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Abstract

A high molecular weight synthetic polypeptide has been designed which exhibits favorable interactions 

with single wall carbon nanotubes (SWCNTs).  The enthalpic and entropic penalties of mixing between 

these two molecules are reduced due to the polypeptide’s aromatic sidechains and helical secondary 

structure, respectively.  These enhanced interactions result in a well dispersed SWCNT/Poly (L-

Leucine-ran-L-Phenylalanine) nanocomposite with enhanced mechanical and electrical properties using 

only shear mixing and sonication.  At 0.5 wt% loading of SWCNT filler, the nanocomposite exhibits 

simultaneous increases in the Young's modulus, failure strain, and toughness of 8%, 120%, and 144%, 

respectively.  At one kHz, the same nanotube loading level also enhances the dielectric constant from 

2.95 to 22.81, while increasing the conductivity by four orders of magnitude. 

Keywords:  copolypeptide, single wall carbon nanotube (SWCNT), nanotube/polymer interactions, 

nanotube/polymer nanocomposite

Next generation aerospace applications will demand strong and lightweight materials that offer 

additional intrinsic functionalities such as electrical conductivity, sensing, or actuation.  Incorporation 

of single wall carbon nanotubes (SWCNTs) into certain high performance polymers yields a 

lightweight material with dramatically improved mechanical and electrical properties that also exhibits 

sensing and actuating behavior1,2.  Achieving these improved properties depends on the SWCNTs being 
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well dispersed and stable with respect to reaggregation.  Current nanocomposite fabrication techniques 

include melt mixing3-5 or in situ polymerization1.  The large size and mass of the dispersed nanotubes 

and low mobility of the matrix polymer result in kinetic barriers that effectively prevent reaggregation 

over timescales relevant to most applications, provided the nanocomposite is not subjected to any 

significant thermal or mechanical perturbations.  This caveat may make these kinetically trapped and 

metastable, but ultimately nonequilibrium, nanocomposites unsuitable for aerospace applications in 

which temperature excursions, cyclic mechanical loadings, and vibration are unavoidable.

Thermodynamic stability of nanocomposites is governed by the free energy difference between 

the aggregated state and the dispersed (either individually or small bundles) state.  The free energy 

change that occurs during mixing is composed of enthalpic and entropic contributions, ΔG = ΔH - 

TΔS.  If the free energy difference is negative or nearly zero, the dispersed state will be stable. 

Consider, for example, the case of large, rod-like fillers dispersed in a typical matrix composed of 

flexible or semiflexible polymer.  In the absence of any countervailing enthalpic stabilizing 

interactions, entropic depletion interactions6-8 will tend to drive the system to demix into coexisting 

rod-rich and polymer-rich phases9.  We seek to ameliorate this entropic incompatibility by designing a 

polymer that is similar in diameter and flexibility to SWCNTs, specifically a polypeptide of amino acid 

monomers that promote an α-helical secondary structure. 

Achieving a negative enthalpy change upon mixing, without resorting to covalent modification 

of the SWCNTs, requires either destabilization of the aggregated state or augmentation of the 

SWCNT–matrix interaction.  Mechanisms for aggregate destabilization include Coulombic repulsion, 

as might result from SWCNT reduction using alkali metal salts10, and steric repulsion, typically 

achieved by coating SWCNTs with surfactants.  These approaches are more appropriate for dispersing 

nanotubes in solution and are not pursued here.  SWCNT–matrix interactions can be augmented by 

functionalizing the polymer with electron donating or withdrawing groups11-12.  Unfortunately, no 
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naturally occurring amino acids contain strong donor or acceptor moities.  Dispersion (London) 

interactions also contribute to the enthalpic term.  In particular, aromatic ring systems interact strongly 

with carbon nanotubes13, presumably due to the polarizable π systems on both the aromatic functional 

groups and the nanotube14.

With the preceding discussion in mind, we have designed a rod-like, high molecular weight 

synthetic copolypeptide intended to optimize the enthalpic and entropic contributions to the free energy 

simultaneously15.  Phenylalanine (F) was selected for its aromatic side chain, while Leucine (L) was 

utilized as a comonomer to promote chain helicity16, and to increase the solubility and processability of 

polyphenylalanine.  In what follows, we describe the preparation and characterization of 

SWCNT/polyLF nanocomposites and demonstrate their excellent stability and material properties.

