
 
American Institute of Aeronautics and Astronautics 

 

1

Software Considerations for Subscale Flight Testing of 
Experimental Control Laws 

Austin M. Murch1, David E. Cox2, and Kevin Cunningham3 
NASA Langley Research Center, Hampton, VA 23681 

The NASA AirSTAR system has been designed to address the challenges associated with 
safe and efficient subscale flight testing of research control laws in adverse flight conditions.  
In this paper, software elements of this system are described, with an emphasis on 
components which allow for rapid prototyping and deployment of aircraft control laws. 
Through model-based design and automatic coding a common code-base is used for desktop 
analysis, piloted simulation and real-time flight control.  The flight control system provides 
the ability to rapidly integrate and test multiple research control laws and to emulate 
component or sensor failures. Integrated integrity monitoring systems provide aircraft 
structural load protection, isolate the system from control algorithm failures, and monitor 
the health of telemetry streams.  Finally, issues associated with software configuration 
management and code modularity are briefly discussed. 

Nomenclature 
α  = angle of attack, degrees 
δ  = control surface deflection, degrees 

eδ  = elevator deflection, degrees 
φ  = bank angle, degrees 
VC = calibrated airspeed, knots 
NZ = normal load factor, positive up, g 
q  = dynamic pressure, pounds per square foot 
ADC = Analog to Digital Converter 
AirSTAR =  Airborne Subscale Transport Aircraft Research 
CONOPS = Concept of Operations 
COTS = Commercial Off The Shelf 
FCL = Flight Control Law 
FCS = Flight Control System 
FCU = Flight Control Unit 
HIL = Hardware In the Loop 
INS = Inertial Navigation System 
I/O = Input/Output 
IRAC = Integrated Resilient Aircraft Controls 
IVHM =  Integrated Vehicle Health Management 
LPS = Load Protection System 
MOS = Mobile Operations Station 
NASA =  National Aeronautics and Space Administration 
PWM = Pulse-Width Modulation 
UDP = User Datagram Protocol 

                                                           
1  Research Engineer, Flight Dynamics Branch, Mail Stop 308, AIAA Member. 
2  Senior Research Engineer, Dynamic Systems and Control Branch, Mail Stop 308. 
3  Senior Research Engineer, Flight Dynamics Branch, Mail Stop 308, AIAA Senior Member. 
 



 
American Institute of Aeronautics and Astronautics 

 

2

I. Introduction 
ESEARCH is being conducted under the NASA Aviation Safety Program (AvSP) to advance the state of the art 
in adaptive control technologies. One goal of this research is to help reduce the fatal accident rate of transport 

airplanes due to loss of control. This research emphasizes the use of adaptive control technologies for recovery from 
extremely adverse conditions, including those resulting from flight control failures, sensor failures, and airframe 
damage. The AvSP is using subscale flight testing as a tool in the evaluation of experimental adaptive control laws. 
This is particularly beneficial for the test and evaluation of control law performance beyond the edge of the normal 
flight envelope, where the risk of vehicle loss is high due to limited knowledge of nonlinear aerodynamics beyond 
stall and the potential for high structural loads. Numerous examples of subscale unmanned aerial vehicles (UAVs) 
being used for research exist in the literature,1,2,3,4,5,6,7  The primary focus of many of these programs is on guidance 
and navigation algorithms or fully-autonomous systems.  The Airborne Subscale Transport Aircraft 
Research8,9,10,11,12 (AirSTAR) system at the NASA Langley Research Center has been designed to provide a flexible 
research environment with the ability to conduct pilot-in-the-loop testing of control algorithms in adverse flight 
conditions. The implementation of this system will be described in this paper, with particular emphasis on the 
software components designed to handle the challenges of testing experimental control algorithms. This includes 
integration of multiple research control laws, emulation of failures, safeguarding the test aircraft against damage, 
and integrity monitoring. 

