships**
 - Converted WWII Oil Tankers and Liberty Ships that provided S-Band, VHF, and Ranging

- **ARIA**
 - Converted planes that provided limited MSFN capabilities such as S-Band and VHF communications
In-Flight Communications

- **Ground Sites (MSFN Sites)**
 - VHF and S-Band capabilities with the CSM, LM, and Saturn IVB/IU

- **Deep Space Network (DSN)**
 - S-Band voice, telemetry, television, and ranging
 - Madrid, Goldstone, Canberra
Entry Communications

• Ground Sites (MSFN Sites)
 – When “in view” ground sites would attempt communications during reentry.
 – Negated mostly by plasma effects

• Recovery Ships
 – Used VHF and HF systems to find CM recovery beacon
 – Swimmer plugged into CM for communication link with crew

• ARIA
 – Four minute “Black Out Period” negated some of ARIA’s effectiveness
Objectives

1. Define System Capabilities
2. Describe the S-Band & VHF Systems
3. Discuss Communications during:
 1. Pre-Launch
 2. Ascent
 3. In-Flight
 4. Entry
• Closing Remarks
• Overall, CSM communication system was rated highly by flight controllers and crew

• No major issues encountered during flight

• System was mostly autonomous for both crew and flight controllers

• Communications didn’t use satellite links like TDRS system Shuttle & ISS use today

• For more information on Apollo Comm. Systems, please visit the Apollo Wiki