The SWCNT/polyLF Young’s moduli as a function of carbon nanotube loading are summarized 

in Table 1 and plotted in Figure 1(a).  The Young’s modulus increases steadily with increasing 

SWCNT content up to a loading of 0.75 wt% where it reaches 3.09 GPa, an increase of ~15% over the 

pristine sample (2.70 GPa).  Further increase of the SWCNT content to 2.0 wt% yields a small 

additional improvement, with the modulus increasing to 3.23 GPa, or a ~20% increase over the pure 

polymer.  The ultimate tensile strengths (UTS) of the SWCNT/polyLF nanocomposites, shown in 

Figure 1(b), are relatively unaffected by SWCNT incorporation, at least up to loading levels of 2.0 wt

%.  

While the failure strains of most polymers decrease17-20, sometimes drastically, upon addition of 

reinforcing fillers, our SWCNT/polyLF nanocomposites actually show an increase in this material 

property.  Starting from a relatively moderate failure strain of 7% for the pure polypeptide in Figure 

1(c), the addition of SWCNTs results in a maximal increase of 121% at 0.5 wt% loading and a still 

significant gain of 90% at a loading level of 2.0 wt%.  Figure 1(d) plots toughness, which is related to 

failure strain, as a function of SWCNT loading.  Toughness, the energy required to break a material, is 

estimated by measuring the work of rupture (WOR), or the area beneath a load versus displacement 
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curve, and dividing this by the specimen’s cross-sectional area.  Polymers typically become more 

brittle with the addition of reinforcing fillers17-181920, but this copolypeptide's toughness actually 

improves with addition of carbon nanotubes, becoming more ductile while simultaneously increasing 

its modulus and maintaining its overall strength.  As shown in Figure 1(d), the pristine sample 

exhibited a toughness of 83.18 kJ/m2.  This toughness value increases by 144% for the 0.5 wt% 

SWCNT loading, and 116% for the 2.0 wt% sample.  Note that this data was not obtained with a 

typical Impact Test (e.g. Charpy Test), and is merely a relative measure for comparison among the 

samples in this study. While the data exhibits a high standard deviation, the increase in the composite’s 

toughness can not be disregarded, particularly at 0.5 and 0.75 wt%, where the toughness values are 

well above the pristine sample.   

The frequency dependent AC conductivities of each nanocomposite sample are plotted in 

Figure 2(a).  The traces exhibit increasingly metallic (i.e. frequency independent) behavior with higher 

loading levels of SWCNTs, attaining an essentially constant conductivity of ~4.2 x 10-5 S/cm at 2.0 wt

%.  This graph exhibits the prototypical behavior of a conductive filler-insulating matrix composite, 

passing through a percolation transition at ~ 0.5 wt% and reaching a plateau above 0.75 wt%.  Figure 

2(b) presents the frequency dependence of the permittivities for each of the samples except for the 2.0 

wt% sample, which was too conductive to measure.  Insulating materials exhibit an essentially constant 

permittivity across the frequency range, as observed for the pure polymer and the 0.075 and 0.2 wt% 

samples.  Once percolation is achieved, however, we find enormous increases in the low frequency 

permittivities, as expected for materials exhibiting conductive behavior.  Interfacial polarization at the 

surface of the SWCNTs is responsible for this increase at low frequencies and a similar observation has 

been reported elsewhere21,22. An order of magnitude increase in the permittivity is observed between the 

pure polymer (2.95) and the 0.75 wt% sample (35.48) at 1 kHz.  This is consistent with the percolation 

transition determined from the electrical conductivity measurements.  To quantify the value of the 
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percolation threshold, we show in Figure 2(c) a percolation graph with the expected power law 

behavior.  This equation is given by

t
cc )(0 υυσσ −=

where σc is the composite conductivity, σ0 is a pre-exponential factor that depends on the filler 

conductivity, ν is the SWCNT volume fraction, νc is the concentration at the percolation threshold, and 

t is the conductivity critical exponent.  By fitting the percolation equation to the 0.01 Hz experimental 

data (to approximate DC conductivities), we obtain threshold concentration νc of 0.48 vol. % (0.51 wt

%).  This value is consistent with the behavior observed in Figures 2(a) and 2(b), where the transition 

from insulating to conductive behavior occurs very near 0.5 wt%.  The remarkable increases in 

conductivity in this composite (~4 and 7 orders of magnitude at 0.5 and 2.0 wt%, respectively) will 

permit its utilization in low conductivity applications such as electrostatic charge dissipation.  

