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Abstract 
Several recent studies for advanced rotorcraft have identified the need for variable, or multispeed-

capable rotors. A speed change of up to 50 percent has been proposed for future rotorcraft to improve 
vehicle performance. Varying rotor speed during flight not only requires a rotor capable of performing 
effectively over the extended operation speed and load range, but also requires an advanced propulsion 
system to provide the required speed changes. A study has been completed, which investigated possible 
drive system arrangements to accommodate up to the 50 percent speed change. These concepts are 
presented. The most promising configurations are identified and will be developed for future validation 
testing. 

List of Acronyms 
CAD computer-aided design 
CV continuously variable 
CVT continuously variable transmission 
SRW Subsonic Rotary Wing 

Background and Introduction 
Rotorcraft propulsion is a critical part of the overall aircraft. Unlike fixed wing aircraft, the rotor and 

propulsion system provides lift and control as well as forward thrust. As a result, the rotorcraft engine and 
gearbox system must be highly reliable and efficient. Future rotorcraft trends call for more versatile, 
efficient, and powerful aircraft, all of which challenge state-of-the-art propulsion system technologies. 
Variable-speed rotors have been identified as having a large impact on many critical rotorcraft issues. 

Currently, rotor speed can be varied only a small percentage by adjusting the speed of the engine. 
This is generally limited by engine efficiency and stall margin, thus limiting speed changes to 
approximately 15 percent maximum. 

The recent NASA Heavy Lift Study (Ref. 1) has shown that variable-speed propulsion was necessary 
for all aircraft concepts studied. Variable-speed propulsion, without loss of efficiency and torque, is 
necessary to permit a high-speed operation with reduced noise. Previous NASA variable-speed 
transmission studies concentrated on 15 percent speed changes (refs. 2 and 3). The NASA Heavy Lift 
Study (ref. 1) suggests that increased speed variations of 50 percent will have a dramatic effect on 
reducing external noise while increasing rotorcraft performance. 

To achieve this large speed variation capability, advanced variable/multispeed drive system concepts 
must be developed. This report summarizes an effort to identify viable concepts for both a two- and 
variable-speed drive transmission configuration. Efforts will culminate with laboratory testing of a 
reduced-scale variable/multispeed drive system to validate system level tools and concepts. 
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Study Objectives 
This paper summarizes a concept study directed at identifying and creating multiple concepts and 

selecting the most viable concept(s) for future development and scale-model testing of a variable/ 
multispeed drive for application to rotary wing aircraft. Both discrete two-speed and variable-speed 
configurations are considered. The primary requirement for this study is to identify and create the most 
viable concept for a transmission with a high-range ratio of 1:1 and a low-range reduction ratio of 2:1. 
The focus is specifically on identifying the most suitable mechanical drive configuration(s). Control of 
such transmissions in the overall rotorcraft driveline and system dynamics are beyond the scope of this 
paper and have been ignored. Concepts created and described in this paper are not supported by rigorous 
engineering analysis. This study concentrates on the creation of multiple preliminary concepts rather than 
maturing the design of a single concept. 

Concept Creation and Development 
A chronology of the concept creation, development, and directions is described below. 
While all concepts created and discussed in this paper may not be purely original, they are based on 

basic configurations outside of the area of application with the primary goal to meet the design 
requirements. This approach is in contrast to developing concepts based on something existing from 
within the area of application and either modifying or enhancing the configuration. A goal of this 
approach was to search for something new. Concepts discussed in this paper were initially created and 
evolved individually. Once the barrier of conceiving an initial concept was overcome, additional concepts 
were more easily conceived. A few of the initial concepts included shortcomings resulting in a need to 
pursue resolution to the particular issue(s). An example of one such shortcoming is reverse output 
rotation, and will be overviewed and presented in further detail in the appendix. Resolution of 
shortcomings became an impetus for creativity. On several occasions, resolution to a concept-specific 
issue was introduced into other concepts, thus improving two or more concepts. Later, some concepts 
were developed in parallel as idiosyncrasies or improvements of a given concept came to light, which had 
direct application to earlier concepts sharing something in common. Through brainstorming and 
simultaneous concept development a welcomed synergy was realized. Rather than finish one concept, any 
new concept thoughts were immediately committed to sketch to preclude loss. This resulted in some 
parallel concept development and creation of a broader scope of concepts than planned. 

Another initial goal was that any concept(s) to be created should be original. This led to review of 
some textbooks in the area of gearing (refs. 4 to 6) for basic ideas. Concept creation was initially directed 
at a variable-speed drive, being more desirable than a multispeed drive for the intended application. A 
variety of variable-speed devices were reviewed, though none stood out as being ideally suited. All 
configurations employed a traction or friction drive, or comprised components such as belts and pulleys, 
seemingly unsuited for the power and speeds associated with this application. The realization of a true 
variable-drive basis (traction or friction drive via variable geometry) would not suffice, but perhaps 
variable ratio could be synthesized with gearing. 

An initial variable-drive concept emerged based upon a two-engine-driven planetary differential (sun-
in, ring-in, and carrier-out). The configuration was thought to be adaptable to a scheme using one engine 
(input), with the second engine (input) replaced by an external speed controller device. With this 
configuration, the carrier (output) is continuously variable (CV). The concept did not appear to have 
much merit and was rejected at first. Additional factors discounting this concept were it was not a classic 
CV drive per se, having no contour surfaces, nor variable geometry, and a second external input was 
surely a tremendous weight liability. However, the basis was retained as a remote possibility since it was 
variable-speed output and positive gear drive.  