II. AirSTAR Overview 
AirSTAR is an integrated flight test infrastructure which utilizes remotely piloted, turbine-powered subscale 

models for flight testing. One particular use of AirSTAR is flight testing research control laws in adverse flight 
conditions. AirSTAR consists of a remotely piloted subscale test article, the Mobile Operations Station (MOS) (an 
integrated ground station and 
control room), and a test range. 
Under the current AirSTAR 
Concept of Operations 
(CONOPS) (Fig. 1) a safety 
pilot, using a commercial 2.4 
GHz radio control transmitter, 
performs the takeoff and climbs 
to a specified altitude, where 
control of the aircraft is 
transferred to a research pilot 
through a handoff maneuver. The 
research pilot executes the flight 
test plan from a research cockpit 
located in the MOS, using 
synthetic vision displays driven 
with aircraft sensor data. The 
research pilot uses a ground-
based flight control system 
(FCS) that is connected to the 
aircraft through an L-band 
telemetry uplink and S-band 
telemetry downlink. Once the 
flight test maneuvers are complete, the safety pilot resumes control of the aircraft and performs the landing. The 
safety pilot is the pilot-in-command of the aircraft and permits the research pilot to control the aircraft via a switch 
on the safety pilot’s transmitter. When the onboard flight control unit (FCU) receives the appropriate handoff 
command from the safety pilot, the FCU responds to the research pilot’s commands received through the L-band 
telemetry uplink. The command state of the FCU (i.e., who actually has control of the aircraft) is part of the data on 
the S-band telemetry downlink. 

III.  Avionics Architecture 
The avionics architecture for AirSTAR consists of a custom-built FCU onboard the aircraft and a ground-based 

dSPACE® real-time computer. The onboard FCU handles sensor data collection, telemetry serial stream parsing and 

R 

Figure 1. AirSTAR Concept of Operations. 



 
American Institute of Aeronautics and Astronautics 

 

3

creation, command switching, and actuator command generation. Analog sensor data is collected via ADC boards 
while digital data from the INS and engine control units is collected via serial inputs. These data are compiled into a 
serial stream which is telemetered to the MOS, where it is received into the dSPACE real-time computer. In addition 
to the serial I/O, the dSPACE computer receives analog and discrete inputs from the research cockpit interface, 
PWM inputs from the safety pilot’s commands, network connection, and a fiber-optic link to the a host PC. Data are 
stored at 200 Hz using a stream-to-disk method between the dSPACE real-time computer and the host PC’s hard 
drive. These data can be converted to MATLAB® format within minutes after a flight. An Apogee® data recorder is 
also used to synchronously record serial telemetry data, intercom audio, and video streams. The Apogee system 
supports a playback capability that can be used to recreate the flight environment within the MOS.  

IV.  Software Architecture 
The software architecture for the AirSTAR MOS consists of three main elements: simulation, real-time flight 

code, and display software. The displays provide the pilot with a synthetic scene view and instrument overlay 
customized for flight dynamics research.  They also provide real-time status and health monitoring information to 
operations personnel within the MOS. The software for both simulation and the flight code is primarily developed in 
The MathWorks MATLAB/Simulink® environment. The real-time flight code is generated from Simulink using 
Real-Time Workshop® and implemented on the dSPACE real-time computer. MathWorks Mex-functions written in 
C are used for packing and unpacking the serial telemetry stream, while built-in dSPACE libraries are used for the 
analog/discrete/PWM inputs and network outputs. 

A. Simulation 
The simulation software runs in Simulink on a PC and has three different environments: design, emulation, and 

hardware-in-the-loop (HIL). The design environment is intended for design and initial checkout of control laws and 
consists primarily of the aircraft model (i.e., aircraft dynamics and subsystems such as engines, actuators, and 
sensors). The emulation environment includes the aircraft model along with the flight control system, an avionics 
model, a telemetry system model, and all of the components in the real-time flight code, except for the hardware 
drivers. This emulation environment enables new algorithms and code changes to be debugged and tested in 
Simulink with a high degree of fidelity.  The HIL environment is essentially the same as the emulation environment 
without the real-time flight code components.  In this environment, the simulation runs in soft real-time on a PC 
with a serial I/O card emulating the aircraft, avionics, and telemetry system.  In this mode the MOS systems and the 
flight control computer can be used for performance testing, flight profile planning and full mission rehearsals.  

B. Libraries 
As with any software development effort, configuration management is extremely important and becomes 

challenging as the size and complexity of the code grows and the number of developers increases. In a traditional 
Simulink model, all of the code (with the exception of built-in blocks) is contained within a single diagram and is 
stored as a single model file. This setup requires any and all changes to take place in a single file and makes 
configuration management, validation, and verification especially difficult in a project with multiple developers. 

One approach is to use Model Referencing, which divides the diagram into multiple model files, each of which 
can be compiled separately and linked later into a final executable code. However, model referencing imposes 
additional constraints (e.g., BusObjects to declare model interfaces) and is not compatible with some dSPACE 
configurations. Another method is to put major subsystem components into separate library files. Library files are 
generally used for blocks that have multiple instances throughout a diagram, but also serve the purpose of dividing a 
single model into multiple files. Libraries also allow the use of configurable subsystems, which enables the software 
to easily switch between different implementations for the same basic function.   

