Overview

- Astrophysics at a GeV
 - Why we do it and some of the things we hope to find
- The Fermi Gamma-Ray Space Telescope
 - Working extremely well!
- Science Highlights from the First Six Months
 - 205 bright gamma-ray emitters
 - The Solar System
 - Our Galaxy
 - Beyond our Galaxy

Some Big Questions

- How and where does nature accelerate matter?
- What is matter like throughout the Universe?
- What characterizes our local environment?
- What about the distant Universe?
- How do Galaxies change over time?
- Are there variations in the physics we know?
The EGRET legacy

- Catalog of ~270 MeV-GeV gamma-ray sources
 - Blazars - bright, highly variable emission from the cores of galaxies
 - Pulsars - bright pulses from rotating neutron stars
 - Unidentifieds - many undetermined objects
 - The GeV excess - diffuse emission shows too many gamma rays at a GeV
 - GRBs - GeV emission detected from a few gamma-ray bursts, one burst over an hour after the trigger

Overview

- Astrophysics at a GeV
 - Why we do it and some of the things we hope to find
- The Fermi Gamma-Ray Space Telescope
 - Working very well!
- Science Highlights from the First Six Months
 - 205 bright gamma-ray emitters
 - The Solar System
 - Our Galaxy
 - Beyond our Galaxy

Fermi LAT Collaboration

- France
 - IN2P3, CEA/Seclay
- Italy
 - INFN, ASI, INAF
- Japan
 - Hiroshima University
 - ISAS/JAXA
 - RIKEN
 - Tokyo Institute of Technology
- Sweden
 - Royal Institute of Technology (KTH)
 - Stockholm University
- United States
 - Stanford University [SLAC and HEPL/Physics]
 - University of California at Santa Cruz - Santa Cruz Institute for Particle Physics
 - Goddard Space Flight Center
 - Naval Research Laboratory
 - Sanoma State University
 - Ohio State University
 - University of Washington

Principal Investigator:
Peter Michelson (Stanford University)

construction managed by Stanford Linear Accelerator Center (SLAC), Stanford University

Only a few short months ago...

GLAST with half of the fairing mounted, sitting on top of a Delta II Heavy rocket at launch complex 17-B in Cape Canaveral Air Force Base, FL June 2008
The satellite formerly known as GLAST

+ August 26, 2008
+ First Light
+ GLAST renamed in honor of Enrico Fermi
+ The Fermi Gamma-ray Space Telescope
+ Also fondly remembered as the day a few hundred web links broke...

The Fermi Observatory

Large Area Telescope (LAT)
- Large Field of View (>2.4 sr)
- Views entire sky every 3 hrs (every 2 orbits)
- Broad Energy Range (20 MeV - >300 GeV)

Gamma-ray Burst Monitor (GBM)
- Views entire unocculted sky
- NaI: 8 keV - 1 MeV
- BGO: 150 keV - 30 MeV

The Large Area Telescope

Anti-Coincidence Detector (ACD):
- Segmented (89 tiles)
- Self-veto @ high energy limited
- Efficiency 0.9997 (overall)

Tracker (TKR):
- Tungsten foils convert
- Silicon strip detectors (single sided, each layer rotated by 90 degrees)
- ~80 m² of silicon (total)
- ~106 electronics channels
- High-precision tracking, low dead time

Calorimeter (CAL):
- 1536 CsI crystals
- 8.5 radiation lengths
- Hodoscopic
- Shower profile reconstruction (leakage correction)
Candidate Gamma-ray Events – Flight Data

Green crosses → detected positions of the charged particles
Blue lines → reconstructed track trajectories
Yellow line → estimated direction of candidate gamma ray
Red crosses → detected energy depositions in the calorimeter

On-orbit Rates

- Overall trigger rate: ~few KHz
- Huge variations due to orbital effects
- Downlink rate: ~400-500 Hz
 - ~90% from gamma filter
 - ~20-30 Hz from diagnostic filter
 - ~5 Hz from heavy ion filter
- Photon-selected event rate (passing standard background rejection cuts): ~1 Hz

LAT Performance from Ground Simulations

- The LAT is a GeV, wide-field instrument
- Energy dependence of PSF: 60%
- 68% containment <0.5 deg above 1 GeV
- Energy dependence of effective area: Peaks above 1 GeV
- PSF dependence on inclination angle (10 GeV): Resolution maintained to >50 deg.
- Dependence of effective area on inclination angle (10 GeV): ~50% efficiency at 50 deg.

