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National Aeronautics and Space Administration 
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Cleveland, Ohio 44135 

Abstract 
The development of new active tip clearance control and structural health monitoring schemes in 

turbine engines and other types of rotating machinery requires sensors that are highly accurate and can 
operate in a high-temperature environment. The use of a microwave sensor to acquire blade tip clearance 
and tip timing measurements is being explored at the NASA Glenn Research Center. The microwave 
blade tip clearance sensor works on principles that are very similar to a short-range radar system. The 
sensor sends a continuous microwave signal towards a target and measures the reflected signal. The phase 
difference of the reflected signal is directly proportional to the distance between the sensor and the target 
being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high 
temperatures and is unaffected by contaminants that may be present in turbine engines. The use of 
microwave sensors for this application is a new concept. Techniques on calibrating the sensors along with 
installation effects are not well quantified as they are for other sensor technologies. Developing 
calibration techniques and evaluating installation effects are essential in using these sensors to make tip 
clearance and tip timing measurements. As a means of better understanding these issues, the microwave 
sensors were used on a benchtop calibration rig, a large axial vane fan, and a turbofan. Background on the 
microwave tip clearance sensor, an overview of their calibration, and the results from their use on the 
axial vane fan and the turbofan will be presented in this paper.  

I. Introduction 
The active control and minimization of the gap between the rotating turbine blades and the stationary 

case of gas turbine engines is being investigated as a means of increasing engine efficiency, reducing fuel 
consumption, reducing emissions, and increasing engine service life (Ref. 1). In addition, the ability to 
monitor the structural health of the rotating components, especially in the hot sections of turbine engines, 
is of major interest to the aerospace community in improving engine safety and reliability. Both of these 
concepts require the development of sensors that are reliable and can operate in the harsh conditions that 
exist in a turbine engine. Under the NASA Fundamental Aeronautics and the NASA Aviation Safety 
programs, microwave sensor technology is being explored at the Glenn Research Center as a means of 
making high-temperature noncontact tip clearance and tip timing measurements for use in active 
clearance control, structural health monitoring, and other close tolerance-control applications associated 
with turbine engines and rotating machinery. 

This paper discusses testing and evaluation that has been accomplished during the last year using a 
microwave sensor system that was developed and purchased under NASA’s Small Business Innovation 
Research (SBIR) Program from Radatec, Inc. (currently Vibro-Meter, SA). Background on the 
microwave sensor system and its recent use on a calibration rig, an axial vane fan, and a NASA turbofan 
are discussed in this paper.  
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II. Sensor Background and System Description 
The microwave tip clearance sensor system that is currently being used at the NASA Glenn Research 

Center was developed by Radatec, Inc. (currently Vibro-Meter, SA) through NASA’s SBIR Program 
under a Phase II contract that was awarded in 2002. Work on the sensor continued from 2004 to 2005 as 
part of NASA’s Ultra-Efficient Engine Technology (UEET) Program. In late 2006, the system was 
delivered to the Glenn Research Center as part of a SBIR Phase III commercialization contract. This 
system currently has two sensor channels along with four high-temperature probes. The microwave tip 
clearance sensor system works on principles that are similar to a short-range radar system. The tip 
clearance probe is both a transmitting and receiving antenna. The sensor emits a continuous microwave 
signal and measures the signal that is reflected off the metallic target, which in this case is a rotating 
blade. The motion of the blade phase modulates the reflected signal. This reflected signal is compared to 
an internal reference signal and the phase difference directly corresponds to the distance to the blade. 
More detailed information on the sensor’s theory of operation can be found in References 2 to 5.  

The high-temperature tip clearance probe shown in Figure 1 is approximately 14 mm in diameter and 
26 mm long. It contains the transmitting and receiving antenna and is designed to be installed in the 
casing of the engine where it can measure the radial clearance between it and the turbine blade tips. The 
probe is made of high-temperature material and is designed to withstand temperatures up to 900 °C 
uncooled, 1200 °C with cooling air. The associated sensor electronics and data acquisition system for the 
microwave tip clearance system are shown in Figure 2. This hardware contains the radiofrequency (RF) 
generator, RF detector, and all of the associated hardware required to generate, measure, and condition 
the microwave signals. It also contains a rack-mounted PC that runs the data acquisition and display 
software. It is intended that the sensor electronics be located away from the engine in an environmentally 
benign area. The probes are connected to the electronics using a microwave rated co-axial cable. Cable 
distances up to 15 m can be currently supported between the probes and the sensor electronics. The data 
acquisition computer is connected to the sensor electronics through a network switch. This computer can 
be remotely located away from the sensor electronics to an area such as a control room using a CAT5E 
connection. 

