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History of Design: Pre-Industrial Revolution

• Classic Cathedral Design and Construction representative of 
the complexity of the era

• Design and construction managed by Master Masong g y
– All Knowing

• Knew and could practice all the design and construction skills 
necessary to produce the magnificent cathedralsnecessary to produce the magnificent cathedrals
– Understood the physics associated with the cathedral 

design
• Life long endeavor• Life long endeavor
• Trained / apprenticed his replacement
• Tools, Processes, Skills acquired through experience

– Processes alone could not substitute for experience
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History of Design: Post-Industrial Revolution

• The complexity system designs increased and became too 
much for one person to know

• Systems engineering developed in an attempt to manage y g g p p g
these complex designs
– “…the initial formalization of the systems engineering process 

for military development began to surface in the mid-1950’s on y p g
the ballistic missile programs.” (SP6102 Readings in Systems 
Engineering, 1993, p.9)

– Later evolution included the development of Integrated Product p g
Teams, Product Development Teams, etc

– Group becomes “all knowing”: Collectively contains the 
knowledge, skills and experience to produce productsg , p p p

– Biggest challenge for SE is to make sure that the “Group 
Communication System” functions otherwise “all knowing” of 
the team fails

3



Systems Engineering: What Is It?

• From SP-6102
– “Systems engineering is the management function which 

controls the total system development effort for the purpose of y p p p
achieving an optimum balance of all system elements. It is a 
process which transforms an operational need into a 
description of system parameters and integrates those 
parameters to optimize the overall system effectiveness.”

• Purpose of SE then is to create a complex product that p p p
meets all requirements through a methodology that focuses 
on an integrated design that emphasizes balancing risk 
between all subsystems and components
– The effect should be an optimized system but made up of sub-

optimized subsystems and components
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Systems Engineering Functions

• SE Functions can be grouped into three categories
– Classical Systems Engineering focused on processes, 

procedures, configuration and data management control, etcp , g g ,
– Project control focused on cost and schedule 
– Technical Integration focused on the interactions among all the 

compartmentalized hardware design and discipline areascompartmentalized hardware, design, and discipline areas 
reintegrating them into a verifiable and operable system that 
meets requirements in a balanced state. 

• Master Mason was responsible for all threeMaster Mason was responsible for all three
• Today, there is a tendency to focus only on the first two 

assuming that the processes and procedures can 
compensate for lack of experience training and the complexcompensate for lack of experience, training and the complex 
interactions between subsystems / components
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Systems Engineering: Why We Ignore Technical 
Integration

• Strong tendency to view systems engineering as only the 
processes that bring the designed parts together 
(integration) rather than creating “Integrated Designs”
– It is based on an assumption that the system can be broken 

apart expecting linearity and handle everything by defining 
pertinent requirements, defining and managing interfaces, 
design data flow and then designing the parts (Classical SE).
• Then when the system is put back together it will perform ok. 
• It is a false assumption because there are many interactions, p y ,

linear and nonlinear,  in a complex “system” causing the 
parts to perform different together than apart.

– It also assumes design development is serial and not iterative g p
in nature

– This approach also tends to neglect the communication needs 
of the “Group Knowledge”p g
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Systems Engineering: Achieving a Balanced 
Integrated Design

• So, the systems engineer for an integrated design is 
responsible for and concerned with getting all interacting 
disciplines into a balanced state using uncertainties, 
sensitivities, risks, and programmatics (cost and schedule) 
– Part of that task is to also insure that all the discipline models, 

simulations, technology base, etc are at the appropriate 
maturity level so that an accurate trade space can be 
determined

– Systems engineer does not replace the Master Mason but 
ensures that the necessary communication takes place in the 
SE process along with the necessary skills and tools to utilize 
the “Group Knowledge” in creating a balanced integrated 
d idesign

– The “Group Knowledge” provides the needed “understanding of 
the physics” associated with the complex system design
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A Balanced Design

• Achieving a balanced design is about “spreading the pain”
• Balance needs to be achieved early in the design process 

usually by the conceptual design review because the impact y y p g p
is almost always already set

• Metrics for balanced design
– Risk: cost schedule technicalRisk: cost, schedule, technical
– Margins
– Uncertainties

S iti iti f d i t– Sensitivities of design parameter
– Technology maturity level

• If low it is difficult to impossible to quantify the others above
• If balance not achieved programs / projects will experience 

cost overruns, schedule slips or even failure

SSME Weight Stor is a good e ample of hat can go rong if
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SSME Weight Story is a good example of what can go wrong if 
the requirements, technology base and final systems design do 
not balance early



Background: Elementary Rocket Science

• To fully appreciate the SSME weight growth story and the lessons 
it teaches us about proper systems engineering we need to 
understand some of the challenges of rocket design

• The vehicle must impart orbital energy to the payload. 
– (Orbital energy is large -- h ~ 160 n.m. altitude,  ΔV ~25,300 ft/s

• With current technology, this pushes propulsion, structures, and 
systems capability to the limit.