The mechanical and electrical results for the SWCNT/polyLF nanocomposites clearly show 

enormous gains with the addition of the nanotube fillers.  The enhanced interaction between the rod-

like polyLF matrix and the filler, due to the optimization of the enthalpic and entropic contributions to 

the free energy of mixing, results in superior dispersion and improved energy transfer across the 

matrix/filler interface.  To visualize the carbon nanotube dispersion, scanning electron micrographs of 

the SWCNT/polyLF nanocomposite film surfaces were taken, shown in Figures 3(a) and (b).  These 

images, representing the 0.5 and 2.0 wt% samples respectively, were taken at an accelerating voltage 

between 20-30 kV.  The high voltages used in these micrographs create a beam that penetrates through 

the polymer matrix.  These “poly-transparent” images give better insight into the level of dispersion by 

revealing nanotube bundles embedded deep into the nanocomposite.  These bundles are not visible in 

conventional topographical images23.  These poly-transparent images reveal flexible nanotube networks 

throughout the matrix with a few loosely entangled nanotube agglomerates.  Overall, Figures 3(a) and 
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(b) show that reasonably uniform carbon nanotube dispersion was achieved in polyLF using only shear 

mixing and sonication (i.e. without resorting to surfactants or covalent functionalization).

In Figures 3(c) – (f), the fractured cross-section of the 0 wt% (Figures 3(c) and (d)) and 2.0 wt

% (Figures 3(e) and (f)) samples are shown.  Carbon nanotubes can clearly be seen as thin, bright 

filaments in images 3(e) and (f), a result of the emission of secondary electrons.  The 0 wt% sample 

images show porous fibrous morphology with thicker protrusions and connections between polymer 

regions.  Many of these connections were broken during the fracturing process, as shown in Figure 

3(d).  In contrast, the 2.0 wt% sample exhibits much finer fibrillar structures, indicated by the thin, 

bright regions in the images.  Also note that the SWCNTs clearly span the crevices of the 

nanocomposite, giving these images a threadlike, connected, and rough appearance compared to 

images of the pure polymer.  This increased roughness and persistent spanning of the crevices suggest 

the mechanism for the nanocomposite’s enhanced toughness.  

To relate the filler dispersion found in the SEM images with the mechanical reinforcement data, 

and to gain better insight on the SWCNT/polyLF Young’s modulus trend, we compare the 

experimental data to the predictions of a modified Cox Model24.  This model builds upon the original 

Cox model, which is a variation on the rule of mixtures.  The composite modulus is expressed as an 

additive combination of the fiber and matrix contributions:

)1()( 0 FMFFFC VEClfVEE −+=

where EC, EF, EM are the Young’s Moduli of the composite, fiber and matrix, respectively, and VF is the 

volume fraction of the carbon nanotubes. The C0 term is added to allow for fiber alignments other than 

uniaxial, which is the only arrangement considered in the simple rule of mixtures.  In the limit of f(lF) 
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and C0 equal to unity, the classic rule of mixtures is recovered.  The f(lF) term is introduced to account 

for the finite length of the reinforcing fibers and may be written as:
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In this expression, GM is the matrix shear modulus, rF is the radius of the filler fiber, and R is the radius 

of the effective fiber, which includes both the filler and the region of matrix surrounding the filler for 

which the mechanical properties are substantially different from the bulk matrix.  For a hexagonally 

packed arrangement of the fibers, R/rF equals [(2π/ (√3*VF))1/2] 25.  The experimental data in Figure 4 