The existing microwave system operates at 5.8 GHZ and with the current probes can measure 
clearance distances up to ~25 mm (i.e., one-half the radiating wavelength). This technology has an 
ultimate goal of obtaining accuracies approaching 25 μm. This is in the process of being developed in the 
next generation of probes. More on the system’s use and observed accuracies with the current probes are 
discussed in this paper.  
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As indicated earlier, NASA has several programs interested in the development and use of sensors 
that can make accurate tip clearance and timing measurements in the harsh environment associated with 
gas turbine engines. The microwave probe’s ability to operate at high temperature and see through 
contaminants that are present in a turbine engine is a major discriminator between it and other 
technologies. These sensors were originally being targeted for use in an active clearance control concept 
that was being developed at the Glenn Research Center (Ref. 6). In addition, there is interest in using 
these sensors to make structural health measurements by either using tip clearance to monitor blade 
growth and wear or using tip timing to monitor variations in movements between blades. Over the last 
year a series of experiments have been undertaken at the Glenn Research Center as a means to better 
understand this technology and evaluate its capabilities. The near-term goal of the project is to evaluate 
the sensors ability to make tip clearance and timing measurements on rotating machinery. The long-term 
project goal is to use these sensors in an actual aeroengine at high-temperature conditions. This is 
currently being targeted to occur in the 2009 to 2010 timeframe.  

III. Calibration Experiment 
The first experiment that was accomplished with the microwave tip clearance system was the 

calibration and evaluation of the probes using a benchtop calibration rig. Like other sensor technologies, 
measurements made using the microwave sensors were very specific to the geometry of the blade being 
measured. The sensor made an average measurement of the spot size that was cast on the blade. To obtain 
accurate and useful results, this average measurement needed to be mapped to the actual minimum 
clearance between the target blade and the sensor. This was done by calibrating the sensor against the 
blade geometry that it was intended to be used on for making tip clearance measurements. Since the use 
of microwave sensors is an emerging technology, techniques on calibration and installation effects were 
not fully quantified as they were for older technologies. The main goal of this experiment was to develop 
the infrastructure and techniques to calibrate the probes for use on experiments at the Glenn Research 
Center. In addition, the calibration rig provided a good venue to evaluate the probe’s accuracy and 
understand any effects associated with the probe’s installation. 
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The calibration rig setup shown in Figure 3 consists of a rotary stage and a linear stage controlled by a 
programmable motion controller. The candidate blade for the calibration was mounted on the rotary table 
where it could be operated up to 300 rpm (rotations per minute). The microwave probe was mounted on 
the linear stage where it could be moved to a desired distance from the blade tip for calibration. This 
linear table used an optical encoder with an accuracy of 4 μm for position indication. A typical calibration 
involves installing the probe and blade on the stages at a known baseline distance apart from each other 
using a precision metric gauge block. Typically, the baseline distance chosen was the largest distance for 
the calibration. Once this baseline distance was established, the setup was confirmed by moving the linear 
stage over the entire calibration range and verifying the distances between the blade and sensor using the 
precision gauge blocks at several distance settings. The metric gauge blocks used had an uncertainty of 
0.14 μm. Once the setup was confirmed the blade was operated at 200 rpm using the rotary stage, and the 
probe was moved to the desired gap distances using the linear stage and encoder. At each desired 
distance, the “measured” or uncorrected reading was recorded. This was done over the entire calibration 
range.  