Libraries are used extensively in the AirSTAR software, so that each major subsystem (e.g., engines, 
aerodynamics, telemetry processing, etc) is maintained in a separate library file. With this arrangement all three 
simulation environments use the same library blocks for the aircraft models and subsystems. The emulation 
environment and real-time code also draw from the same libraries. This software reuse speeds development and 
testing and decreases the likelihood of errors being introduced through recoding and reimplementation.  
 Each library file is kept under configuration management using Subversion (SVN), an open source version 
control tool. Although Simulink models are ASCII text files, a contextual merge of updates to a model file is not 
desired. As with source code, a contextual merge on a model file may not produce syntactically correct code.  
However, with a model file these errors can not be easily corrected as the broken code won't load properly into the 
simulink diagram editor.  The solution is to treat these files as binaries within Subversion.  This allows updates to 



 
American Institute of Aeronautics and Astronautics 

 

4

files only if the working copy is unmodified, otherwise it produces a conflict.  To allow concurrent development the 
diagram should be broken into as many libraries as possible.  Since libraries are loaded during initialization (pre-
compile) there is no performance penalty with this method and version control information and change logs can be 
tracked with a high degree of granularity13.   

C. Software Block Diagram 
A block diagram of the software in 

the flight control computer is shown in 
Fig. 2. The commands from both pilots 
are input to the FCS, in addition to the 
aircraft sensor data, the output from the 
Calculated Parameters subsystem, and 
the Caution & Warning subsystem. The 
Calculated Parameters subsystem 
calculates unmeasured quantities such as 
airspeed and altitude (from dynamic and 
static pressure) and applies center of 
gravity offset corrections to appropriate 
sensor data. The Caution & Warning 
subsystem provides alerts and advisories 
to the pilot based on sensor data, as well 
as performing integrity monitoring of the 
telemetry link and instrumentation. The 
outputs of the FCS are control surface and throttle commands in engineering units, which are calibrated to actuator 
commands and sent to the aircraft via the L-band telemetry uplink. Various data parameters are broadcast in real-
time via user datagram protocol (UDP) messages over the MOS Ethernet network. Two UDP packets are used, one 
containing data needed to drive displays, and another specifically for research needs. Both packets are currently 
broadcast at 60 Hz.  

D. Flight Control System 
The AirSTAR FCS9 uses a reversionary build-up approach to mitigate the risks associated with flight testing 

complex research control laws. Complexity is added in distinct stages that can be quickly transitioned using a two-
switch “arm” and “engage” process. The FCS is separated into three flight control law (FCL) modes, shown in Fig. 
3. These three modes are mutually exclusive; only one can be active at a time. Mode 1 is a direct, stick-to-surface 
control law composed of stick shaping only; no sensor feedback is used. This mode is the reversionary control law 
and is simple by design. Mode 2 is the baseline FCL, containing a conventional (non-adaptive) closed-loop 
controller. Mode 3 is reserved for the research control laws, and can contain numerous FCLs, although only one can 
be operational at any given time. 

Mode 1 FCL 
(STS)

Mode 2 FCL
(Baseline)

Mode 3 FCLs
(Research)

Wavetrain

Input 
Selection

Model Tracking
& Failures Uplink

Transfer
Logic

Safety 
Pilot

Research 
Pilot

Feedback

Loads
Protection

Autothrottle

Note: Complete block interconnections 
omitted for clarity

Mode 1 FCL 
(STS)

Mode 2 FCL
(Baseline)

Mode 3 FCLs
(Research)

Wavetrain

Input 
Selection

Model Tracking
& Failures Uplink

Transfer
Logic

Safety 
Pilot

Research 
Pilot

Feedback

Loads
Protection

Autothrottle

Note: Complete block interconnections 
omitted for clarity  

Figure 3. AirSTAR FCS top-level block diagram. 

