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Hafnium and zirconium are very similar, with almost identical sizes and chemical 
bonding characteristics.  However, they behave differently when alloyed with Ti and Ni.  
A sharp phase formation boundary near 18-21 at.% Hf is observed in rapidly-quenched 
and as-cast Ti45Zr38-xHfxNi17 alloys.  Rapidly-quenched samples that contain less than 18 
at.% Hf form the icosahedral quasicrystal phase, whiles samples containing more than 21 
at.% form the 3/2 rational approximant phase.  In cast alloys, a C14 structure is observed 
for alloys with Hf lower than the boundary concentration, while a large-cell (11.93 Å) 
FCC Ti2Ni-type structure is found in alloys with Hf concentrations above the boundary.  
To better understand the role of Hf on phase formation, the structural evolution with 
supercooling and the solidification behavior of liquid Ti45Zr38-xHfxNi17 alloys (x=0, 12, 
18, 21, 38) were studied using the Beamline Electrostatic Levitation (BESL) technique 
using 125keV x-rays on the 6ID-D beamline at the Advanced Photon Source, Argonne 
National Laboratory.   For all liquids primary crystallization was to a BCC solid solution 
phase; interestly, an increase in Hf concentration leads to a decrease in the BCC lattice 
parameter in spite of the chemical similarity between Zr and Hf.  A Reitveld analysis 
confirmed that as in the cast alloys, the secondary phase that formed was the C14 below 
the phase formation boundary and a Ti2Ni-type structure at higher Hf concentrations.  
Both the liquidus temperature and the reduced undercooling change sharply on traversing 
the phase formation boundary concentration, suggesting a change in the liquid structure.  
Structural information from a Honeycutt-Anderson index analysis of reverse Monte Carlo 
fits to the S(q) liquid data will be presented to address this issue. 
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Introduction Structural simulation results
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● Initial studies revealed a sharp boundary in phase 
formation around 21 at% Hf (x=21) in the Ti45Zr(38-
x)HfxNi17 system.  In quenched alloys the i-phase forms 
below the boundary, while a 3/2 rational approximant to the 
quasicrystal forms above.  In cast alloys, the C14 Laves 
phase forms below and a Ti2Ni-type (cF96) forms above.  
Further study of the liquid structure and evolution and the 
influence of Hf on phase formation and physical properties 
were studied using the Bamline Electro-Static Levitation 
(BESL) technique [1]

● Reverse Monte Carlo (RMC) simulation 
generates atomic configuration [7]
● Rejection sampling algorithm using quality 
of fit (chi square) as analogy to energy in 
Metropolis Monte Carlo (MMC)
● RMC reveals random arrangement of Zr
and Hf generates best agreement to 
experimental data

structure generation from RMC; adapted from [7]
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Experimental methods
Quantifying structure
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(BESL) technique [1]

● Containerless, high vacuum processing
● Synchrotron XRD throughout entire 
phase spectrum (incl. supercooled liquid)
● 125 keV X-ray beam; 6ID-D beamline, 
Advanced Photon Source, Argonne National 
Laboratory
● Primary crystallization to BCC solid solution 
(beta); remaining liquid crystallizes to C14 or cF96
● Remarkable supercooling wrt beta phase 
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● Honeycutt-Andersen (HA) index [8] and Bond 
Orientational Order parameter [9] (BOO) analyses 
used to quantify order in the RMC structures
● HA index describes bonded neighbors of a root pair, 
i.e. 
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root pair (white circles) and neighbors; adapted from [8]

The BESL apparatus (left) and schematic diagram (right); adapted from [1]

Structural studies
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indicates an increased barrier to nucleation due 
to structural differences between liquid and 
solid
● Frank’s hypothesis supposes icosahedral
order in liquid metals to account for nucleation 
barrier [2]
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● Icosahedral or distorted icosahedral order is most 
prominent for all compositions
● Local icosahedral order is increasing with 
supercooling below phase boundary (x ≤ 18); roughly 
constant above
● Local icosahedral order more prominent in mixed 
Zr-Hf than in endpoints