LAT Sensitivity with Time

From simulations: 5σ integral flux assuming a power law with index -2.0.

- Orbit poles are exposed every other orbit
- Long term scale asymmetry due to SAA passages
Overview

- Astrophysics at a GeV
 - Why we do it and some of the things we hope to find
- The Fermi Gamma-Ray Space Telescope
 - Working very well!
- Science Highlights from the First Six Months
 - 205 bright gamma-ray emitters
 - The Solar System
 - Our Galaxy
 - Beyond our Galaxy

Bright Source List

- Basic Info
 - http://fermi.gsfc.nasa.gov/ssc
 - Released February 9
 - Based on 3 months of data (Aug. - Oct.)
 - 2.8 million events
 - Detection significance, Location, Flux in two energy bands, Variability information
- Important Caveats
 - Incomplete (bright sources only)
 - Not flux-selected (>10σ)
 - Not uniform (sensitivity varies over sky)
 - Significance threshold favors
 - Hard spectra
 - High latitude (lower diffuse emission)

205 Preliminary LAT Bright Sources

- >50% associated with blazars
- 29 pulsars with gamma-ray pulsations
- Over 40 sources without clear associations
Source Associations

- Unassociated
- AGN
- Pulsar
- X-ray binary
- Globular cluster

Solar System Gamma Rays

- Albedo gamma rays from cosmic rays impacting matter
- Earth
- Moon
- Sun
- Other planets, asteroids?
- Inverse-Compton (e.g. Moskalenko 2006, Orlando and Strong 2008)
 - Scattering of solar photons by Galactic cosmic-ray electrons
- Solar Flares (Solar Maximum in 2011)
 - Electrons and ions accelerated in solar magnetosphere
 - Generates particle cascades

The GeV Solar System

The Earth

- Gamma rays from the Earth shown in instrument coordinates
- Time steps = 250 sec
- 2.8 hrs in total
- ~2 orbits

66 deg (~LAT FOV)
The Sun and the Moon

Detection of the quiet Sun in gamma rays!
Fluxes consistent with model expectations. Moon flux agrees with EGRET.

The GeV Galaxy

EGRET GeV excess

- Extra gammas at ~1 GeV in disagreement with models based on local cosmic rays
 - Spatial variation in cosmic ray spectra?
 - Unresolved sources?
 - Dark matter?
 - Instrument calibration issue?

LAT view of the local Galaxy

- EGRET GeV excess not confirmed by LAT for this part of the sky
 + Conventional diffuse model (local CR) in good agreement
 + LAT errors are systematic dominated and estimated ~10%
Rotation Powered Pulsars

- Electrons (positrons) accelerated to relativistic speeds, emit synchrotron radiation
-\ Radio emission along magnetic axis
- >1500 radio pulsars cataloged
- Rotational periods from msec to secs, increasing over time

Neutron star ~1.4 x Mass Sun

Gamma Ray Pulsars with CGRO

EGRET Pulsars confirmed

Gemina: P=237 ms
Vela: P=89.3 ms
Crab: P=33 ms

100s γ's per day
1 million over mission

Bright Gamma-ray Pulsars

Fermi Pulsar Detections
Pulsing Sky

Pulses shown at 1/10th true rate

Producing Gamma-ray Pulsations

Radio along the magnetic field axis
Gamma rays from the equator

Observer’s angle reveals different emission patterns:
- Radio only
- Radio + Gamma
- No radio or gamma
- Thermal only
- Gamma only

Discovery of Pulsar in CTA 1

\[P = 316 \text{ ms} \]
\[P_{\dot{\text{}}}= 3.6 \times 10^{-13} \]

Characteristic age \(\approx 10 \text{ kyr} \)

Flux \((>100\text{MeV}) \approx 3.8 \pm 0.2 \times 10^{-7} \text{ ph cm}^{-2} \text{s}^{-1} \)

Pulse undetected in radio/X-ray

LAT 95% error radius = 0.038 deg

Vela Pulsar Lightcurve

Time stamps accurate to 300 ns
Phase analysis accurate to \(-1\) us

Peak 1 (P1) stronger at low energy.
Peak 2 (P2) stronger at higher energy.
NEW: Peak 3 evolves with energy.
(confirms EGRET)