Flight
Control
System

Telemetry &
Calibration

Research Pilot
Inputs

Safety Pilot
Inputs

Caution &
Warning

Calculated
Parameters

Caution & Warning

Calculated Parameters

Commands

Notes:

1. Data storage, Network 
communication blocks not shown

2. Update rate: 600Hz

Feedback

Raw sensor data

Aircraft

L/S-Band Telemetry (200Hz)
Flight

Control
System

Telemetry &
Calibration

Research Pilot
Inputs

Safety Pilot
Inputs

Caution &
Warning

Calculated
Parameters

Caution & Warning

Calculated Parameters

Commands

Notes:

1. Data storage, Network 
communication blocks not shown

2. Update rate: 600Hz

Feedback

Raw sensor data

Aircraft

L/S-Band Telemetry (200Hz)

Figure 2. Block diagram of flight control computer software. 



 
American Institute of Aeronautics and Astronautics 

 

5

The FCS also contains three auxiliary modules that can be used in conjunction with Modes 1, 2, or 3: an 
Autothrottle, a Wavetrain module, and a Model Tracking & Failures module. The final component in the FCS is a 
Load Protection System (LPS). The purpose of the LPS is to prevent the FCS from commanding control deflections 
that would result in exceeding the structural limits of the test aircraft. The LPS, Transfer Logic, and Input Selection 
blocks are always active. 

E. Simulink Pros and Cons 
 The use of Simulink for development and Real-Time Workshop to generate real-time code allows researchers 
and control law designers to develop and test algorithms in the familiar Simulink environment while avoiding the 
lower-level details of real-time code2,3,4. This has enabled a rapid transition from algorithm development to compiled 
real-time flight code and significantly improves the debugging and testing process. Such efficiency comes at the cost 
of reduced understanding of what is happening in the lower-level software. Simulink automatically handles many of 
the programming details, such as signal dimensions, sample times, data types, and buffers between multi-rate 
systems. However, as diagrams grow in size and complexity, the automatic determination of these properties 
sometimes fails. These initialization failures are presented as errors, although often there are no code errors in the 
diagram itself, just an under-specification of properties.  The solution to these problems is to explicitly specify port 
and bus properties through the use of signal specification blocks, input /output property dialogs and bus objects.  
However, doing so makes the code less flexible and removes some of the benefit of using model based design as a 
high level language.   To date these errors have been mitigated by specifying signal properties at selected interfaces 
within the diagram and taking greater care to explicitly handle transitions between multi-rate systems.  The level of 
specification required is managed as a practical balance between the ease of code modifications and the 
consequences of the fragile initialization process described above. 

V.  Research Control Law Implementation 
Two common themes in many flight test programs are the limited quantity and significant cost of flight time 

available. This often creates a conflict between a conservative build-up approach to safely evaluating new control 
algorithms and testing numerous control laws over a wide flight envelope. In particular, for control algorithms 
designed to enhance safety in upset flight or damage conditions, the desired research interest is not in optimizing 
nominal performance, but in finding out under what circumstance and why a control law technology will fail. 
Testing up to the boundaries of stability adds risk to the flight experiment, but provides valuable understanding and 
is a risk that may be deemed acceptable in an unmanned vehicle. To addresses these challenges, the AirSTAR 
software is designed to maximize productivity of the test time available by enabling multiple research controllers to 
be tested during a single flight and providing a rapid reversion from research to baseline control algorithms. 

In the AirSTAR FCS, research control laws are hosted in the Mode 3 FCL subsystem. This module utilizes a 
selectable, Enabled Subsystem architecture that allows a large number of research control laws to be implemented 
concurrently and tested individually during a single flight. Each research control law can be a different type and 
have a different structure and implementation. From a software standpoint, there is no limitation on the type of 
control law (i.e., inner-loop or outer-loop), but the current technical plans are focused on pilot-in-the-loop control 
laws rather than full outer-loop autopilots. 

Research FCLs are disabled (i.e., the code is not executed) until the particular FCL is selected and armed. The 
selected research FCL outputs are not active until Mode 3 is engaged by the research pilot. Sensor failures can be 
emulated in the Mode 3 FCL by modifying any or all of the sensor data from the aircraft. Any modification to the 
sensor data is local to the Mode 3 FCL and does not affect the remainder of the FCS. Finally, 30 channels of user-
definable data can be sent out over the MOS network via UDP and observed in real-time during a test. Each FCL 
implemented in Mode 3 can define different parameters for the 30 user data channels, but only the armed/engaged 
FCL user data is sent out over the MOS network.  

The control laws in the Mode 3 FCL subsystem are research products that are frequently updated and may 
include configurations that fail in ways that would adversely affect the rest of the software. To mitigate this risk, a 
development effort to partition the Mode 3 FCS subsystem to run on a separate processor in the dSPACE real-time 
computer is underway. Any software faults that may occur in Mode 3 (e.g., frame overrun, segmentation fault, etc.) 
will have no impact on the remaining software, which will continue running normally. 

