NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Embossed Teflon AF Laminate Membrane Microfluidic Diaphragm ValvesA microfluidic system has been designed to survive spaceflight and to function autonomously on the Martian surface. It manipulates microscopic quantities of liquid water and performs chemical analyses on these samples to assay for the presence of molecules associated with past or present living processes. This technology lies at the core of the Urey Instrument, which is scheduled for inclusion on the Pasteur Payload of the ESA ExoMars rover mission in 2013. Fabrication processes have been developed to make the microfabricated Teflon-AF microfluidic diaphragm pumps capable of surviving extreme temperature excursions before and after exposure to liquid water. Two glass wafers are etched with features and a continuous Teflon membrane is sandwiched between them (see figure). Single valves are constructed using this geometry. The microfabricated devices are then post processed by heating the assembled device while applying pneumatic pressure to force the Teflon diaphragm against the valve seat while it is softened. After cooling the device, the embossed membrane retains this new shape. This solves previous problems with bubble introduction into the fluid flow where deformations of the membrane at the valve seat occurred during device bonding at elevated temperatures (100-150 C). The use of laminated membranes containing commercial Teflon AF 2400 sheet sandwiched between spun Teflon AF 1600 layers performed best, and were less gas permeable than Teflon AF 1600 membranes on their own. Spinning Teflon AF 1600 solution (6 percent in FLOURINERT(Registered TradeMark) FC40 solvent, 3M Company) at 500 rpm for 1.5 seconds, followed by 1,000 rpm for 3 seconds onto Borofloat glass wafers, results in a 10-micron-thick film of extremely smooth Teflon AF. This spinning process is repeated several times on flat, blank, glass wafers in order to gradually build a thick, smooth membrane. After running this process at least five times, the wafer and Teflon coating are heated under vacuum at 220 C for one hour in order to drive off any residual solvent present in the composite film. After this, a second blank, glass wafer is brought down from above and the stack is held under vacuum at 3 atm mechanical pressure for ten 10 hours.
Document ID
20090017562
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Willis, Peter
(California Inst. of Tech. Pasadena, CA, United States)
Hunt, Brian
(California Inst. of Tech. Pasadena, CA, United States)
White,Victor
(California Inst. of Tech. Pasadena, CA, United States)
Grunthaner, Frank
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
May 1, 2008
Publication Information
Publication: NASA Tech Briefs, May 2008
Subject Category
Technology Utilization And Surface Transportation
Report/Patent Number
NPO-44975
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available