Hafnium and zirconium are very similar, with almost identical sizes and chemical bonding characteristics. However, they behave differently when alloyed with Ti and Ni. A sharp phase formation boundary near 18-21 at.% Hf is observed in rapidly-quenched and as-cast Ti_{45}Zr_{38-x}Hf_xNi_{17} alloys. Rapidly-quenched samples that contain less than 18 at.% Hf form the icosahedral quasicrystal phase, while samples containing more than 21 at.% form the 3/2 rational approximant phase. In cast alloys, a C14 structure is observed for alloys with Hf lower than the boundary concentration, while a large-cell (11.93 Å) FCC Ti_2Ni-type structure is found in alloys with Hf concentrations above the boundary. To better understand the role of Hf on phase formation, the structural evolution with supercooling and the solidification behavior of liquid Ti_{45}Zr_{38-x}Hf_xNi_{17} alloys (x=0, 12, 18, 21, 38) were studied using the Beamline Electrostatic Levitation (BESL) technique using 125keV x-rays on the 6ID-D beamline at the Advanced Photon Source, Argonne National Laboratory. For all liquids primary crystallization was to a BCC solid solution phase; interestingly, an increase in Hf concentration leads to a decrease in the BCC lattice parameter in spite of the chemical similarity between Zr and Hf. A Reitveld analysis confirmed that as in the cast alloys, the secondary phase that formed was the C14 below the phase formation boundary and a Ti_2Ni-type structure at higher Hf concentrations. Both the liquidus temperature and the reduced undercooling change sharply on traversing the phase formation boundary concentration, suggesting a change in the liquid structure. Structural information from a Honeycutt-Anderson index analysis of reverse Monte Carlo fits to the S(q) liquid data will be presented to address this issue.
Role of Hf on Phase formation in Ti45Zr38-xHfxNi 17 Ti45Zr(38-x)HfxNi17 Liquids and Solids

- Washington University in St. Louis, b-Ames Lab-USDOE, c-University of Massachusetts Amherst, d-NSF Marshall Space Flight Center, e-iowa State University, f-Argonne National Laboratory

Introduction

- Initial studies revealed a sharp boundary in phase formation around 21 at% Hf (x=21) in the Ti45Zr38-xHfxNi17 system. In quenched alloys the i-phase forms below the boundary, while a 2/3 rational approximant to the quasicrystal forms above. In cast alloys, the C14 Laves phase forms below and a T2Ni-type (cF96) forms above.

Further study of the liquid structure and evolution and the influence of Hf on phase formation and physical properties were studied using the Bamilne Electro-Static Levitation (BESL) technique.

Experimental methods

- Containerless, high vacuum processing
- Synchronous XRD throughout entire phase spectrum (including supercooled liquid)
- 125 kV X-ray beam: 6D-O beamline, Advanced Photon Source, Argonne National Laboratory
- Primary crystallization to BCC solid solution (beta); remaining liquid crystallizes to C14 or cF96
- Remarkable supercooling yet beta phase indicates an increased barrier to nucleation due to structural differences between liquid and solid

Frank’s hypothesis supposes icosahedral order in liquid metals to account for nucleation barrier[2]

Quantifying structure

- Hsu-Andersen (HA) index [8] and Bond Orientational Parameter [9] (BOO) analyses used to quantify order in the RMC structures
- HA index describes bonded neighbors of a root pair, i.e.,

\[Q_{(n)}(r) = rac{1}{Z} \sum_{j=1}^{Z} \frac{1}{2} \left(n_{ij} - Z_{ij} \right) \]

where \(n_{ij} \) is the number of neighbors at \(r \) between species \(i \) and \(j \), and \(Z_{ij} \) is the coordination number of \(j \) in the \(i \) sublattice.

- HA index is used to quantify order in the RMC structures

- BOO parameter uses quadratic and third order invariants formed from bond spherical harmonics to quantify order

\[Q_{(n)}(r) = \sum_{k=1}^{3} \frac{1}{2} \left(n_{ij} - Z_{ij} \right) \]

- Characteristic distribution of \(Q_{i} \)’s identity cluster type

- BOO parameter can be calculated from bond spherical harmonics to quantify order

- HA and BOO are describing only dynamics of the local order, and are not capturing the dynamics of longer length scales

Conclusions

- Remarkable undercooling has been observed, and can be attributed to increasing mismatch of undercooled liquid and BCC solid solution, due to increasing bond strength of Hf.
- Local cluster size is expanding with increasing Hf due to strain effects, while extended cluster size changes dramatically upon traversing phase boundary
- Below the boundary icosahedral order increases, allowing i-phase formation in quenching; above the boundary the local order is jammed allowing formation of the 3/2 RA
- Chemical effects, heats of mixing, cluster dynamics

References and acknowledgments

Experimental methods

- Experimental methods

1. High resolution scattering data collected to 14.5 inverse Å for each 20
2. Bond population (β) calculated using BESL software [5]
3. Evolution of β at constant reduced temperature indicates local expansion (1st neighbor) and expansion then contraction upon traversing phase formation boundary at 2nd neighbor distances
4. What effects are causing the structural changes at near and extended length scales?

Butadiene study

- Butadiene study

1. Atomic volumes (cm³/mol)
2. Heat of mixing for a regular solution
3. Normalized density, coefficient of thermal expansion of the liquid at various compositions
4. Role of Hf on Phase formation in Ti45Zr38-xHfxNi 17 Ti45Zr(38-x)HfxNi17 Liquids and Solids

Structural simulation results

- Structural simulation results

1. Reversal Monte Carlo (RMC) simulation generates atomic configuration [7]
2. Rejection sampling algorithm using quality of fit (Q) as analogy to energy in Metropolis Monte Carlo (MMC)
3. RMC reveals random arrangement of Zr and Hf generates best agreement to experimental data