• Payload size and mass drives launch vehicle performance 
requirements.
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Background: Elementary Rocket Science

• Propulsion:
– Efficient conversion of chemical potential energy to kinetic energy (The 

Space Shuttle Main Engine has an Isp of 452 s out of a potential 460 s) 
– Vehicle Thrust to weight ratio at liftoff greater than 1.1 

• Structures:
– Efficient/lightweight strong structures. Vehicle mass fraction around .90

• The ratio of the average skin thickness to the diameter of the Shuttle 
External Tank is  a factor of 3 less than that of an aluminum drink can. 

• System Effects:  
– Minimize losses during mission (Understand, quantify, control, and 

manage)

All system elements being pushed to their limits creates a 
f f f

10

constant “tug of war” that, if not carefully monitored, leads to 
unbalance in the design



Liquid Pump-fed Main Engines

• Pump-fed liquid engines are one of  the most complex and challenging 
subsystems on the entire launch vehicle and present many systems 
engineering challenges

• Pump-fed liquid engine design requires many of the same design functions p q g g q y g
and analysis disciplines that the vehicle design uses

SSME
HP/Wt = 879

• Liquid rocket engines have much higher 
power densities than more conventional 
transportation system engines

SSME Fuel Turbopump
775 lb    
72,000 HP
HP/Wt = 93

p y g
• This creates extreme environments and 

stretches the limits of design and analysis 
capabilities
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Difficulty and Complexity of Liquid Rocket 
Engines Are Reflected in Turbomachinery Design

• Turbopumps differ from conventional gas turbine engines in significant ways

Difficult Propellants
Material compatibility 

issues, cavitation, bearing 
t hi h h t fl

Extreme Blade Loading
Up to 550 hp per blade

Item
Typical Pump Fed Rocket Engine Hydrogen 
Turbopump Parameters (range depends on 

engine cycle and application)
Jet Engine

stresses, high heat fluxes,
heavier flanges, tighter 

complex seals

Fuel Hydrogen Petroleum 
distillate

Oxidizer Oxygen Air
Operating speed (RPM) 20,000 to 36,000 15,000
Turbine blade tip speed (ft/sec) 1400 to 1850 1850

High Speeds
Bearing life, 

rotordynamics issues 

Turbine power density (HP/in^2) 2000 to 3200 394
Turbine inlet temperature (deg F) 1000 to 1600 2400
Turbine heat transfer coef. 
(BTU/ft^2- hr-degF) 20,000 to 54,000 500

Turbine thermal start/stop transients 1000 t 32 000 100

High Power Density
High power bending 

stress, high work per unit 
area, tight manufacturing p

(deg F/sec) 1000 to 32,000 100

Pump/compressor pressure rise (psi) 2000 to 7000 400 - 600
Pump dynamic pressure (psi) 500 to 2000 50 - 200

area, tight manufacturing                               
tolerances

Uncooled Blades High Thermal StrainsHigh Pressures 
Limit inlet temperature, 

increase rotational 
speed and blade 

turning

High Thermal Strains
Very high thermal stress, 

low cycle fatigue, 
material limitations

g
(static and dynamic)
High housing loads, 

instabilities, high-cycle 
fatigue
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SSME Weight Growth History

First Flight
10000

Thrust Requirement up to 550K.

Weight previously scaled from 415K engine.

9000

Weight previously scaled from 415K engine.
Due to re-evaluation, weight increase is not as large.

Increase in nozzle 
tube walls to meet CEI 
safety factor.

Block I Configuration

Block IIA Configuration

Block II Configuration

8000

gi
ne

 W
ei

gh
t (

lb
s)

Customer addition of pogo 
i t

Lowering of thrust requirement 
to 470K. Authority to proceed.

Actual weight variance deduction 
due to actual engine weights. 

Return to Flight Configuration

Block I Configuration

7000En
g suppression system.

Customer change to heat shield 
increased nozzle structure.

Change in bookkeeping 
philosophy.

6000
Customer addition of nozzle thermal protection.

Customer requirements change.

Machining of excess material.

Stress analysis on primary nozzle resulted in weight increase and subsequent nozzle redesign.

5000
11/24/70 11/23/72 11/23/74 11/22/76 11/22/78 11/21/80 11/21/82 11/20/84 11/20/86 11/19/88 11/19/90 11/18/92 11/18/94 11/17/96 11/17/98 11/16/00

Date

q g

Challenge and Problem better understood by looking at engine thrust to weight ratio13



SSME Vacuum Thrust to Weight Ratio History

90
First Flight

Machining of excess material.

Stress analysis on primary nozzle resulted in weight increase and subsequent nozzle redesign

• Early (1971) thrust to weight ratio predictions for the 
SSME concepts were around 65 to 1
– Based on J-2 and F-1 technology base and some 

advanced development with Air Force
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Customer addition of nozzle thermal protection.

Stress analysis on primary nozzle resulted in weight increase and subsequent nozzle redesign.

Customer change to heat shield increased nozzle structure.