VI. Failure Emulation 
 The purpose of the failure emulation capabilities in the AirSTAR software is to support validation of 
technologies developed under the NASA Integrated Vehicle Health Management (IVHM) project and the NASA 



 
American Institute of Aeronautics and Astronautics 

 

6

Integrated Resilient Aircraft Control Project 
(IRAC) project. The technical goals of the IVHM 
project include the development of validated 
tools, technologies, and techniques for the 
automated detection and diagnosis of various 
faults and failures. The technical goals of the 
IRAC project include the development of a set of 
validated flight control design tools and 
techniques for enabling safe flight in the 
presence of adverse conditions, which includes 
failures, upsets, damage, and icing. By designing 
this capability into the FCS architecture, the 
goals of both projects can be quickly and easily 
supported. This software-based approach also 
allows the emulated failure to be immediately 
reversed with the flip of a switch should the need 
arise during flight.  
 The AirSTAR FCS emulates failures in the 
Model Tracking & Failures module (Fig. 3). This 
provides the capability to emulate control surface 
failures by modifying any of the control surface 
commands. A large number of user-defined 
failure profiles can be implemented, which can 
then be easily selected and activated while in 
flight. The present implementation is focused on 
simple failures, e.g., a jammed surface, bias, 
reduced effectiveness, or any combination of the 
three, which can be to be applied to any 
command (Eq. 1). To minimize transients when 
activated, the failures are applied relative to the 
initial control surface commands (δ0). 

( ) BiasGain inout +−+= 00 * δδδδ  (1) 

An example of one failure that was emulated 
during a flight test deployment is a jammed right 
elevator. During this scenario, the right elevator 
remained in a fixed position while pitch 
commands actuated only the left elevator (Fig. 
4). While this failure was being emulated, the 
pilot performed an evaluation maneuver to 
capture (within 3 seconds) and maintain a precise 
bank angle while precisely maintaining airspeed 

and altitude. The primary purpose of this maneuver was to evaluate the suitability of this task for control law 
evaluation during failure emulation. Target conditions as well as desired and adequate performance criteria are 
shown in Table 1.  

Figure 5 shows the time histories of calibrated airspeed, altitude, and bank angle that were recorded during this 
evaluation task. Although desired performance was obtained for altitude, and adequate performance was obtained 
for airspeed, adequate performance was not obtained for bank angle control. Pilot comments indicated the inability 
to adequately maintain bank angle was due to roll coupling produced by the asymmetric elevator deflections. The 
pilot commented that the task was satisfactory for future control law evaluation.  

Planned extension of capabilities in this module include a model tracking controller which will enable in-flight 
simulation of a range of effects, such as reduced static and dynamic stability and the aerodynamic effects of 
structural damage or icing.  

530 535 540 545 550 555 560
-20

-15

-10

-5

0

Time, sec

δ e, d
eg

 

 

Left
Right

 
Figure 4. Time history of left and right elevator positions 
showing the right elevator is failed.  
 

Table 1. Test conditions and performance criteria for 
jammed elevator evaluation task. 

 Target 
Condition 

Desired 
Criteria 

Adequate 
Criteria 

Airspeed 80 kts. ±4 kts. ±8 kts. 
Altitude 950 ft. ±50 ft. ±100 ft. 
Bank Angle 45º ±5º ±10º 

 

530 535 540 545 550 555 560
70

80

90

V c, k
no

ts

530 535 540 545 550 555 560
800

900

1000

1100

Al
tit

ud
e,

 ft

530 535 540 545 550 555 560
0

20

40

60

Time, sec

φ,
 d

eg

Adequate Criteria
Desired Criteria

 
Figure 4. Velocity, altitude, and bank angle during capture 

task with right elevator fixed. 



 
American Institute of Aeronautics and Astronautics 

 

7

VII.  Aircraft Structural Load Protection 
Unintentional failures of experimental control algorithms and concepts can range from the benign (e.g., lack of 

desired controller performance) to extreme (e.g., control hardovers). While rigorous testing and analysis of the 
control algorithm under evaluation can prevent most failures of this nature, guaranteeing stability can be a challenge 
in some cases (e.g., adaptive control algorithms, controllers in the presence of failure conditions, etc.). In keeping 
with AirSTAR’s goal of a rapid prototyping development and test environment for control algorithms, the AirSTAR 
FCS utilizes software protections (in addition to planning test procedures so as to limit dynamic pressure) to prevent 
structural damage to the test aircraft in the event of a control algorithm failure. 