Next, a schematic for an inline discrete two-speed transmission configuration was conceived and 
evolved into a CAD (computer-aided design) layout. The concept included a clutch, thus requiring an 
immediate need for a representative scale clutch. Since any conventional two-speed transmission 
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configuration intended to change ratio during power transfer requires a means of disengaging power 
during the ratio change, conceptualization focused toward a clutch as it would be needed for other 
concepts. A concept clutch was needed. A dry multidisc automotive racing clutch was considered as a 
basis. The design aspect to be capitalized upon is the small-diameter multiple drive plates and high-power 
density compared to that of an equivalent capacity larger diameter single-plate design. Bossler (ref. 3) 
describes a similar multiplate clutch concept for rotorcraft application also based on the multiplate 
automotive racing clutch. The above clutch concept is a hydraulic over mechanical spring design, fail-safe 
to the mechanical spring(s) load. Hydraulic actuation seemed preferable over a mechanical linkage as 
being readily adaptable to solenoid control. Concept development would also conclude hydraulic 
actuation be the exclusive method as the clutch is enclosed by rotating gear elements. Based on the above, 
a hydraulic over mechanical spring clutch was configured for this study. Several clutch concepts were 
evolved to meet specific design requirements for various drive concepts and are all discussed in “Clutch 
Concepts” in the appendix. 

During development of the initial inline two-speed transmission, the intended application for the 
concept clutch, a major shortcoming relative to the output direction of rotation between the two ratios 
emerged. The drive concept employs a planetary gear system with fixed star gears, sun gear input, and 
ring gear output. Powering in the low-speed range causes the ring gear to rotate opposite to the sun gear, 
and opposite to the high-speed range output, directly coupled via the clutch. To make this concept viable, 
an immediate challenge was to determine the best approach to reverse the output rotation for the low 
range. This example shortcoming, mentioned at the beginning of this section, is significant in that it 
became an impetus for the creation of several reversing concepts for this specific concept, as well as 
being applied to various other concepts requiring a rotational reversing function. In addition, the search 
for a suitable resolution to this shortcoming led directly to one of the final selected concepts featuring a 
novel gearing configuration (discussed later). Reverse rotation concepts are discussed in the appendix. 

Though a specific candidate CV drive was not identified as ideally suited for an overall drive for 
rotorcraft, the idea of CV is highly desirable contrasted to the operability of a discrete multispeed drive. 
The dichotomy of CV in contrast to direct positive gear drive is a design dilemma of which avenue to 
pursue. At this point, focus shifted to an idea of attempting to capitalize on the desirable aspects of a CV 
element by synthesizing CV with a variable direct mechanical drive such as a differential or planetary 
differential gear system with the addition of some to-be-determined outside control device, which is 
analogous to the initial two-input planetary differential concept nearly dismissed. Variable control can 
potentially be either externally powered or internally takeoff driven. An internal takeoff-driven CV drive 
was given attention being perceived to be the lighter of the two options and a benefit of being driven from 
the existing transmission input shaft.  

Another possible direction stemming from the above dichotomy of continuous variability contrasted 
to positive gear drive is that a two-speed transmission with a CV speed-matching element might be a 
viable operational configuration for this application. The above configuration overcomes some of the 
undesirable aspects of both the discrete two-speed drive and the variable-speed drive while capitalizing on 
the positive aspects from both configurations. In addition, it features positive drive for the two primary 
operating modes: hover and cruise. Several concepts were created for this direction. 

Although power transmission via traction fluids is not perceived as desirable for quasi-full-time 
operation in either the high- or low-speed range, it may be possible for a CV element to take on full 
power requirements for a short duration, or perhaps the lesser power requirement of matching speeds, 
during the speed range transition. This is particularly true for the high-low speed change when the 
rotorcraft is transitioned from hover to cruise, exploiting fixed wing lift, and full engine power is not 
required. Conversely, the low to high speed change, from cruise to hover, is the more demanding 
transition since fixed wing lift is either in a state of quickly diminishing significance or does not exist at 
all. In addition, an emergency maneuver would require full power during this transition and must be 
readily available on demand thus requiring the drive to handle full power. 

Another application in which a CV element may be applicable is in a split-power transmission 
configuration where the CV element is used to transmit a portion of the overall required power. During 
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the course of this study, CV elements of both full- and half-toroidal configurations were considered as a 
possible speed variator. The selection and design of the specific CV element within the various concepts 
is to be addressed during the next stage of development for any of the concepts employing a CV element. 
The design of such a device would be a formidable task in itself as evidenced by the number of 
configurations and contributors pursuing their development. The toroidal variator configuration is thought 
to be the best for this application. Based on (ref. 7), a concept toroidal geometry traction drive was 
developed, which includes a reversing subconcept. The concept is discussed in the “Concepts 
Descriptions” section. 

An alternative to using a CV element as a variator may be the identification of a speed controller to 
meet the specific requirements. The specific configuration and application will require review to 
determine if a suitable candidate can be identified. The speed-controlling device depicted in some of the 
concepts may be changed from that depicted to one of the other viable devices offered. This controller 
modularity concept will be capitalized upon in the “Recommendations” section. 

System Considerations 
Dynamics and Operation of Two-Speed Transmission Concepts 

Manual shifting a transmission in a rotorcraft during flight is seemingly perilous whether from hover 
to cruise or the converse. For these two ratio transitions, the degree of difficulty is different, as well as a 
function of the urgency of the maneuver (i.e., a planned routine operation or an emergency condition). 
Initiating change in any situation should be equally easy and of second nature to the operator (pilot) or 
must be automated. 