have been normalized to the modulus of the pristine copolypeptide and the filler concentrations have 

been converted to vol. % by assuming densities of 1.23 g/cm3 for polyLF26 (averaging the densities of 

the two amino acids) and 1.35 g/cm3 for SWCNTs27.    The calculated values in Figure 4 were obtained 

with the following parameters: a polyLF Poisson’s ratio of 0.4, a SWCNT modulus of 1 TPa, a fiber 

orientation factor C90 = 0.33 (isotropic orientation24), a SWCNT bundle length of 1 μm, and a SWCNT 

bundle diameter of 32 nm.  These are all typical values for polymers and carbon nanotubes, and the 

bundle dimensions were estimated from HRSEM images of pure SWCNTs and nanocomposite cross-

sectional images.  Figure 4 shows that the model predictions are in good agreement with the 

experimental data up to the 0.75 wt% (0.69 vol. %) sample. At 2.0 wt% (1.83 vol. %), however, the 

experimental Young’s modulus does not exhibit the continued increase in modulus predicted by the 

current model. The failure of the model to predict the modulus at higher loadings could be due to its 
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assumption that the level of dispersion is preserved at higher loadings.  The presence of small bundles 

of overlapping carbon nanotubes at higher volume fractions would result in a sublinear increase of 

surface area with respect to volume fraction.  As the interfacial interaction of the SWCNTs with the 

matrix depends directly on the exposed surface area, the model would tend to over-predict the modulus 

as bundling increases.

In order to investigate the origin of the increased polyLF toughness, we performed in-situ 

tensile tests in a JEOL 5600 JSM-SEM fitted with a Gatan Microtest 200 stage and Deben controller. 

An in-situ load-displacement curve for a 2.0 wt% SWCNT/LF sample performed inside of the SEM 

chamber is shown in Figure 5(a).  Figures 5(b) and (c) show consecutive SEM images of one location 

obtained just after yielding, and after extensive deformation, respectively, which correspond to the (b) 

and (c) markers on the load displacement curve in Figure 5(a).  The load drops at (b) and (c) in this 

Figure indicate a stress relaxation which occurred while holding the strain constant during imaging. 

The progressive initiation and slow propagation of many small cracks shown in Figure 5(b) and (c), as 

opposed to one catastrophic crack in brittle failure, at least partially accounts for the high energy 

absorption and toughness that this material exhibits.  In general, crack fronts can change in length as 

they interact with inhomogeneous inclusions.  Many nanotubes in the percolated network throughout 

the matrix can interact with the crack fronts, absorbing large amounts of energy and toughening the 

composite.  In the close-up image shown in Figure 5(d), it is apparent that small cracks are held 

together by the SWCNTs and this bridging is likely to be one of the major toughness-improving 

mechanisms.  This spanning by carbon nanotubes can also be seen clearly in the cross-sectional images 

of Figure 3(e) and (f) discussed earlier.  The strong, flexible, and ductile SWCNTs act like a 

thermoplastic toughener by bridging cracks and exerting compressive traction in the crack wake28.  The 

SWCNTs are pulled out during the crack opening process, absorbing significant amounts of energy due 

to the large interfacial area between the SWCNTs and the matrix.  Carbon nanotubes, which have 

extremely large aspect ratios, are particularly effective for crack bridging, as this mechanism tends to 
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favor larger fillers29.  Better dispersion and more interfacial bonding, which occur between our 

specifically designed copolypeptide and SWCNTs, can provide higher energy absorption resulting in 

enhanced toughness.  Another mechanism for increasing the work of rupture is effective crack path 

deflection by the uniformly dispersed nanotubes, as in Figure 5(e).  This deflection changes the crack 

propagation from a mode-I (tensile) to mode-II (shear) failure character, which enhances energy 

absorption as most materials are more resistant to this latter type of crack opening.  Other obvious 

contributors to the improved toughness are physical entanglements of nanotubes and nanotube bundle 

bifurcation/splitting as shown in Figure 3(f).  Ubiquitous physical entanglements and bifurcated/split 

nanotubes have been reported before30.  This characteristic enables good energy absorption as a result 

of the excellent binding forces between the nanotubes in the bundles during fracture.  In-situ SEM 

images of the fractured nanocomposite  shown in Figure 5 substantiate the toughness results discussed 

above, and illustrate how excellent dispersion and enhanced compatibility between the matrix and filler 

provide a more mechanically robust composite for various sensing and actuation applications.  