The following items need to be noted when using and calibrating the microwave probes. First, the 
blade needs to be spinning in order for the microwave clearance system to detect and measure the 
clearance. The system operates on the principle of extracting the phase modulation from the reflected 
signal that is caused by the motion of the blade. To measure the clearance it needs to see a target that is 
moving. Second, the microwave probes were designed to be mounted in a metallic casing or reference 
plane. This allows the microwave field to emit properly from the face of the sensor. The current 5.8 GHZ 
sensors were designed to be recessed by 0.50 mm in an engine or fan casing. For the calibrations 
conducted in this experiment, a 265- by 425-mm metal sheet was used to simulate the fan casing for the 
probe’s installation. Third, for the calibration it is desirable to match the physical setup of the actual 
installation on the engine or test article as much as possible. This is very similar to what was done for 
other tip clearance sensor technologies. This involves matching the probe installation depth, simulating 
the engine casing as much as possible, and matching the blade angle as best that can be done. One 
additional feature that the microwave probes have is the field emitted by the probe has a polarity. This 
feature can be used as an extra adjustment in improving the quality of the signal based on the size of 
blades and overall geometry. To maximize the amount of signal that was sent out and collected from the 
blade, the face of the probe was aligned so its polarity was in line or parallel with the length of the blade 
tip that it was measuring. To minimize the amount of signal that was sent out and collected from the blade 
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the probe was rotated so its polarity was perpendicular to the length of the blade tip. Generally, it is 
recommended by the manufacturer that a parallel alignment be used for blades that are much thinner than 
the diameter of the probe and a perpendicular alignment be used for blades that are thicker than the 
diameter of the probe. Generally, the best response may fall somewhere between. The probe alignment is 
a tradeoff that needs to be made based on the application. As with the previous installation parameters, 
when calibrating the probes it is critical to duplicate the alignment that is used in the actual engine or test 
rig. During this calibration experiment the probe’s polarity was varied as a means of assessing and 
understanding its effect.  

For this experiment, calibration was done against two different blade geometries. The first geometry 
that was tested was a relatively thin first-stage compressor blade. This blade shown in Figure 4 is 
~105 mm long, ~6 mm thick at its widest point, and has a chord length of ~37 mm. This blade was chosen 
to see how well the probes would calibrate against a blade’s geometry that was smaller than the diameter 
of the probe. The second geometry tested was a flat box. This box, shown mounted on the rotary stage in 
Figure 3, was ~26 mm thick, ~76 mm high, and ~107 mm long. It was chosen to simulate a blade that was 
thicker than the diameter of the probes. In addition, it mimicked the thickness of the blades of an axial 
vane fan that the probes were used on to measure tip clearances. The results of the experiment on the axial 
vane fan will be discussed in section IV of this paper. 

The calibration curve for a microwave probe using the thin compressor blade is shown in Figure 5. 
The y-axis is the “measured” or uncorrected clearance reading that was acquired from the probe. The x-
axis is the actual clearance. It represents the distance between the simulated fan casing, with sensor, and 
the tip of the blade. The calibration was done over a range of 0.5 to 13.0 mm. The resulting curve is a 
third-order polynomial and has fairly good sensitivity at clearances above 2 mm. At clearances lower than 
2 mm, the response flattens out and the sensor becomes less sensitive. This effect is believed to be caused 
by the near-field properties of the probe’s antenna and its interaction with the geometry of the relatively 
thin blade. The curve observed in Figure 5 was a typical response when using the probes on a thin blade 
when compared to the probe's diameter. For this calibration the sensor’s polarity was aligned to be 
parallel with the length of the blade tip to maximize the amount of energy reflected from the blade. 

Figure 6 shows the calibration curve for the same probe against the simulated thick blade. This 
calibration was undertaken as a means of capturing the necessary correction data for measuring the tip 
clearances on a large axial vane located at the NASA Glenn Research Center. As in the previous case, the 
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y-axis is the “measured” or uncorrected clearance reading that was acquired from the probe. The x-axis is 
the actual clearance distance between the simulated fan casing, with sensor, and the tip of the blade. The 
calibration was done over a range of 1.0 to 13.0 mm. The resulting curve is a second-order polynomial 
and has a relatively constant sensitivity over the entire range. For this calibration the sensor’s polarity was 
aligned perpendicular to the length of the blade tip. A similar shaped curve, with slightly different values, 
was observed for the calibration where the probe’s polarity was aligned parallel to the thick blade’s tip. 
The curve reported in Figure 6 was a typical response when using the probes against a blade whose 
thickness was of the same order of magnitude or greater than the diameter of the probe. As a means of 
evaluating the overall accuracy and repeatability associated with the calibrations on the thick blade, both 
the probe and blade were reset and the experiments were repeated across the entire range with the 
clearance corrections applied to the measurements. The worst case error that was observed between the 
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actual distance and the corrected distance measured by the sensor in these verification tests was 
~0.15 mm. It is believed that a portion of this error can be attributed to inaccuracies and biases associated 
with the calibration setup. In subsequent calibrations on a turbofan blade, improvements in the calibration 
setup resulted in errors that were much smaller. This calibration is presented in section V of this paper. In 
summary, the calibrations against the thin blade and the simulated thick blade were primarily undertaken 
as a means to better understand the probes and develop techniques for their calibration. These objectives 
were achieved and the probes were successfully calibrated against two blade geometries.  