Down shifting a two-speed transmission from hover to cruise mode appears the easier transition since 
rotorcraft speed is nearing the point where the fixed wing takes over the function of providing lift and the 
engine or driveline only has to provide forward thrust. One can envision slowing the engine to a lower 
power level and shifting the transmission, followed by an increase in, or resuming, engine speed, though 
at a lower power level. 

In contrast, the most difficult ratio change is the transition from cruise to hover. During hover, the 
rotor must provide the functions of lift, thrust, and maneuver. At cruise, with the engine at 100 percent 
speed and the transmission at 50 percent speed output (low range 2:1), the required operation is to affect a 
ratio change to 1:1, resulting in the engine at 100 percent speed and the transmission output speed also at 
100 percent (high ratio 1:1). This above transition requires either reducing engine speed and torque prior 
to shifting or somehow increasing the speed of the transmission output shaft while maintaining engine 
speed. Without some powered means, to accomplish this one must realize the ratio change and slip the 
clutch to increase the output speed in a smooth manner while generating of heat and parts wear. 

One approach offered (ref. 3) is an operational scheme for a twin rotor application that transitions 
power from both engines to a single engine while shifting one transmission. Note that the scheme is for 
significantly less ratio change (i.e., less change in ratio than 50 percent for this study). The above 
transition scheme still involves slipping clutches, though less severe due to the smaller ratio change. This 
scheme does not seem to be a desirable option for the cruise to hover transition for the ratio change in this 
study. 

Returning to the basic issue of mismatched shaft speeds encountered during the process of shifting 
ratios, the following two scenarios are offered for consideration as to achieving the cruise to hover ratio 
change manually (though they are not applicable due to magnitude of the required engine speed changes 
to be realized for this study): 

 
(1) Disengage clutch while reducing engine speed 50 percent, shift transmission to high range 

(hover), reengage clutch, and return engine speed back to 100 percent, thus increasing transmission output 
speed to that required to hover (i.e., 100 percent speed). 
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(2) Disengage clutch while maintaining engine speed (with reduced load), shift transmission to high 
range (hover), and slowly reengage (slip) clutch to increase output speed to 100 percent, resulting in 
generation of heat and component wear. 
 

Clearly, the toughest challenge both in design and in the operation of a discrete two-speed 
transmission for rotorcraft application is that of powering though the ratio change required to transition 
from cruise to hover and shaft speed synchronization. With airframe speed being reduced and fixed-wing 
lift diminishing to negligible magnitude, during this change, the rotor must take over the tasks of 
providing both thrust and lift. This requires full power and speed, a significantly increased speed (i.e., 
from 50 to 100 percent output speed). The degree of difficulty in making the above transition may be 
further aggravated for both the machine and the operator or pilot in situations of emergency. 

Anyone that has experienced being in the midst of manually shifting an up-ratio gear change in an 
automobile when an unforeseen situation of urgency required an immediate down shift to a lower ratio for 
immediate acceleration will be aware of either the extreme time lag and/or extreme driveline shock that 
can result. Lag being attributed to operator and/or mechanism reaction time period and shock due to 
unsynchronized clutch engagement resulting from distressed operator reaction. 

Clearly, such operational schemes take too long to execute and not tolerable in an aircraft application. 
Controlled speed ratio changes are highly desirable, if not absolutely required. If a discrete two-speed 
transmission is truly to be employed for this application, system control will need to be intensely studied 
to verify the suitability. 

The probable best approach for using a CV element as a ratio-changing device in a two-speed drive 
might be to only use the CV element for up shifting (accelerate rotor and shaft speed matching) and to use 
the clutch for down shifting. Operation in this manner would serve to reduce the required service duty of 
both the CV element and the clutch. 

Dynamics and Operation of Variable-Speed Transmission Concepts 

As stated earlier, the controllability aspect of discrete versus continuous variability is a significant 
design consideration. Each configuration has both merits and liabilities. The discrete ratio drive is the 
most straight forward, reliable, cost effective (initial manufacture), and can be based on current design 
methodologies and state-of-the-art technologies. However, from a perspective of application to flight, the 
two-speed drive is less desirable than a drive with the ability to provide continuous variable output speed. 

With a CV drive, engine speed can be maintained nearly constant while the output speed is decreased 
based on power demand. A big advantage is that the ratio could continue to vary in the given direction or, 
if emergency situation warranted, the ratio could be reversed and varied toward the opposite direction in a 
smooth and continuous manner without any abrupt changes in torque or speed. With a CV drive, the 
period, or time, to execute a speed change is dramatically more flexible than that of a discrete two-speed 
drive where smoothness of the speed change is a strong function of the transition period. Although 
increasing the period would tend to improve smoothness, it must be done quickly to maintain forward 
velocity with minimal internal heat generation. 

Should an unforeseen emergency condition arise during an in-progress speed range change, the speed 
change may be required to return quickly to the original setting. Such a scenario might be transitioning 
from hover to cruise during which time the aircraft encounters an emergency condition requiring 
conversion quickly back to hover. This situation would result in an abrupt change in torque transfer or 
mismatch in speed, which also results in an abrupt loading or unloading condition. The condition is 
created in the discrete two-speed drive because something mechanical must be engaged or disengaged to 
initiate or permit the change in ratio and something must be synchronized to continue power transfer. This 
situation is in direct contrast to normal operation striving to obtain a smooth transition. Any event that 
disrupts the disengagement-reengagement periods would undoubtedly result in an abrupt change in power 
flow. 
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Based upon the above, the system dynamics of speed changes within a fixed multispeed transmission 
is a significant concern based on the high speeds and horsepower being transmitted and the potential 
resultant shock loads that may occur due to unsynchronized speeds during the transitions to and from the 
discrete speed ranges. At high power and speed, even a small speed mismatch can introduce significant 
shock loads within the driveline as well as the engine(s) and/or rotor(s). 