Radio Rotational Phase

Consistent with simple exponential cutoff
Super-exponential rejected at 16.5σ
Excludes emission near neutron star surface

Blind-Search Pulsars at 6 Months

+ Search details
 + Known locations (EGRET/LAT, X-ray nebulae …)
 + Time differencing method (Atwood et al. 2006)
 + Robust to glitches
 + Minimum P=0.015 s
 + P, Pdot cover 95% ATNF catalog
+ 14 detected so far
 + 13 new (radio quiet, e.g. CTA 1)
+ Rough demographics
 + Age: 10 - 1800 kyr
 + Rotation Power: 10^{33} - 10^{36} erg/s

Still flux limited…

LAT Millisecond Pulsars

+ 7 detected (6 new in gamma rays)
+ PSR 0218+4232 confirmed (EGRET MSP)

Detecting high Edot/dt
Nearby - most within 1/2 kpc
Pulses are complex - work for theorists
Detection of Globular Star Cluster

47 Tucanae contains 23 radio ms pulsars

Fermi could be detecting combined emission from ms pulsars assuming average gamma-ray efficiency of ~10%.

- Search for pulsations from individual pulsars is ongoing

Consistent with Fermi PSF for point source

LS I +61 303 - a binary system

+ LSI +61 303
+ Massive Be star + compact object binary
+ 26.5 day orbital period

Orbital parameters:

- Apastron (phase 0.7)
- Periastron (phase 0.32)

Orbital period ~26.5 days

Strong GeV emission at periastron

TeV emission only detected at apastron

Cesares 2005

LS I +61 303 Periodicity

Orbital periodicity confirmed with gamma rays

26.5 ± 0.5 days

A Multi-TeV to GeV Connection?

+ Milagro Galactic Plane sources [Abdo et al. 2007]
 + Median energy ~20 TeV
 + 4 detections and 4 candidate sources in the Galactic Plane
 + 6 coincide with EGRET sources (includes Crab nebula and Geminga pulsar)
 + MGRO 1908+06, MGRO 2019+37*, MGRO 2031+41, and C4* overlap with new gamma-ray pulsars in the Bright Source List
 + Pulsations tend to cut off at a few GeV
 + Nebula emission formed by the pulsar particle outflow (PWN)?
GeV emission from beyond our Galaxy

What’s New?

+ 30% bright sources flagged as variable
 + The gamma-ray sky is dynamic!
+ About 30% overlap with EGRET
 + Expected due to weekly to yearly variability of AGN
+ Higher fraction of BL Lacs than EGRET
+ More distant AGN

3 Month Gamma-Ray Variability
Fermi Gamma-Ray Bursts

+ More than 115 GBM bursts since July
+ More than expected - GBM trigger has improved time sensitivity
+ 20 short GRBs
+ 4 bursts detected in LAT
 + Roughly consistent with expectations
 + GRB 080825C - the first one
 + >10 events above 100 MeV
 + GRB 080916C - the long one
 + GRB 081024B - the short one
 + detected >1 GeV photons
 + GRB 081215A - the transverse one
 + 86 deg from LAT on-axis - rate only, not imaged

GRB 080916C - the long bright one

+ 2nd GRB detected by the LAT
 + 1st since EGRET with imaged photons and energies > 1 GeV!
+ Brightest burst with a measured redshift
+ GROND measurement of redshift $z = 4.24$
+ Prompt emission
 + 1st GBM burst in fluence (4.0×10^{-4} erg/cm2 in 50 – 300 keV) and in LAT FoV
 + >140 LAT events for spectral analysis (>100 MeV)
 + >3000 LAT events in first 100 seconds
+ Time-resolved spectroscopy over 6 decades in energy (10 keV to 10 GeV)
+ High-energy emission peaks at later times
+ High-energy emission observed up to 23 min after the trigger time

Multiple detector light curve

First 3 light curves are background subtracted
- The LAT can be used as a counter to maximize the rate and to study time structures above tens of MeV
- The first low-energy peak is not observed at LAT energies
- Spectroscopy needs LAT event selection (>100 MeV)
 - 5 intensities for time-resolved spectral analysis:
 - 2.0×10^{-7} to 1.0×10^{-6}
 - 14 events above 1 GeV

Spectroscopy of the main LAT peak

- Consistent with band function from 10 keV to 10 GeV
- No evidence for any other component
- No evidence for any roll-off
How Relativistic is the Jet?

