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Spiking Neurons for Analysis of Patterns
High-performance pattern-analysis systems could be implemented as analog VLSI circuits.
NASA’s Jet Propulsion Laboratory, Pasadena, California

Artificial neural networks comprising
spiking neurons of a novel type have
been conceived as improved pattern-
analysis and pattern-recognition compu-
tational systems. These neurons are rep-
resented by a mathematical model
denoted the state-variable model (SVM),
which among other things, exploits a
computational parallelism inherent in
spiking-neuron geometry. Networks of
SVM neurons offer advantages of speed
and computational efficiency, relative to
traditional artificial neural networks. The
SVM also overcomes some of the limita-
tions of prior spiking-neuron models.
There are numerous potential pattern-
recognition, tracking, and data-reduction
(data preprocessing) applications for
these SVM neural networks on Earth and
in exploration of remote planets.

Spiking neurons imitate biological neu-
rons more closely than do the neurons of
traditional artificial neural networks. A
spiking neuron includes a central cell body
(soma) surrounded by a treelike intercon-
nection network (dendrites). Spiking neu-
rons are so named because they generate
trains of output pulses (spikes) in response
to inputs received from sensors or from
other neurons. They gain their speed ad-
vantage over traditional neural networks by
using the timing of individual spikes for

computation, whereas traditional artificial
neurons use averages of activity levels over
time. Moreover, spiking neurons use the
delays inherent in dendritic processing in
order to efficiently encode the information
content of incoming signals. Because tradi-
tional artificial neurons fail to capture this
encoding, they have less processing capa-
bility, and so it is necessary to use more
gates when implementing traditional artifi-
cial neurons in electronic circuitry. Such
higher-order functions as dynamic tasking
are effected by use of pools (collections) of
spiking neurons interconnected by spike-
transmitting fibers.

The SVM includes adaptive thresholds
and submodels of transport of ions (in
imitation of such transport in biological
neurons). These features enable the
neurons to adapt their responses to
high-rate inputs from sensors, and to
adapt their firing thresholds to mitigate
noise or effects of potential sensor fail-
ure. The mathematical derivation of the
SVM starts from a prior model, known in
the art as the point soma model, which
captures all of the salient properties of
neuronal response while keeping the
computational cost low. The point-soma
latency time is modified to be an expo-
nentially decaying function of the
strength of the applied potential.

Choosing computational efficiency
over biological fidelity, the dendrites sur-
rounding a neuron are represented by
simplified compartmental submodels
and there are no dendritic spines. Up-
dates to the dendritic potential, calcium-
ion concentrations and conductances,
and potassium-ion conductances are
done by use of equations similar to those
of the point soma. Diffusion processes in
dendrites are modeled by averaging
among nearest-neighbor compartments.
Inputs to each of the dendritic compart-
ments come from sensors. Alternatively
or in addition, when an affected neuron
is part of a pool, inputs can come from
other spiking neurons.

At present, SVM neural networks are im-
plemented by computational simulation,
using algorithms that encode the SVM and
its submodels. However, it should be possi-
ble to implement these neural networks in
hardware: The differential equations for
the dendritic and cellular processes in the
SVM model of spiking neurons map to
equivalent circuits that can be imple-
mented directly in analog very-large-scale
integrated (VLSI) circuits.

This work was done by Terrance Hunts-
berger of Caltech for NASA’s Jet Propulsion
Laboratory. Further information is contained
in a TSP (see page 1). NPO-40945

Symmetrical phase-only filtering
(SPOF) can be exploited to obtain sub-
stantial improvements in the results of
data processing in particle-image velo -
cimetry (PIV). In comparison with tradi-
tional PIV data processing, SPOF PIV
data processing yields narrower and
larger amplitude correlation peaks,
thereby providing more-accurate velocity
estimates. The higher signal-to-noise ra-
tios associated with the higher amplitude
correlation peaks afford greater robust-

ness and reliability of processing. SPOF
also affords superior performance in the
presence of surface flare light and/or
background light. SPOF algorithms can
readily be incorporated into pre-existing
algorithms used to process digitized
image data in PIV, without significantly
increasing processing times.

A summary of PIV and traditional PIV
data processing is prerequisite to a mean-
ingful description of SPOF PIV processing.
In PIV, a pulsed laser is used to illuminate

a substantially planar region of a flowing
fluid in which particles are entrained. An
electronic camera records digital images of
the particles at two instants of time. The
components of velocity of the fluid in the
illuminated plane can be obtained by de-
termining the displacements of particles
between the two illumination pulses.

The objective in PIV data processing is
to compute the particle displacements
from the digitital image data. In tradi-
tional PIV data processing, to which the
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Performance is enhanced significantly with little increase in computation time. 
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