A CV drive features highly desirable fully synchronized output speeds throughout the speed range 
resulting in the smoothest range changes with little or no driveline shock due to speed mismatch between 
the driving and driven elements. However, in a CV traction drive configuration, any realized speed 
mismatch could result in internal slippage and heat generation within the traction fluid and drive surfaces 
due to the huge inertia of the rotors. Traction fluid properties are generally highly dependent upon fluid 
temperature with any significant heat rise resulting in unstable fluid properties as well as low reliability in 
the traction coefficient (ref. 9). This has the potential to deteriorate to the point of total instability and loss 
of traction. While not desirable for any power drive, this could be catastrophic on an airframe. For the 
above reasons, full power transmission through fluid traction and friction is not foreseen as viable for the 
rotary wing applications.  

Seemingly intuitive, a discrete multispeed transmission is not the best for the given application, nor 
would a pure fully continuously variable transmission (CVT) utilizing power transmission via fluid 
traction, for which the performance is so tightly coupled to a fluid and its temperature. In addition, the 
majority of any mission probably comprises operation primarily in either the upper or lower speed range, 
not transitioning between them. 

The probable best approach for this application is a perceived split-power transmission with a CV 
element, or variator, operating between two fixed ratio speed ranges. 

Concept Studies 
Concepts created for this study include both two-speed and CV drives. The concepts were reviewed 

and ranked as discussed in the next few sections. Several concepts, or variations thereof, were generated 
for each of the above directions. Only overviews of the top candidates for each category are presented 
below. 

Concept Descriptions 
Concept descriptions for all clutches, rotation reversal schemes, two-speed drives, and variable-speed 

drives created during this study are presented in the appendix, as well as some concepts and designs 
created by others. Figures are included for each concept. Some concepts include a number of variations 
on the basic concept. Original concepts are in the same scale (detail gearing analysis may indicate 
otherwise) and employ many standard configurations and representative bearing and shaft sizes. Original 
concepts depict gear pitch diameters based on minimum diametral pitch of 12 and a pressure angle of 25° 
(ref. 3) and are limited to consideration of spur tooth, helical, or double-helical gears. 

Concepts are created in two-dimensional CAD using a commercially available drafting design tool 
(ref. 11). CAD is used to provide a more realistic image of the concept basis and maintain consistency of 
scale in contrast to schematic representations, which do not bring out details such as the introduction of 
lubrication, sealing, and assembly and mounting features as readily as CAD representations. 

Assessment of Concepts and Selection Process 
Concepts developed during this study, as well as some by others, were reviewed to identify those 

meriting further development. A ranking process was initially planned that included specific metrics 
against which the concepts would be rated. During selection discussions, several points were recognized 
within the concepts, evaluation metrics, and selection process, which resulted in an evolution of the 
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evaluation metrics that resulted in a favorable strategy for development and testing and is discussed 
below.  

Reviewing the concepts from a top-level perspective, concepts fall into three groups: 
 
(1) Inline discrete two-speed configurations 
(2) Dual-input planetary differential configurations 
(3) Variable-speed multishaft split-power configurations 

 
From the above groups, a very distinct demarcation of simplicity versus complexity emerges. The 

simplicity of the discrete two-speed drives and planetary differentials is contrasted to the complexity of 
the multishaft split-power and variable-speed drives. Complex concepts possess an obvious increase in 
the number of gears, shafts, bearings, along with associated weight gains. Also, there are increased 
manufacturing and maintainability costs and lower efficiency due to increased gear meshes and surface 
rotational area. In addition, design complexities increase difficulty in assessing overall concept merit. 

In contrast, simple two-speed configurations are the lightest, cheapest, and easiest to manufacture, 
assemble, and maintain; although, not necessarily the overall best for the application. A simple design 
with well developed configurations having field service heritage can be easily made to be more robust 
with inherent high reliability. In a good design, simplicity and robustness led to other desirable traits such 
as high reliability and high efficiency. Though a few inferences in the above are thought to be debatable 
by some, they should be considered as trends, not statements, of design laws or rules. 

Two of the several two-speed configurations rose to the top as being the best based on simplicity. As 
eluded to in the “Concept Development” section, the concepts created are readily evolvable due to the 
manner in which conceptual work was synergistically created through simultaneous concept creation. It 
was observed that any of the two-speed concepts can be extended into quasi-variable-speed 
configurations with the addition of a parallel controller and variator. The function of controller device 
would take on somewhat different rolls within the various concepts with differing power and speed 
requirements. However, the basic theme of adding variability to a discrete two-speed device is the key 
idea to be capitalized upon. This concept will be later exploited. 

Concept Selection 

Group discussion led to a plan that ranked the concepts based primarily on the “simplicity” metric. 
This plan will advance consideration and design of multiple- and variable-speed transmissions for rotary 
wing application through the development and testing of multiple test articles, applicable to a broader 
range of aircraft and providing the availability of the results, through a wider array of study than initially 
thought possible. 

The resulting plan is to proceed with parallel development of both discrete two- and variable-speed 
adaptable configurations, which are based on basic simple design concepts along with a second parallel 
study and development of controller and variator devices able to be incorporated into the above driveline 
concepts. This assures that the outcome will meet the NASA Subsonic Rotary Wing (SRW) requirements. 
The development and test plan is as follows. 