- High redshift and high fluence implies strongly collimated jet
- No spectral cut off ($z=4.35$)
- Bulk Lorentz factor $\Gamma \geq 600$ for second peak in light curve (≥ 900 for later timeslice of light curve)
- Also can set limit on Lorentz invariance violation
 - Highest E photon $13.2 \text{ GeV} (1+z) = 70.6 \text{ GeV}$
 - Arrived 16.7 sec after trigger
 - $M_{\text{QG}} > 1.50e18 \text{ GeV/c}^2 \sim 0.1 M_{\text{Planck}}$

Transients Unidentified and the Unexpected

LAT Transients in the Galactic Plane

- 2 ~day flares detected in the plane without obvious blazar counterpart
 - ATel #1771
 - Spatially coincident with 3EG J0903-3531
 - Variable EGRET source appearing in several viewing periods
 - 68% error radius 0.11 deg
 - No firm identification
 - ATel #1788
 - New GeV source, Fermi J0910-5041
 - 68% error radius 0.07 deg

Transients in the Galactic Plane

- 2 ~day flares detected in the plane without obvious blazar counterpart
 - ATel #1771
 - Spatially coincident with 3EG J0903-3531
 - Variable EGRET source appearing in several viewing periods
 - 68% error radius 0.11 deg
 - No firm identification
 - ATel #1788
 - New GeV source, Fermi J0910-5041
 - 68% error radius 0.07 deg
Summary

- The LAT is a powerful pulsar detector
- Already influencing pulsar models
- and a great flare monitor
 - Ideal for multiwavelength campaigns (always on!)
- Excellent performance for GRBs bright at >100 MeV
- The Bright Source List is similar in size to entire EGRET catalog (at only 3 months)
- The Gamma-Ray sky is dynamic
- Lots more *Fermi* science to come!

www.fermi.gsfc.nasa.gov
Year 1 Science Operations Timeline

<table>
<thead>
<tr>
<th>Week</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Launch: June 11, 2008</td>
</tr>
<tr>
<td>6-12</td>
<td>spacecraft turnaround</td>
</tr>
<tr>
<td>13</td>
<td>LAT, GBM turn-on checkout</td>
</tr>
<tr>
<td>14</td>
<td>"first light" observatory tuning</td>
</tr>
<tr>
<td>15</td>
<td>"first light" survey starting</td>
</tr>
<tr>
<td>16</td>
<td>Initial tuning/calibrations</td>
</tr>
<tr>
<td>17</td>
<td>"first light" whole sky survey starting</td>
</tr>
<tr>
<td>18</td>
<td>Whole sky initial tuning/calibrations</td>
</tr>
<tr>
<td>19</td>
<td>Observatory turnaround</td>
</tr>
<tr>
<td>20</td>
<td>LAT, GBM turn-on checkout</td>
</tr>
<tr>
<td>21</td>
<td>LAT, GBM first light</td>
</tr>
<tr>
<td>22</td>
<td>LAT, GBM whole sky</td>
</tr>
<tr>
<td>23</td>
<td>LAT, GBM pointed + sky survey</td>
</tr>
<tr>
<td>24</td>
<td>LAT, GBM pointed + sky survey tuning</td>
</tr>
</tbody>
</table>

LAT Background Model

Orbit-averaged background fluxes by component:

- **Green triangles**: protons
- **Magenta triangles**: helium
- **Red squares**: electrons
- **Light Blue circles**: positrons
- **Dark Blue triangles**: Earth albedo
- **Black squares**: Earth albedo

Low energy includes albedo and trapped electron/positron components.

Primary cosmic ray populations show effect of geomagnetic cutoff around a few GeV.

Map of the South Atlantic Anomaly

- **South Atlantic Anomaly (SAA)**: region with a high density of trapped particles (mostly low energy protons)
- **No physics data taken (ACD HV turned off)**
- **TKR and CAL triggers counted to map the radiation intensity**
- **Conservative boundary defined pre-launch; new polygon now uploaded on the spacecraft (down time reduced from ~18% to ~15%)**

Vela the Calibrator

- **Expected performance validated using the extremely bright Vela pulsar**
- **Confirm point spread function**
- **Higher energy requires more statistics and additional sources**
- **Additional validation using on and off pulse analysis**
- **Weekly trend monitoring of timing and reconstruction using bright pulsars**

68% containment radius measured using Vela (points) and simulated (line)
3 Month Skymap: Pulsars!