The AirSTAR FCS has a Load Protection System (LPS), which is designed to prevent the FCS from exceeding 
the structural limits of the test aircraft. The primary focus of the LPS is normal load factor (Nz), with secondary 
focus on side force loads (Ny). The LPS uses a two-step approach to prevent the FCS from exceeding normal load 
factor limits: the first approach (Plan A) is 
proactive and limits elevator authority as a 
function of dynamic pressure. Limiting 
elevator authority proactively was found to 
the most effective way to prevent excessive 
load factor. A simulation study showed that 
elevator hardovers resulted in very high g-
onset rates which are difficult to reverse 
quickly enough to prevent excessive load 
factors. The second approach (Plan B) is 
reactive and sets the controls to a neutral 
position if the specified load factor 
thresholds are exceeded. This approach is 
intended as a backup in case Plan A fails to 
limit load factor as expected. 

The LPS Plan A elevator limits were set 
by first creating a database of peak load 
factor as function of dynamic pressure and elevator inputs by simulating elevator hardovers (step inputs and doublet 
inputs) from a range of trimmed flight conditions and recording the peak transient load factor. Given a maximum 
and minimum load factor limit, this database can be used to set the maximum allowable elevator authority as a 
function of dynamic pressure.  

Figure 6 is a plot of peak transient load factor versus equivalent airspeed for elevator hardover inputs (both steps 
and doublets). The solid blue line is the peak load factor without the LPS activated; these data are used to set the 
Plan A elevator limits. The dashed green lines show that the peak load factors with the LPS (Plan A & B) engaged 
are below the yield limit (5.0g) and ultimate limit (6.4g) of the S2 aircraft9 (shown as dotted red lines).  

In a manner similar to Plan A for normal force loads, excessive side force loads are prevented by limiting the 
rudder authority as a function of dynamic pressure. The rudder limits are set so a full rudder reversal at maximum 
attainable sideslip angle will not exceed the structural limits of the vertical tail at a given dynamic pressure. If the 
structural limits of the vertical tail are not known (as is the case for the S2 aircraft, because it is a COTS kit), the 
rudder limits are set to the maximum deflections expected to be needed for the maneuvers in the flight test plan. If 
the structural limits of the aircraft are known, the LPS can effectively mitigate the risk of structural damage due to 
excessive control inputs. As a result, research control laws can run through development and test iterations in a 
timely fashion with minimal risk to the test aircraft.  

VIII. Integrity Monitoring 
Knowledge of system health is crucial during high-risk flight test maneuvers, even more so when control of the 

aircraft is subject to this status. Several software elements are aimed at monitoring the health and integrity of the 
telemetry link and the research control laws being studied. 

 

A. Telemetry Link Monitor 
The telemetry link is a critical component for conveying the research pilot inputs and for the experimental 

control system implemented in the ground based flight computer. At a basic level the telemetry stream employs 
Fletcher checksums at the end of each message to verify the message was not corrupted in transmission. These 

Figure 5. Simulated peak load factor for the S2 aircraft. 



 
American Institute of Aeronautics and Astronautics 

 

8

checksums are verified both in the on-board computer for uplink messages and in the ground based computer for 
downlink messages. If a checksum test fails, the system simply retains the previous value for any data expected from 
that message. Checksums provide confidence in the integrity of the received message, however, they cannot provide 
a good sense of the link state because status of the uplink checksums are not part of any downlink message, and the 
checksums will not fail if the link is fully out and no message header is received.  

To ensure integrity of the telemetry link, a monitor was implemented to interrogate the round trip data link from 
the ground system to the vehicle and back, and signal any failures. The design for the link monitor uses a spare set 
of uplink messages which are transmitted to the airborne digital I/O ports. These digital input and output channels 
are physically wired together in a loopback configuration. A 20 Hz square wave is sent to the digital output port 
from the ground computer via the telemetry uplink and received back down on the downlink. Since both the onboard 
and ground systems will “hold-last-value” on a transmission error, a failure to transition at the 20 Hz rate on this 
signal indicates a dropout condition on the link. When a sustained dropout occurs for 0.75 seconds, the link is 
declared inoperative.  

