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Q Design considerations durlng developmen\tal
phase that affected Block | \ Blotk Il \vehicle

Q Summarize the condltlons that IeﬁM
of components in FC’s

Q State the solutions implémented‘fer each failure
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Q Location of FC’s :
Q FC Theory and FC Overwew -

Q Design Criteria going into De elopment Phase,

Q Design ConS|dera ns comi fro
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a Block | Fallures and Solutions
a Block Il Failures and Solutions ry
ad Lessons Learned
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FC’s produce DC electrical power over’g‘r-l.(‘)—rm“al*’-r\aqg )
of 563 to 1420 (W) at a voltage of %7 to 31f(V) H \ _
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Q0 Criteria: e S\ X
> “Shall be designed to supply; regulate;7and distribute all “
electrical power required by CSM for mission require S, &

f "

LEM during checkout and monitoring.”
|

» No constraints impose#l on launch d

a System had to posseI adequat

> Had to be operationally adaptable to c ging re_q_t'jire

successive missions without a subsequent.req
design changes

O High reliability and safety that were copsistent with
system weight ~
> Factors affecting reliability, such as multiple starts, were to be
avoided, and simplicity of design was"desired
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Q Concept for 1.5 (kW) FC came fron¥ tﬁ;aeﬁﬁn‘t \
program o/ = \
» Gemini program utilized lon Exchange--’Merriblrane (\EM) |

FUEL CELLS - ION EXCHANGE TREACTANTS]
MEMBRANE ; LUS WATER|412.5 LBS.

SIX PARALLELED STACKS @
.35 KW EACH

13.02 F13

FUEL CELLS - BACON

TWO PARALLELED
MODULES @ 1.05 KW EACH

CHEMICAL

DYNAMIC - TURBINE
TWO 2.1 KW SYSTEMS,
ONE ACTIVE-ONE STANDBY

CRYHOCYCLE

TWO 2.1 KW SYSTEMS, ONE ACTIVE-
ONE STANDBY




0 Leakage of electrolyte at the pe;tp’ﬁ‘é-r.;/;f‘ﬁwg
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Q If either hydrogen or oxygen gas’ pressu‘e‘la\

more than 2.5 (psi) below or-10.5 (psi) abpae the
electrolyte pressure, a breakdowh ofithe \
liguid/gas interface was posftle
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Q FC shorted out mternally durmgs utdoW‘ﬁ




0 Size was Insufficient to functionas a pre‘S‘s\-%é
control device for total temp-range of FCaya, \\
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PERCEMT OF KOH {BY WEIGHT) IN ELECTROLYTE
MOTES: 1. Parcent (B3) of KOH in el ectrolyte at initial fill.
2. Critical temperature (300°F) of electrolyte at which

electrochemical reaction begins, on initial start=up
of fuel cell.
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0 Under extreme thermal conditions’ the wﬁt-ér\
vapor condensed and froze at/purge‘ porh
opening

» This prevented further hydrog&]rgmg
> Two heaters were added to subsequeM

vehicles
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> a0
O Because the hydrogen was saturated-with

vapor, several electrical problems were ° .
encountered until a satisfactor Wa/terp‘roofmq
epoxy insulation was found
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0 Cooling capacity of the seconda{ﬁﬁm'_
was reduced / ‘
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0 Water slugging out of condenser”
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0 Ingestion of hydrogen gas into drfﬁil-r;g Watar
caused discomfort to crewman =

» Solution was the development of hydrogen gas\
separator which was added td e drlnklng water
system
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0 Some problems were unique to the FG éfﬁa#o—thé'rs w\@' ‘
caused by integration with other spacecra#t sysw

Q Operational errors caused the costly failure of several*;','.:
FC’s during early ser\ring and ckaut operations,

R —

QO Contamination was a serious problém Tor
subsystem

0 Redundancy philosophy that was instijyted by FC
system designers resulted in system and mission
flexibility —




O Recommendations:
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> System selection/design criteria/should incloge \\
susceptibility to damage as a result’of operatiopal §
error

> System/spacecraft jhterfaces utd be carefully
defined r | - }

» Compatibility of circulating fluidswith s S/
hardware verified o

> All fluid loops should have filters upstream of critical
components ol

or . . (o )

> Critical automatic control devices should be used in
manner to avoid operation intwo-phase-fluid
medium

/
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0 Design considerations during developmen\tal
phase that affected Block | \ Blo€k Il \vehicle

a Summarize the condltlons that IeﬂM
of components in FC’s

Q State the solutions implémented‘for each failure
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