Source Associations in Inner Galaxy

Vela: Off-pulse Limit

PSR J2021+3651

- Pulse profile similar to Vela pulsar
 - $\Delta \phi = 0.468 \pm 0.002$
 - $\Delta \phi_{\text{radio}} = 0.182 \pm 0.004$
 - P_1/P_2 ratio decreases at higher energy

LAT Counts Map 300 MeV - 3 GeV
On pulse - Off pulse

<2.8% phase-average flux (95%)
J2021+3651 LAT Spectrum

\[\frac{d\Phi}{dE} = kE^{-\Gamma} \exp\left(-E/E_0\right) \]

\[\Gamma = 1.5 \pm 0.1 \]

\[E_0 = 2.4 \pm 0.3 \pm 0.5 \text{ GeV} \]

Integral energy flux =

\[4.6 \pm 0.7 \times 10^{-10} \text{ ergs cm}^{-2} \text{ s}^{-1} \]

Simple exponential \(\Rightarrow \) Near-surface emission excluded

Large dispersion measure, but \(<9\) kpc favored, e.g., 4 kpc from X-ray thermal

Galactic Transients

+ Monitored by the LAT team
 + Weekly shifts covered by an AGN and galactic advocate
+ Announced by ATels
 + E-mail notice, request for observations
 + 24 hr response time
 + LAT contact person for updates and to coordinate multiwavelength follow-up
+ Data release plan (1st year)
 + \(F (E>100 \text{ MeV}) > 2 \times 10^{-6} \text{ ph cm}^{-2} \text{ s}^{-1} \)
 + Daily flux in two energy bands
 + Continues to flux \(< 2 \times 10^{-7} \text{ ph cm}^{-2} \text{ s}^{-1} \)

Transient Flux and Spectra

Historical

EGRET avg flux (\(E>100\) MeV)

\(-0.16 \times 10^{-6} \text{ ph cm}^{-2} \text{ s}^{-1} \)

EGRET peak flux

\(-0.32 \times 10^{-6} \text{ ph cm}^{-2} \text{ s}^{-1} \) (Hartman et al. 1999)

During flare (Oct 5-7)

LAT flux \(-1 \times 10^{-6} \text{ ph cm}^{-2} \text{ s}^{-1} \)

Index \(= 2.2 \pm 0.1\) (stat)

During flare (Oct 15-16)

Flux (\(E>100\) MeV)

\(-1 \times 10^{-6} \text{ ph cm}^{-2} \text{ s}^{-1} \)

Index \(= 1.9 \pm 0.1\) (stat)
LS I +61 303 Variability

LAT flux Aug 4 - Dec 1 2008 (smoothed)

Orbit to orbit rate variations

TeV Added Value

+ GeV + TeV detections
 + Our pulsars are your PWNe?
 + Identifying LAT sources in the Galactic plane
 + TeV counterparts, localization, morphology
 + TeV spectra - discerning components
 + Gamma-ray Binaries
 + Periodicity and variability
 + Untangling progenitors and emission models
 + TeV non-detections of LAT sources
 + GeV populations with breaks/cutoffs?
 + LAT non-detections of TeV sources?
 + Does this become constraining at the 1 yr mark?
 + Note this is a longer term item...

Summary

+ Lots of exciting pulsar science
 + Exquisite light curves and spectra of bright pulsars
 + Gamma-ray only pulsars
 + Millisecond pulsars
 + Globular cluster
 + Nebula observations possible in off-pulse
 + Excellent and ongoing coverage of binary LS I +61 303 (5 orbits and counting)
 + Searching for additional binaries
 + Daily monitoring for transients in the Galactic plane
 + Increasingly interesting with time...

Supernova Remnants?

+ Too early to call...
 + Yes, there are sources in the bright source list that are near supernova remnants
 + But supernova remnants often coincide with pulsars
 + Cannot claim associations for SNR this early
 + At 1 year will have
 + Improved instrument response
 + Improved background models
 + More statistics above 10 GeV
 + Potential for studies of extended emission
Limits on Lorentz Invariance