Strategy Resulting From the Selection Process 

(1) Develop the two simplest two-speed configurations and test. Test results will lead to identification 
of the best overall configuration with respect to a wider range of metrics. Evaluations will be measured 
against the scale test models and actual hands-on experience rather than paper studies and intuition. 

(2) Develop off-shoot variations to the above discrete two-speed configurations, which are variable-
output capable (meaning able to accept a modular controller and variator device). 

(3) Identify, develop, and test several concepts of variable control devices both takeoff driven 
(variator) and externally powered (controller). Apply both in the same applications for direct comparison. 
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Test articles will be of modular configurations, which can be integrated into the above discrete two-speed 
transmission configurations. 

(4) Test the basic two-input differential planetary configuration to determine power levels required 
for a 100 to 50 percent speed range and compare with the two-speed variable input-capable configurations 
to identify the best device to develop as the end configuration.  

(5) Combine the results from items 1 to 4 above into the overall best configuration and test. The 
outcome of these development steps is intended to yield both a discrete two-speed and a variable-speed 
configuration either of which can be the basis for incorporation into specific airframe applications based 
upon prevailing overall system requirements. 

 
Selected concepts and overall implementation plans are presented in the “Results” section. 

Conclusions 

Conclusions⎯Two-Speed Transmission Concepts 

Initiating and executing a required ratio change within a discrete two-speed transmission in an aircraft 
application is not the same as for most other transmission applications. For rotorcraft application, power 
transmission must be smooth and continuous, at high output power levels, and relatively high rotational 
speeds.  

The toughest challenge both in design and in the operation of a discrete two-speed transmission for 
the intended application is that of powering through the ratio change required to transition from cruise to 
hover and maintaining shaft speed synchronization between input and output. With airframe speed being 
reduced and fixed-wing lift diminishing to negligible magnitude during this change, the rotor must take 
over the tasks of providing both thrust and lift. This requires full power and speed, a significantly 
increased speed (i.e., from 50 to 100 percent output speed). The degree of difficulty in making the above 
transition may be further aggravated for both the machine and the operator or pilot in emergency 
situations. 

For the two-speed with CV shift assist concepts developed for this study, it seems that the best 
approach for using a CV element in this capacity as a synchronization device would be to only use the CV 
element for up shifting (cruise to hover, speeding up the rotor) and to use the clutch for down shifting 
(hover to cruise, slow down rotor). Operation of the CV element and clutch in this manner would serve to 
reduce the required service duty of both the CV element and the clutch resulting in maximization of 
service life. 

Conclusions⎯Variable-Speed Transmission Concepts 

Shifting between discrete gear ratios is not a desirable flight operation. Power must be smooth, 
continuous, and performed at both high power levels and relatively high speeds. From a controls 
perspective, a CV drive is better suited to rotorcraft application than a discrete two-speed drive. It is 
evident that performance of a traction drive device of any configuration is going to be highly, if not 
solely, dependent on the specified traction fluid (refs. 9 and 10), which is likely to be susceptible to 
degradation in performance with increased temperature. Slippage, causing local friction heating, may 
impact performance or even basic operation of the device. Thermal and flow management of the traction 
fluid is potentially a tricky area that would most likely require a significant amount of additional 
supporting hardware (added weight) to maintain fluid temperature. The tradeoff may not be as attractive 
as a discrete speed transmission without these idiosyncrasies. For the above reasons, full power 
transmission through fluid traction or friction is not foreseen as viable for the rotary wing applications. 

Another shortcoming of attempting to employ the CV toroidal drive concept as a variator in a split-
power drive configuration is that output rotation is reverse of input, requiring a reversing stage of some 
sort to match output to input rotation. Output of the CV element must mesh with the remainder of the 
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split-power drive. The required reversing stage is a substantial weight penalty for no other benefit than to 
correct the reversal shortcoming. Although four conventional reversing approaches utilizing gearing were 
considered for the toroidal variator concept, none were suited in creating an overall lightweight variator. 

A concept that synthesizes continuous variability through employment of differential or epicyclical 
gearing achieves the desirable aspects of a CV element with the benefits of positive mechanical drive 
while shedding the unfavorable aspects of the traction drive. Within this task two versions surfaced to the 
top, the differential drive and the planetary (epicyclic) drive. Based upon this study, the selected approach 
to achieve a positive-driven variable output with the highest degree of reliability and robustness is 
determined to be a configuration that exploits basic two-input planetary differential gearing.  

Recommendations 
Based on the conceptual configurations included in this study and tradeoff comparisons made, the 

following configurations are identified to be the best for further consideration. 

Two-Speed Transmission Configurations 

Concept 2A, “Inline Two-Speed With Double Star/Idler Reversing Stage,” and concept 3, “Offset 
Compound Gear,” are selected as being the simplest and possessing the potential for the highest degree of 
reliability of the configurations considered. The influence of two basic metrics, simplicity and reliability, 
are indicative of a configuration possessing highly desirable traits such as lightest weight, easiest to 
manufacture and maintain, lowest cost, and most robust and can also be indicative of a high-efficiency 
device based on minimization of losses due to bearing and gear friction, windage, and rotating and static 
mass. Design and testing the above two concepts will lead to the best two-speed drive. 

Variable-Speed Transmission Configurations 

Concept 5/5A, “Planetary Differential With Variable Controlled Ring Gear,” is selected as the 
simplest and most viable of the variable-speed drive configurations considered. The basic approach to 
obtain variable output through the use of a positive drive two-input differential will be exploited. In 
addition, each of the above selected two-speed drive configurations has the potential to be a variable-
speed drive configuration when used in conjunction with a parallel path variator and controller device, 
thus creating a high-reliability variable-speed drive without relying on traction drive (fluid friction). 