In conclusion, nanocomposites consisting of a Leucine-Phenylalanine copolypeptide and single 

wall carbon nanotubes were developed by a simple mixing and sonicating technique.  This particular 

copolypeptide was designed to provide both a favorable enthalpic stabilization from the presence of 

aromatic sidechains, and to minimize the unfavorable entropic contributions due to its helical 

secondary structure.  The improved compatibility achieved in this system results in excellent filler 

dispersion in the matrix, as demonstrated in the scanning electron micrographs.  Furthermore, it leads 

to a remarkable increase in many of the copolypeptide’s physical properties, including elastic modulus, 

failure strain, toughness, conductivity, and dielectric constant. The increases in failure strain and 

toughness are perhaps the most intriguing, considering that polymers with reinforcing fillers typically 

show reductions in both properties.  These results show that carbon nanotubes can provide enhanced 

durability and conductivity to many of the otherwise fragile copolypeptides which may be needed for 

harsh sensing or actuation applications.  
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Methods

The Poly (L-Leucine-ran-L-Phenylalanine), or polyLF, was provided by the University of California, 

Santa Barbara31.  Purified SWCNTs made by the High Pressure CO (HiPCO) synthesis method were 

purchased from Carbon Nanotechnologies, Inc.  Chloroform from Fisher Scientific was used to process 

the copolypeptide.  All materials were used as received.  

Six SWCNT/LF samples were made with SWCNT loadings of 0, 0.075, 0.2, 0.5, 0.75, and 2.0 

wt%.  For the samples containing carbon nanotubes, a suspension of chloroform and SWCNTs was 

first made and pulse-sonicated (5 seconds on, 5 seconds off) with a cup sonicator for 18 minutes at 12 

W and 20 kHz, and then appropriate amounts were added to the dry copolypeptide powder.  A low 

wattage was used to sonicate the nanotube solutions to avoid SWCNT damage.  More chloroform was 

then added to lower the polymer concentration to 4 wt%.  Every polymer solution (with or without 

SWCNTs) was also pulse-sonicated (5 seconds on, 5 seconds off) for 18 minutes in a cup sonicator (36 

W, 20 kHz), followed by one hour of sonication in a bath sonicator (70 W, 42 kHz).  All solutions were 

stirred constantly, except when subjected to cup sonication.  Low molecular weight surfactants were 

not used to aid carbon nanotube dispersion due to their tendency to act as plasticizers, which may 

degrade the physical properties of the polymer matrix.  Furthermore, functionalization of the nanotubes 

was not used since this damages the sp2 bonding of the nanotubes32, ultimately diminishing the 

properties of the copolypeptide composites as well.  After the samples were sonicated and stirred, they 

were cast onto a Teflon® substrate using a film applicator.  Following overnight solvent evaporation in 

a dessicator, the samples were placed in a vacuum oven for another 48 hours at room temperature to 

ensure complete solvent removal.  The composite films, approximately 30-35 μm thick, detached easily 

from the substrate for characterization.

A Hitachi S-5200 high resolution scanning electron microscope (HRSEM), with a field 

emission electron gun and in-lens detector, was used to examine nanotube dispersion near the surface 
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of the samples, as well as the cross-sectional sample morphology.  SEM samples of the 

SWCNT/polyLF composite films for surface imaging were cut to approximately 6 mm x 3 mm and 

mounted on sample stages with silver paste.  Cross-sectional SEM samples were fractured in liquid 

nitrogen, and samples below the electrical percolation threshold (< 0.47 vol%) were coated with 10 

nanometers of silver.  A JEOL 5600 JSM-SEM,  equipped with a Gatan Microtest 200 stage and Deben 

controller, was used for in-situ fracture imaging.  Tensile properties of the films were evaluated at 

room temperature using an Instron 5848 MicroTester equipped with a 1000 Newton load cell.  Instron 

samples were cut in three mm wide rectangular strips using a JDC precision sample cutter (Thwing-