IV. Axial Vane Fan Experiment 
The second experiment was to use a sensor to make tip clearance measurements on a large axial vane 

fan located at the NASA Glenn Research Center’s 10- by 10-Foot Supersonic Wind Tunnel (10×10 SWT) 
Facility. The purpose of this experiment was to acquire experience in using the sensors on an actual piece 
of rotating machinery. It was also intended as a means to evaluate how well the calibrations accomplished 
in the laboratory transferred into an actual use in the field. The axial vane fan that was used is shown in 
Figure 7. It is part of the 10×10 SWT's infrastructure and is located in the tunnel’s Air Dryer Building 

(Ref. 7). It is one of eight fans that are used to heat, dry, and cool the wind tunnel’s alumina beds. The fan 
is ~1.8 m in diameter and has 16 blades. The blades are ~362 mm long, with a chord length of ~267 mm 
and a maximum thickness of ~26 mm at the midchord position. Provisions were made for the installation 
of two probes 90° apart in the fan’s casing at the midchord position of the blades. A calibrated microwave 
tip clearance probe was installed in one of the locations. A picture of a probe installed in the fan is shown 
in Figure 8.  

Data was acquired over several operations of the vane fan varying the configuration and setup of the 
sensors. Data was taken with the probe’s polarity aligned both parallel and perpendicular to the length of 
the blade tip in order to assess the effect of the sensor’s alignment on the measurement. In addition, data 
was taken in the synchronous, asynchronous, corrected, and uncorrected data modes as a means to better 
understand the system’s settings and sensor capabilities. Only a summary of the results of the test runs for 
this experiment will be included in this paper.  

A time history of the average and minimum clearances measured for an operation of the vane fan is 
shown in Figure 9. For this particular test run the probe was installed so its polarity was aligned 
perpendicular to the length of the blade tips. The data was acquired at a fixed sampling rate of 400 KHZ 
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over an 8-min period of the fan operating at a steady-state condition of 1200 rpm. The average blade tip 
clearance for the 16 blades over this time period was 2.84 mm. The minimum clearance detected over this 
period was 2.17 mm with average minimum running at 2.55 mm. These measurements were consistent 
with the expected operation of the vane fan and are in line with the clearance measurements that were 
made statically. For comparison, the measurements that were made statically at this probe’s location 
yielded a 16-blade average tip clearance of 3.33 mm and a minimum blade tip clearance of 2.87 mm. The 
approximate half a millimeter difference between the static and running clearance measurements was due 
to blades locking in their seats during fan operation. This effect is hard to duplicate when making static 
measurements. Other test runs were accomplished by varying the probe’s polarity (parallel to the blade 
tips) and acquiring data using different acquisition modes (fixed sample rate vs. synchronous sample 
rate). The results of these runs were similar in magnitude to the results shown below. However, it was  



NASA/TM—2009-215589 9

 
 
observed that for the fan’s “thick” blades, a cleaner, less noisy signal was obtained with the probe's 
polarity aligned in perpendicular to the length of the blade tip.  

Regarding the sensors’ ability to detect individual blade clearances, Figure 10 shows the individual 
clearances that were measured for one revolution of the fan. The x-axis displays the blade number and the 
y-axis displays the measured tip clearances in millimeters. For this particular revolution the measured 
clearances ranged from 2.34 to 3.37 mm, with the variation in clearances between blades being on the 
order of tenths of millimeters. As previously indicated these clearances are in line with the expected 
operation of the vane fan.  

This experiment represented the first time that the microwave tip clearance probes were used at the 
NASA Glenn Research Center to acquire tip clearance data on actual rotating machinery. While this 
experiment was more of a qualitative study, its baseline objectives were successfully accomplished. 
Experience was gained on using the microwave probes and the system was successful in acquiring tip 
clearance data on the axial vane fan. In addition, the calibrations that were accomplished in the laboratory 
on the simulated geometry transferred well into actual use in the field. One limitation of the experiment 
was that a reference sensor was not installed and used to compare the readings acquired from the 
microwave sensors. This weakness was acknowledged and there are future plans to install the microwave 
sensors in this axial vane fan or another test rig along with another type of clearance sensor (capacitive, 
eddy current, etc.) as a means of acquiring comparison data.  