● Effect of Hf above the phase formation boundary is 
to suppress the tendency to increase local icosahedral
order with cooling; system is effectively jammed
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● High resolution scattering data collected to 
14.5 inverse Å
● S(q) and g(r) generated by PDFgetX2 
software [3]
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Change in BCC lattice parameter 
at 863 +/- 3 degrees C
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 Hf0 high temp soln
 Calculated BCC (a=3.425 A)

software [3]
● Evolution of g(r) at constant reduced 
temperature indicates local expansion (1st

neighbor) and expansion then contraction 
upon traversing phase formation boundary 
at 2nd neighbor  distances

● What effects are causing the structural 
changes at near and extended length 
scales?

● Electron configurations:
Zr: [Kr]4d25s2

Hf: [Xe]4f145d26s2
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Hf21 Zeff BOO

● BOO parameter uses quadratic and third order 
invariants formed from bond spherical harmonics to 
quantify order

● Characteristic distribution of 
Ql’s identify cluster types
● 13 atom icosahedral, fcc, and 
hcp; 15 atom bcc and 
7 atom simple cubic

Conclusions
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Hf: [Xe]4f145d26s2

● Observed contraction of beta BCC  lattice due 
to stronger bonding of 5d electrons in Hf
● Intermediate phases index to C14  (hexagonal) 
structure and cF96 (FCC)  structure with residual 
beta
● C14 lattice parameters

a = 5.285 Å
c = 8.560 Å
packing frac. = 0.575

● cF96 lattice parameters
a = 11.92 Å
packing frac. = 0.565

● Crystal images adapted from [4]
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7 atom simple cubic
● Icosahedral order is most 
prominent in all and little 
change is observed with supercooling

● HA and BOO are describing only dynamics of 
the local order, and are not capturing the 
dynamics at longer length scales

cluster figures adapted from [9]

Physical properties
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 Volume expansivity at liquidus

● Remarkable undercooling has been observed, and can be attributed 
to increasing mismatch of undercooled liquid and BCC solid solution, 
due to increasing bond strength of Hf.
● Local cluster size is expanding with increased Hf due to strain 
effects, while extended cluster size changes dramatically upon 
traversing phase boundary
● Below the boundary icosahedral order increases, allowing i-phase 
formation in quenching; above the boundary the local order is jammed 
allowing formation of the 3/2 RA
● Chemical effects, heats of mixing, cluster dynamics

● Liquid density measured during cooling 
using a photographic technique with 
droplet edge-fitting [5]
● Normalized density, coefficient of thermal 
expansion peaked at boundary 
composition
● Heat of mixing for a regular solution
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● Estimates of the enthalpy of mixing favor 
mixing of Ni-Hf below the phase boundary; 
Ni-Zr above
● Atomic volumes (cm^3/mol)
Ti: 10.6  Zr: 14.1  Hf: 13.6  Ni: 6.6
● In cooling liquids below the phase 
boundary, Hf will tend to mix with Ni and Ti 
in the inner shell, above the boundary Zr is 
more likely

-5 0 5 10 15 20 25 30 35 40
-50

-40

-30

-20

 

H
ea

t o
f m

ix
in

g 
(k

J/
m

ol
)

Hf at%

-5 0 5 10 15 20 25 30 35 40
13.0

13.2

13.4

13.6

13.8

14.0

14.2

14.4

 

 

co
or

di
na

tio
n 

nu
m

be
r (

ar
b)

Hf at%

coordination number
(integral of RDF to 1st min)

-5 0 5 10 15 20 25 30 35 40
43.0

43.2

43.4

43.6

43.8

44.0

44.2

44.4

44.6

44.8

45.0

45.2

45.4

45.6

45.8

46.0

 

 

R
D

F 
se

co
nd

 p
ea

k 
ar

ea

Hf at%

 2nd shell coord at liquidus (est)

mixmixmix TSHG +=

This work was supported in part by NASA under grant  #NNX07AK27G and 

by the NSF under grant  DMR-030410