Different actions are taken for dropouts versus an inoperative link. The FCS uses the dropout flag to freeze all 
integrators associated with the control laws to prevent integrator wind-up. However, the controllers continue to run 
and there is no automatic mode change or pilot notification. The FCS uses the link inoperative flag to automatically 
revert the FCS to the lowest reversionary state (Mode 1). The link inoperative flag also triggers a large yellow “X” 
overlay on all displays in the ground station, and procedurally this calls for the safety pilot to take control of the 
vehicle via his independent link.  

The initial design of this system had a subtle but significant flaw. The uplink message which contains the 16 bits 
of digital I/O data is very short, with only a 2 byte payload. The two uplink messages which carry the 32 channels of 
surface commands to the vehicle are much longer with a combined 64 byte payload. If the link is experiencing 
random bit-loss type errors the probability of the surface command messages failing its checksum is larger than that 
of the digital I/O message. A condition can occur where the downlink is operative (so the cockpit displays remain 
“live”) and the short digital I/O message is getting through, but the uplink commands messages are failing to reach 
the aircraft. This situation occurred during a checkout flight test deployment. While the downlink remained 
functional, a period of 3.5 seconds passed where uplink surface commands were failing to reach the aircraft, but the 
pilot had no indication of the telemetry link being inoperative. Within this timeframe dropouts occurred, but none 
sustained long enough to trigger the link inoperative condition.  

An upgrade to the link monitor has been implemented using a spare channel in both of the uplink surface 
command messages to transmit the link monitor signal. The PWM output of these channels is physically wired to the 
digital input ports and received back on the downlink. The link monitoring function on the ground computer ensures 
both returning signals are transitioning properly. The transition rate of the signal was also increased to 50 Hz to 
decrease the delay in detecting a dropout condition. Higher transition rates could not be used because spurious 
dropout indications would occur, due to the multiple asynchronous clocks involved in the full path of the link 
monitor signal.  

B. Inf and NaN Check 
In testing of any experimental algorithm, the possibility exists of having an infinite-valued signal (Inf). While 

infinite values can be handled with normal saturation and rate limiter blocks, an infinite-valued signal can easily 
become Not-a-Number (NaN). This can occur through the following operations which produce NaN14: 

1. Any arithmetic operation on a NaN, such as sqrt(NaN) 
2. Addition or subtraction, such as magnitude subtraction of infinities as (+Inf)+(-Inf) 
3. Multiplication, such as 0*Inf 
4. Division, such as 0/0 and Inf/Inf 
5. Remainder, such as rem(x,y) where y is zero or x is infinity 

A NaN signal will pass through saturation and rate limiter blocks (including the LPS) uninhibited and could cause 
control surface hardovers. A solution was found using an Embedded MATLAB function block. The “isnan” and 
“isinf” functions are supported in Embedded MATLAB, enabling a simple function to be written which detects Inf 
or NaN values and replaces them with the last non-Inf/NaN value. If any Inf or NaN values are detected, an audio 
and visual warnings are activated in the cockpit.  

C. FCS Mode Inhibits 
If a research control law is initialized properly, initial control surface commands will match the current 

commands and no transient will occur once it is engaged. However, if this is not the case, the FCS has inhibit logic 
which prevents control laws from being engaged if the initial command would cause a significant normal load 



 
American Institute of Aeronautics and Astronautics 

 

9

transient. This system uses the same methodology and database as the LPS Plan A system described above, but has 
significantly lower load factor limits. In addition, the FCS automatically reverts to the lowest reversionary state 
(Mode 1) if the telemetry link fails or the safety pilot takes control. Once control is returned to the research pilot and 
the telemetry link is established, all FCS modes or functions must be rearmed before they can be engaged again. 

D. Mode 3 UserData Outputs 
Each control law implemented in Mode 3 can output 30 channels of user selected data. These data are stored at 

200Hz and are broadcast in real-time over the MOS network via UDP at 60Hz, allowing real-time monitoring of 
internal control law parameters. Having access to the data in real-time allows researchers in the MOS to implement 
and evaluate near real-time algorithms such as parameter identification and fault detection logic without being 
tightly integrated to the real-time flight software. This also allows quick evaluations of research results that can 
impact the flight test sequence during flight if repeats or modifications to maneuvers are necessary. 

IX. Concluding Remarks 
Some of the risks associated with flight testing of experimental control laws can be reduced or eliminated by 

using subscale unmanned aircraft. Some challenges remain, however, including an increased reliance on the flight 
software and need for efficient software development. 