Summary 

Two inline two-speed drive configurations will be pursued further, the offset compound gear drive, 
and the double star/idler (reversing stage) drive. These configurations will be developed both as discrete 
two-speed configurations and as variable output speed capable, meaning able to accept a modular 
controller or variator. In addition, a planetary differential (carrier output) will be investigated relative to 
power required to vary and control ring gear speed, in effect providing CV carrier output speed with 
minimized input power. The above will be considered both as an individual research area (i.e., dual-input 
planetary differential concept) and also with consideration as being applied to the two-speed 
configurations as either a variator or speed controller. Testing will enable determination of the required 
power for either a controller or variator device and lead to a selection of the configuration with the highest 
viability (i.e., power takeoff driven or externally powered). Together this group of research test articles 
will lead to future development of both a two-speed drive configuration and a positive drive variable-
speed drive configuration. For detailed descriptions of the concepts and figures, see the appendix. 
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Test Rig Demonstration 

A scale model transmission rig test is currently being designed to test the mechanical portion of the 
above recommended candidate transmission configurations. Overall control system design is beyond the 
scope of the above. Rig test demonstration will be primarily manually controlled by the test cell operator 
and research team. This is well suited to test off-design and abrupt transient loading and speed variations. 
The adaptable test rig configuration will be developed on which a planetary differential gear system can 
be tested with focus on evaluating requirements for the second input, be it a controller, synchronizer, or 
CV traction drive. The configuration will be tested measuring the speed and power required of a second 
motor. Test objective is to determine how power requirements to control the output ratio change and 
maintain the speed ranges over a mission scenario for a given input power. By varying the second motor 
power and speed, controller rating requirements can be established. This will permit the variable-speed 
configurations to evolve in the direction of including either an internally driven variable-speed device 
powered by a gear takeoff on the input end of the transmission, or a separate externally powered speed 
controlling device. NASA Glenn is currently designing the shared test facility to be used for testing the 
selected conceptual test articles as well as being adaptable to test others. It is anticipated that the selected 
concepts will be developed and tested in the 2010 to 2011 timeframe. 
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Appendix⎯Concept Descriptions and Figures 
 Designation Concept Title and Description 

 

Component Concepts Created and Used in Driveline Concepts 
Clutches 

0 Clutch, Four-Plate (Hydraulic over Mechanical Spring) 
Clutch, Eight-Plate Dual-Acting (Hydraulic over Mechanical Spring) 

 
Rotation Reversal 

00 Reversing, Planetary⎯Double Star-Idler 
Reversing, Idler Train 
Reversing, Opposing Ring Gear and Idler (Face or Bevel Gear) 

 
Driveline Concepts 

Differential Transmission 
1 Dual-Input Planetary Differential Drive (Redundant Drive Concept) 

 
Planetary Transmission  

2 Inline Two-Speed Planetary 
2A Inline Two-Speed Planetary (Modified⎯Double Star/Idler) 
2B Two-Stage Counter-Rotating Planetary 
2C Inline Two-Speed Planetary (Modified⎯Opposing Ring Gear and Idlers) 

 
Novel Transmission 

3 Two-Stage Offset Compound Gear 
 

Double Clutch Transmission 
4A Double Clutch Drive (Variable Control⎯Alternate Version) 
4B Double Clutch Drive (Variable Control⎯Original Basis) 
 

Differential⎯Variable Transmission 
5 Differential Drive 
5A Differential Drive (Co-Rotating and Counter-Rotating) 
5B Differential Drive (Variable Control and Clutch) 
6 Rotorcraft Two-Speed Drive (Compound Gear) 

 
Drive Concepts by Others 

7 Bossler Two-Speed Planetary (ref. 3) 
 
CV Variator Concept 

999 Torus (Toroidal) Traction Drive 
 
Other⎯Planetary Differential Variator 

999G Variator (half-toroidal) Planetary Differential (Goi) 
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Clutch Concepts 

Clutch Concepts 0 
This section describes several clutch configurations developed for various driveline concepts requiring a 

clutch. A single-output element and two dual-output element clutch configurations are described.  
A disengaging and engaging device, or clutch, is needed to select between two ratios or load paths. 

While a clutch permits the selection between load paths, it does not synchronize shaft speeds for a smooth 
transition. The synchronization function must be provided by other methods, either mechanical or 
operational. Methods and devices for synchronization are discussed elsewhere. 

Description of Conceptual Four-Plate Clutch 
A concept for a clutch was created based on multiplate clutches as employed in high-performance 

automotive racing applications. The multiplate configuration permits increased torque capacity without 
increasing the overall diameter of the unit. The configuration was further enhanced based on a proposed 
design described by Bossler in reference 3. The aforementioned device is a hydraulic over mechanical 
spring configuration with the failure mode for this configuration being fail-safe to the mechanical spring 
load. A failure, or loss of hydraulic signal, is determined best to fail-safe to the high range or cruise mode 
(i.e., loss of hydraulic pressure would engage the clutch resulting in the high-range power path). This is 
also the logic of the unit described in reference 3. 

The Bossler concept was reviewed and an enhancement was incorporated relocating the introduction 
of the hydraulic release signal from passing through a face seal arrangement to the lowest practical radial 
location by relocating the hydraulic signal passage transition between the stationary and rotating 
components. Sealing between the stationary and rotating parts was changed from a face seal element to a 
radial seal element at the shaft. The basis being to reduce peripheral speed at the seal(s) for increased 
sealing reliability. 