Increase in nozzle 

advanced development with Air Force 
– Estimate was realistic and representative of 

achievable values
• As the Space Shuttle System design concept 

70

Th
ru

st
 to

 W
ei

gh
t R tube walls to meet CEI 

safety factor.
Change in bookkeeping 
philosophy. Return to Flight Configuration

matured, weight became a serious problem driving 
the thrust to weight ratio requirements of the SSME 
to 80 to 1
– The technology base did not support this requirement
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Lowering of thrust requirement 
to 470K.Authority to proceed.

Customer requirements change.
Actual weight variance deduction 
due to actual engine weights. 

Block I Configuration

– Massive development effort required to cut weight out 
of the engine
• All welded construction for most of the components
• No weld lands60

Thrust Requirement up to 550K.

Block I Configuration

Block IIA Configuration

Block II Configuration

Thrust increase from 470k 
to 490k without weight 
increase

• No weld lands
• Machining off all excess material

– Additional performance enhancements to meet system 
weight problem included trading engine life for 

50
11/24/70 11/23/72 11/23/74 11/22/76 11/22/78 11/21/80 11/21/82 11/20/84 11/20/86 11/19/88 11/19/90 11/18/92 11/18/94 11/17/96 11/17/98 11/16/00

Date

increased power level 
• Increased engine thrust to 109% PL and cut design 

life from 100 to 55 missions
14



SSME Weight Problems

A f i ht t d l l i i• As consequence of weight cuts and power level increase, engine 
began experiencing many fatigue failures some resulting in 
catastrophic engine failures during ground testing
– High cost of hardware losses design changes and schedule slipsHigh cost of hardware losses, design changes and schedule slips
– In 1978, two alternating MSFC engineering teams of about 100 each 

were established at Canoga Park and worked with a large team at 
MSFC for 9 months to address these problems 

– Instituted a fracture control survey of engine and identified many 
problem areas
• Engine originally not designed for fracture control
• Fracture control team established permanently

• Lack of robustness in design lead to increased operations costs to 
assure engine safety and reliability 
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SSME Solutions and Weight Growth

• In late 70’s as Shuttle System design began to solidify, weight was 
offered up to the SSME project manager to fix problems by Shuttle 
program manager
– SSME project manager put off weight increases to support first flight 

date using current engine design with limited life and performance
• Believed that it was better to be flying at lower capability than to wait 

until all capability was available (balancing political concerns)until all capability was available (balancing political concerns)
– Weight was increased as new redesigned components were added as 

block upgrades beginning in the mid to late 80’s and into the 90’s
• Major examples are Two Duct Hot Gas Manifold Large Throat MainMajor examples are Two Duct Hot Gas Manifold, Large Throat Main 

Combustion Chamber, ATD High Pressure Oxidizer Turbopump, 
ATD High Pressure Fuel Turbopump

• Weight could be added without impacting performance because the 
Orbiter had to fly ballast in the back to offset a heavy nose section
– Increased engine weight just off loaded ballast
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SSME Vacuum Thrust to Weight Ratio History

• Final engine T/W ratio essentially same as originally estimated but 
final design was compromised because unrealistic requirements 
set stage for constrained engine design

90
First Flight
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Customer addition of nozzle thermal protection.

Machining of excess material.

Stress analysis on primary nozzle resulted in weight increase and subsequent nozzle redesign.
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philosophy.

Actual weight variance deduction 
due to actual engine weights
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Thrust Requirement up to 550K.

Lowering of thrust requirement 
to 470K.Authority to proceed.

due to actual engine weights. 

Block I Configuration

Block IIA Configuration

Bl k II C fi ti

Thrust increase from 470k 
to 490k without weight 
increase

50
11/24/70 11/23/72 11/23/74 11/22/76 11/22/78 11/21/80 11/21/82 11/20/84 11/20/86 11/19/88 11/19/90 11/18/92 11/18/94 11/17/96 11/17/98 11/16/00

Date

Block II Configuration
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Lesson Learned

• Absolutely critical that someone be responsible for the Integrated 
Vehicle System Design (not just “integrating” pieces together) to 
adequately balance the risks across all elements while decomposing the 

i t d t h l t t ki i t t th irequirements down to each element taking into account the varying 
maturity levels of the technology base, the design of each and the 
intricate interactions
– That “someone” is not a master mason but ensures that the “Group– That someone  is not a master mason but ensures that the Group 

Knowledge” of the design team provides the same function
• Shuttle system was designed with an immature technology base for 

many of the subsystemsy y
– Made it impossible to adequately balance risk by properly flowing down 

requirements to these subsystems such as the SSME
– Cannot adequately measure risk, uncertainties, sensitivities, cost or 

schedule if technology base is not demonstrated and understood 
– Must fight external pressures to compromise on technical credibility
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Lesson Learned Continued

• Pushing the envelope without margin or a robust design will result in 
increased problems and non-optimum designs at significant cost
– SSME, while a magnificent machine, is not robust
– It took numerous design block changes with increased weight and 

operations costs to reach the current level of maturity that is flying today
• Anticipating unknowns is essential because they will occur during 

development no matter how mature the technology base or the design 
concept
– Minimizing these unknown unknowns is accomplished through diligently 

quantifying sensitivities uncertainties and risks based on all identifiedquantifying sensitivities, uncertainties and risks based on all identified 
potential failure modes
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