Albert Instrument Company), and tested with a 30 mm gauge length at an extension rate of three 

mm/min according to ASTM 882.  Six samples were tested for each composite film.  A Novocontrol 

broadband dielectric converter and a Solartron SI1260 impedance gain/phase analyzer were used to 

evaluate electrical and dielectric properties.  A 25.4 mm diameter silver electrode (approximately 50 

nm thick) was deposited on both sides of the sample prior to testing.
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Figure Legends

Figure 1. (a) Young’s modulus, (b) ultimate tensile strength (UTS), (c) failure strain, and (d) toughness 
of the SWCNT/polyLF nanocomposite at the various SWCNT loadings.  

Figure 2. The SWCNT/polyLF nanocomposite’s (a) conductivity versus frequency, and (b) dielectric 
constant versus frequency.  Image (c) shows a power law plot of the SWCNT/polyLF nanocomposite’s 
conductivities assuming a critical SWCNT volume fraction (percolation threshold) of 0.48%.

Figure 3.  HRSEM images of the SWCNT/polyLF nanocomposite: (a) 0.5 wt% surface (b) 2.0 wt% 
surface, (c, d) 0% cross-section and (e, f) 2.0 wt% cross-section.  The cross-sectional image samples 
were fractured  in  liquid  nitrogen,  with  the  0 wt% images  coated  with 10 nanometers  of  silver  to 
minimize charging.    

Figure 4.  Normalized Young’s Modulus versus SWCNT volume percent (data fitted to a modified 
Cox Model24) of the SWCNT/polyLF nanocomposite.

Figure  5.  In-situ  fracturing of  the 2.0 wt% SWCNT/polyLF  sample  showing (a)  the load versus 
displacement curve, (b) an image just after yielding,  and (c) an image after extensive deformation. 
Higher magnification images show (d) nanotube bridging and (e) crack path deflection.  

Table 1. Values of several SWCNT/polyLF nanocomposite properties.  

SWCNT
wt%

Modulus 
(GPa)

UTS 
(MPa

)

Failure Strain 
(%)

Toughness 
(kJ/m2)

log ( σ )  @ 
1 kHz (S/cm)

ε  @ 1 
kHz

0 2.70 48.75 7.02 83.18 -11.69 2.95
0.075 2.71 46.35 10.02 121.24 -11.44 3.22
0.2 2.84 45.30 14.11 172.05 -11.25 3.72
0.5 2.94 48.41 15.51 203.22 -7.81 22.81
0.75 3.09 53.51 12.08 177.48 -5.88 38.48
2.0 3.23 49.51 13.31 179.26 -4.38 -
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Figure 1. (a) Young’s modulus, (b) ultimate tensile strength (UTS), (c) failure strain, and (d) toughness 
of the SWCNT/polyLF nanocomposite at the various SWCNT loadings.  
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Figure 2. The SWCNT/polyLF nanocomposite’s (a) conductivity versus frequency, and (b) dielectric 
constant versus frequency.  Image (c) shows a power law plot of the SWCNT/polyLF nanocomposite’s 
conductivities assuming a critical SWCNT volume fraction (percolation threshold) of 0.48%.
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Figure 3.  HRSEM images of the SWCNT/polyLF nanocomposite: (a) 0.5 wt% surface (b) 2.0 wt% 
surface, (c, d) 0% cross-section and (e, f) 2.0 wt% cross-section.  The cross-sectional image samples 
were fractured  in  liquid  nitrogen,  with  the  0 wt% images  coated  with 10 nanometers  of  silver  to 
minimize charging.    
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Figure 4.  Normalized Young’s Modulus versus SWCNT volume percent (data fitted to a modified 
Cox Model24) of the SWCNT/polyLF nanocomposite.
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Figure  5.  In-situ  fracturing of  the 2.0 wt% SWCNT/polyLF  sample  showing (a)  the load versus 
displacement curve, (b) an image just after yielding,  and (c) an image after extensive deformation. 
Higher magnification images show (d) nanotube bridging and (e) crack path deflection.  
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