The hydraulic release circuit enters the shaft via a sealed rotating pass-through somewhat analogous 
to the oil supply configuration of an automotive engine cross-drilled crankshaft main journal, only with 
end seals. This pass-through, where the hydraulic release circuit transitions from static housing structure 
to the rotating shaft element(s), is a design detail to be addressed in the next level of design when specific 
design parameters are known. The primary design detail is the sealing configuration. Recall that the 
location of this feed-through has been intentionally positioned at the lowest radial point to minimize 
tangential speed with the intent to optimize sealing potential. If specific driveline design warranted, 
hydraulic circuit entry could be configured to enter the output end instead of the input end by reversing 
orientation of the hydraulic passage as the shaft is one piece. 

Mechanical description.—The four-plate concept design is shown in figure 1. Friction plates are 
stacked with alternating configurations splined at either the inside or the outside diameter. An applied 
axial load transfers power across the friction faces from the splines located at either the inside or outside 
diameter. Axial clamping is provided by mechanical spring diaphragm and released via a hydraulic 
pressure circuit. 

Spring versus diaphragm and hydraulic piston configuration.—Axial force application may be 
accomplished via individual helical springs, multiple conical disc springs, or alternatively, a large central 
conical disc spring, or diaphragm. Conical disc springs offer higher reliability compared to helical springs 
with the latter also offering the highest load potential. Design of the axial force application element(s) is a 
function of the required torque capacity and friction materials to be employed. At present, it is not known 
if the design will be a dry or wet clutch. The above are dependent upon driveline concept selection and 
determined at the next level of design. 

The hydraulic release piston is an annular ring configuration (disc with central hole) housed within an 
annular volume, which is fed by multiple radial passages branched off from the central shaft feed. 
Employing multiple passages assures that the annular volume is pressure balanced for uniform hydraulic 
release force the release ring (piston) to preclude tilting and potential jamming.  
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Pilot bearing.—To ensure radial alignment between the two rotating shafts and allow for differential 
relative rotation, a rolling-element bearing is employed in the design. During clutch engagement, both of 
the rolling-element bearing races spin with the clutch assembly without relative motion (i.e., in a locked 
mode where the inner and outer races rotate at the same speed and the balls do not spin relative to the 
races). During periods of clutch disengagement, the bearing realizes the relative differential speeds of the 
decoupled shafts up to 50 percent input speed, or 7500 rpm. This leads to a unique situation where the 
bearing centrifugal loads are higher for the given relative speed. In some of the drive concepts the bearing 
will be required to operate for the major portion of the mission in this manner. This bearing will most 
likely require special internal clearances to assure longevity and mission requirements may necessitate 
positive through-flow lubrication.  

Presently, the bearing is conceived as a grease-packed sealed configuration to permit employing the 
optimal lubricant. If a wet clutch design is employed, the clutch fluid may not be the best choice for 
lubrication of the bearing, whereas if a dry clutch is employed, no lubricant source will be present for the 
bearing. The possibility exists that a wet clutch design could be employed and that the lubricant would be 
suitable for bearing lubrication in which case the bearing would be jet lubricated. A detailed bearing study 
during driveline detailed design would dictate the lubrication requirements. 

Description of the Conceptual Eight-Plate Dual-Acting Clutch 
During the creation of one of the driveline concepts, a concept evolved in which two clutches are 

employed on a single shaft to direct power flow. In the configuration, two mutually exclusive power 
inputs were to be directed to a single power output. Based upon the input selected, the output ratio would 
be different. A unique switching clutch was conceived for the application, an eight-plate dual-acting 
clutch, to replace two independent four-plate clutches and simplify control by permitting a switched 
mutually exclusive input to power a single output shaft. 

Each end of the above dual-acting clutch has a four-plate disc arrangement based upon the basic four-
plate design. The operation of the basic multidisc elements is the same as the clutch described above. By 
combining two clutches into one, the number of hydraulic release signals is simplified from two to one. 
The configuration of this clutch permits directing power to one of two paths from within a single unit in 
lieu of controlling two separate clutches. 

The clutch is operated as a hydraulic over mechanical mechanism meaning the hydraulic signal 
releases, or opens, one output element while engaging the other. Releasing the hydraulic signal causes the 
mechanical spring force to engage the opposite output element. In the initial concept, the left side (low 
speed) is hydraulically activated and the right side (high speed) is mechanically activated with the 
spring(s). The clutch is fail-safe to the mechanical spring(s) side. The function of this clutch is either the 
right or left drive is engaged while the opposite end is disengaged and fail-safe to high-speed hover range. 
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This clutch has no internal means of synchronizing output to input shaft speeds. The period, or 
duration, for range transition and clutch shifting is to be addressed and refined during the actual design of 
the clutch concept for the intended end use application. Initially, this would be appropriately scaled and 
designed to be variable as an area of study for a scale test rig demonstration. The period and smoothness 
of the range transition could be adjusted and tuned by varying damping in the hydraulic circuit of the 
clutch engagement and disengagement system and the associated controller. During this transition period 
there would be clutch slippage and heat generation. Thus, in a real application this is most likely a 
controlled variable based on revolutions per minute and power loads. 

Mechanical configuration.—The concept configuration for an eight-plate dual-acting clutch design, 
shown in figure 2, is made up of two four-plate designs.  