V. NASA Turbofan Experiment 
The third experiment was to use the microwave sensors to obtain tip clearance and timing data on a 

NASA turbofan test article that was tested in the Glenn Research Center’s 9- by 15-Foot Low-Speed 
Wind Tunnel (9×15 LSWT) Facility (Ref. 8). The purpose of this experiment was to evaluate the sensor’s 
ability to acquire data on aeroengine size test article and blades. The turbofan has 18 blades and is shown 
in Figure 11. It is being used to develop and evaluate noise reduction concepts under NASA’s Subsonic 
Fixed Wing Program. Two probes were installed 90° apart in the turbofan’s casing at the midchord 
position of the blades. The first probe was installed at the 90° position, which is on the left-hand side of 
the casing looking downstream at the fan. The second probe was installed at the 180° position, which is 
on the bottom of the casing looking downstream at the fan.  
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This application was a little different than the Axial Vane Fan Experiment presented in the previous 
section of this paper. First, the blades were made out of a nonferrous composite material. The tips of these 
blades were nickel coated to allow measurement by the microwave sensors. Second, the turbofan’s casing 
was lined with a nonferrous abradable material so the fan blades would not be damaged in the event of a 
blade rub during operation. However, for the sensors to work properly they needed to be installed in a 
metallic casing to allow the microwave field to properly propagate from it. To accomplish this, the 
sensors were recessed in the nonferrous rub strip at a distance greater than normally done, in order to use 
the metallic part of the casing as the required reference plane. This also had the benefit of moving the 
sensors back to a much safer location in the event that a deep blade rub was experienced. For this 
experiment, holes were drilled all the way through the casing including the nonferrous liner in order to 
facilitate the probe installation and the collection of physical distance measurements. However, in 
hindsight, since the sensors have the ability to see through a nonferrous material, a better idea would have 
been to only drill far enough to let the probes be installed in the metallic part of the liner and to leave the 
nonferrous rub strip intact. This would have resulted in a clean and intact flow path, allowing clearance 
measurements to be made during all phases of the test program. It is planned to pursue this type of 
installation for the next test entry of the NASA turbofan. 

In order to make the tip clearance measurements on the turbofan a series of calibrations were carried 
out to map the actual clearance to the uncorrected clearance measured by the sensor. The calibration was 
done using the previously described calibration rig with an actual blade and the probes installed in a 
section of the fan casing. This setup allowed the calibration to be done in a configuration that was as close 
as possible to the actual use on the turbofan. It also allowed the offset due to the probe being recessed in 
the nonferrous rub strip to be included in the calibration. For this application the sensor’s polarity was 
aligned to be parallel with the length of the blade tip to maximize the amount of energy reflected from the 
blade. The calibrations were accomplished over a range from 1.0 to 3.0 mm between the tip of the blade 
and the fan casing. The calibration curve for one of the probes is shown in Figure 12. The y-axis is the 
“measured” or uncorrected clearance reading that was acquired from the probe. The x-axis is the actual 
clearance distance between the fan casing and the tip of the blade. The resulting curve is a second-order 
polynomial and shows good sensitivity over the range of calibration. One issue involved with the 
calibration is that the clearances on the turbofan were expected to be a little under a millimeter. Due to the 
particular geometry of this setup obtaining a repeatable calibration of distances under a millimeter  
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between the fan casing and blade was not possible. However, since the probes had a second-order 
response in the targeted calibration range, it was determined that accurate results could be obtained in 
projecting the curve fit for clearances that were a little under the calibrated range. This assumption held 
true in previous calibrations. As a means of evaluating the calibration and its repeatability, a verification 
test was conducted by resetting the probe and repeating the measurements across the entire range with the 
clearance correction curve being applied to the measurements. The largest difference that was observed 
between the actual clearance and the corrected clearance in this verification was ~0.05 mm. This was a 
major improvement when compared to the errors observed in previous calibrations.  

It needs to be acknowledged that these calibrations were accomplished after the probes were used on 
the turbofan. This was done because the calibrations accomplished prior to the test entry were not done 
with the same probe alignment and system settings that were used when acquiring data from the turbofan. 
In addition, prior to testing, it was noticed that one of the probes was not providing a strong signal and 
was replaced with a spare probe that had not been calibrated for this application. The clearance data 
acquired from the turbofan was reprocessed using the correction curves generated during the post 
calibration. Normally, a pretest calibration is sufficient if the settings and geometry used in the calibration 
are consistent with the actual use on the fan or engine.  