 The AirSTAR facility uses Simulink and Real-Time Workshop to reduce the time required for algorithm 
development and testing. Simulation is used throughout the development cycle, from algorithm design to full 
mission rehearsals.  Simulink libraries are used to maximize code reuse, increasing the fidelity of developmental 
testing and improving configuration management. The AirSTAR FCS uses a reversionary, build-up approach to add 
control law complexity. Multiple research control laws, each of a different type, can be hosted in the FCS via use of 
Enabled Subsystems. Faults and failures, for the purpose of testing control law robustness, are emulated in software. 
A Load Protection System has been implemented to safeguard the aircraft against excessive structural loads 
resulting from unexpected control law failure. Finally, integrity monitoring is performed throughout the software, 
monitoring the telemetry link status, checking for numerical errors, inhibiting activation of out-of-range control 
laws, and providing numerous channels of real-time internal control law data to researchers. 

References 
 

1Dobrokhodov, V. N., et al, “New Generation of Rapid Flight Test Prototyping System for Small Unmanned Air Vehicles,” 
AIAA 2007-6567, AIAA Modeling and Simulation Technologies Conference and Exhibit, Hilton Head, SC, 2007. 

2Jang, J. S., Tomlin, C. J., “Design and Implementation of a Low Cost, Hierarchical and Modular Avionics Architecture for 
the DragonFly UAVs,” AIAA 2002-4465, AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA, 
2002. 

3Christophersen, H. B., Pickell, W. J., Koller, A. A., Kannan, S. K., Johnson, E. N., “Small Adaptive Flight Control Systems 
for UAVs using FPGA/DSP Technology,”, AIAA 2004-6556, AIAA 3rd "Unmanned Unlimited" Technical Conference, 
Workshop and Exhibit, Chicago, IL, 2004. 

4Smith, J. I., Valente, E. G., Eubank, R. D., Atkins, E. M., “A Low-Cost Research Autopilot for System Identification,” 
AIAA 2005-6963, AIAA Infotech@Aerospace, Arlington, VA, 2005. 

5Gu, Y., Seanor, G., Gururajan, S., Napolitano, M. R., “Integrated Avionics System for Research UAVs,” AIAA 2008-7490, 
AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI, 2008. 

6Ma, L., Stepanyan, V., Cao, C., Faruque, I., Woolsey, C., Hovakimyan, N., “Flight Test Bed for Visual Tracking of Small 
UAVs,” AIAA 2006-6609, AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO, 2006. 

7Risch, T., Cosentino, G., Regan, C. D., Kisska, M., Princen, N., “X-48B Flight-Test Progress Overview,” AIAA 2009-934, 
47th AIAA Aerospace Sciences Meeting, Orlando, FL, 2009. 

8Cunningham K., Foster J. V., Morelli E. A., and Murch A. M., “Practical Application of a Subscale Transport Aircraft for 
Flight Research in Control Upset and Failure Conditions,” AIAA 2008-6200, AIAA Atmospheric Flight Mechanics Conference, 
Honolulu, HI, 2008. 

9Murch, A. M., “A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure,” AIAA 2008-
6990, AIAA Guidance, Navigation, and Control Conference and Exhibit, Honolulu, HI, 2008. 

10Jordan, T. L., Foster, J. V., Bailey, R. M., and Belcastro, C. M., “AirSTAR: A UAV Platform for Flight Dynamics and 
Control System Testing,”, AIAA 2006-3307, 25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 
San Francisco, CA, 2006. 

11Jordan, T. L., Langford, W. M., and Hill, J. S., ”Airborne Subscale Transport Aircraft Research Testbed – Aircraft Model 
Development,” AIAA 2005-6432, AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, CA, 2005. 

12Bailey, R.M., Hostetler, R.W., Barnes, K.N., Belcastro, Christine M., and Belcastro, Celeste M., “Experimental Validation: 
 



 
American Institute of Aeronautics and Astronautics 

 

10

 
 Subscale Aircraft Ground Facilities and Integrated Test Capability,” AIAA 2005-6433, AIAA Guidance, Navigation, and 

Control Conference and Exhibit, San Francisco, CA, 2005. 
13 Walker, G., Friedman, J., Aberg, R., "Configuration Management of the Model-Based Design Process," SAE-2007-01-

1775, SAE World Congress & Exhibition, Detroit, MI, 2007. 
14MATLAB R2007a Help, The MathWorks, Inc., Nantick, MA, 2007. 