Blade tip clearance and tip timing data was acquired for several test runs of the NASA turbofan. Data 
was acquired at a variable sampling rate that was synchronized to the fan's speed. Each measurement 
consisted of two revolutions of data with 10 000 samples taken per revolution. Good clearance data was 
acquired in this experiment. Figure 13 shows the 18-blade average tip clearance measurements and the 
fan speed for one of the test runs. From these charts it is observed that the average tip clearance decreases 
as the fan speed is increased. This result is expected and is mostly due to the growth of the composite 
blades as the fan operates at higher speeds. Probe #1 measured a decrease of 0.22 mm and probe #2 
measured a decrease of 0.06 mm as the speed increased to 8875 rpm. The change in clearance observed in 
this experiment was within the range predicted for these blades. In addition, the change in tip clearances 
measured by the microwave sensors were very similar to previously observed values. In a previous test 
entry using capacitive clearance sensors, changes in tip clearances up to 0.22 mm were observed when the 
turbofan was operated over the same speed range.  
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An additional means of viewing the data is shown in the polar plots of Figures 14 and 15. These plots 
show the individual blade clearances measured by each of the probes for several fan speeds. As noted 
previously, these plots show that the individual blade tip clearances decrease as the fan speed is increased. 
A more noticeable change in the individual clearances can be observed in the polar plot in Figure 14 for 
probe #1. This clearly shows the decrease in the individual blade tip clearances as the fan is operated at 
higher speeds. A less noticeable change is observed in the polar plot in Figure 15 for probe #2. It still 
shows the overall trend of the tip clearance decreasing as speed is increased, but it is just not at the same 
magnitude as observed by the first probe. In reality, the small change in displacement observed by the 
probe at this location during the run is approaching the measurable limit for using this size of probe on 
this blade. However, even with this observation, these plots do show that the microwave clearance probes 
are sensitive enough and have sufficient resolution to pick up the minor variations that exist in the 
individual blade tip clearances.  

One anomaly that was observed in the data of Figure 13 is the difference in the absolute clearance 
values measured by each of the probes. The average blade tip clearance measurement made at static 
conditions for probes #1 and #2 was 0.86 and 0.91 mm, respectively. Assuming that the blades do not 
experience much growth at low speed, the clearances measured at these speeds should be close to the 
values measured statically. Using this assumption, it is observed in Figure 13 that probe #1 was reading 
~0.14 mm high and probe #2 was reading ~0.13 mm low in absolute clearance values. It is believed that 
this zero shift in measured clearances is due to dissimilarities between the probes’ installation on the 
turbofan and the installation used for the calibration. Any differences in probe alignment and installation 
depth will affect the accuracy of the measurement. Improved methods will be used in future experiments 
to better control these parameters so the installation used in the calibration more closely matches the 
installation used on the test article. It should be noted that the tip timing data acquired in this experiment 
is still being processed and evaluated. It is planned to present this data in future reports. 

In summary, this experiment has successfully demonstrated the microwave clearance probe’s ability 
to make measurements on aeroengine size hardware. The blade tip clearances measured by the probes 
were consistent with results previously observed for this turbofan. The experiment also showed that the 
probes can be used to make measurements on an application that is not typical for their designed use. The 
sensors were able to make measurements on blades made of composite materials by coating the blade tips 
with nickel. In addition, the sensor’s ability to see through the nonferrous portion of the rub strip allowed 
it to be recessed further in the fan’s casing than would have normally been done. This has a positive 
ramification for future experiments where it will be attempted to keep the nonferrous portion of the rub 
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strip intact allowing these sensors to make tip clearance measurements on this fan over its entire range of 
testing without affecting the fan’s acoustic or aero performance. It is also planned to make improvements 
to the calibration and installation processes so the installation used in the calibration more closely 
matches the actual use on an engine or test article.  

VI. Conclusion 
The series of experiments undertaken over the last year have demonstrated the microwave tip 

clearance sensor’s ability to make reliable tip clearance measurements. The microwave probes were 
successfully used to acquire tip clearance data on an axial vane fan and a turbofan. In addition, a 
calibration rig was set up and the microwave probes were evaluated against several different blade 
geometries. Further work will be done to improve the techniques used to calibrate and install the probes 
so critical parameters such as installation depth and alignment can be more closely controlled in order to 
maximize the accuracy of the measurements. In summary, testing to date has been successful and has 
shown that this technology is viable in making blade tip clearance and timing measurements. More testing 
will be undertaken in 2009 to further evaluate the microwave tip clearance sensor’s capabilities. The 
ultimate goal of the project is to use the microwave probes on an actual aeroengine in a high-temperature 
environment. This is being planned for the 2009 to 2010 time period. 
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