As in the single four-plate clutch described earlier, plates are designed such that plates are alternately 
stacked with every other disc splined at the inside diameter or at the outside diameter. An axial load 
transfers power across the friction faces from splines located at either the inside or outside diameter. 
Thrust reactions of the clutches are transferred directly to the shaft from both clutches to a combination of 
shoulders and retainer rings without additional loading to the main shaft bearings. 

As in the basic four-plate design above, axial clamping is provided by a mechanical spring or 
diaphragm and is released via hydraulic pressure. At this time it is not known if the best choice would be 
a dry or a wet clutch. This will depend upon the driveline concept in which it employed and will be 
determined at the next level of design. 

A notable difference in the eight-plate dual-acting clutch is where and how the axial clamping 
mechanism is attached. In the basic four-plate design, the mechanical spring and hydraulic release 
mechanism were contained within the outer structure of the clutch. The hydraulic release circuit enters the 
clutch via the input shaft and around the outer structure of the clutch. Hydraulic flow to the release piston 
is essentially entering the clutch radially inward through the clutch outer structure. In the eight-plate dual-
acting clutch, this system must be contained on the shaft and hydraulic flow to the release piston is 
radially outward. The above functionality required a significant reconfiguration. 

Like the four-plate clutch, the eight-plate clutch also requires a pilot bearing. However, in the eight-
plate design, two pilot bearings are required and their function is somewhat different. Instead of being 
between the shafts, they are located at the extremities of the clutch assembly. In the four-plate clutch 
design, the clutch couples two inline, or in series shafts, and the pilot bearing carries only radial load 
between the two shafts. In the eight-plate clutch design, the clutch alternately couples two pairs of 
concentric or in-parallel shafts though the clutch unit itself resides entirely on a single shaft. In this 
configuration these bearings maintain concentricity and allow for differential rotational speeds. However, 
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in addition, when the particular clutch output element is engaged, they also react the clutch axial clamping 
load and do so without internal relative motion (i.e., loaded with axial thrust in a quasi-static condition 
and spinning in locked mode without internal rotations). This is a unique loading condition for a rolling-
element bearing and will warrant close consideration.  

Alternate Variations of the Eight-Plate Dual-Acting Clutch 
Two different configurations for an eight-plate dual-acting clutch concept were created to meet 

specific requirements of the respective driveline concept. In addition, the first configuration may be used 
in-reverse by applying input and outputs at alternate locations. A figure of the later, though not used for 
any of the driveline concepts described in this paper, is included at the end for completeness. The first two 
configurations are employed in two different driveline concepts. The second eight-plate dual-acting clutch 
configuration is discussed below highlighting specific differences to the first. 

The second concept variant, shown in figure 3, is an inline configuration having a different power 
flow path than the previous concept. 

In this configuration, the “central shaft” comprises two shafts in a collinear arrangement whereas the 
previous configuration contained a single central shaft. Power is input to the shaft forward end and the 
output is directed to either the forward (high-speed) or aft (low-speed) clutch output elements, both of 
which are directed to the same output shaft. Another difference in this configuration is the addition of a 
sprag at the low-speed path power reentry gear (i.e., at the output shaft). The sprag is the avenue of 
directing the two possible power paths to the single output shaft, and also completely decouples the low- 
speed gear train when not being powered. Thus, in the high-speed range, the low-speed gear train is 
disengaged at both ends, due to the sprag, and does not spin. 

Input is applied to one shaft end and transferred either through the clutch (1:1) or to a low-speed gear 
train path when the output speed is reduced, as in our application, or increased for some other application.  

To ensure radial alignment between the two rotating shafts and allow for differential relative rotation, 
rolling-element bearings are employed. During engagement of the high-speed clutch element, the rolling-
element bearing spins with the clutch assembly but has no internal relative motion (i.e., in a locked mode 
where the inner and outer races rotate at the same speed, the balls do not spin relative to the races). 
During engagement of the low-speed clutch element, the bearing spins at the relative differential speeds 
of the decoupled shafts. The differential speed being up to 50 percent input speed. Bearing reactions are 
converse when operating in the alternate modes. Thrust reactions of the clutch are transferred directly to 
the shaft from both clutches to a combination of shoulders, retainer rings, and bearings. 

Presently, the bearings are conceived as grease-packed sealed configuration for the same reasons as 
those discussed for the previous configurations. Detailed study of the bearing during a detailed design will 
dictate the lubrication requirements. 
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In the driveline concept in which this clutch is employed, the high-speed range is achieved by 
engaging the right-hand portion of the clutch. During this mode, the left side of the clutch is automatically 
disengaged. Low-speed range is achieved by engaging the left-hand portion of the clutch. During this 
mode, the right side of the clutch is automatically disengaged. For the driveline concept application high-
speed operation, power is transferred through the high-speed clutch and the output ratio is 1:1. For low-
speed operation, the low-speed clutch engaged with power transferred through a two-stage gear reduction 
(two-stage 8.5- and 12.0-in. pitch diam.). As stated earlier, this clutch has no means of achieving input 
and output shaft speed synchronization.  

The third clutch configuration is presented side by side with the first clutch configuration in figure 4, 
highlighting an alternate power flow possibility. 

This variant configuration is identical to initial eight-plate clutch configuration, differing in only how 
the power flow is input and output. This configuration is not employed in any driveline configuration 
presented but is included for completeness of the effort expended in configuring a conceptual clutch for this 
effort and as an offering for other applications. In this variant, the power flow is opposite to that of the first 
presented with the input being applied to the shaft and the outputs taken from either of the two gears. 

Speed range changes for discrete two-speed transmission.—A procedure for operating a pair of clutched 
two-speed transmissions in a tilt rotor twin engine aircraft is described in reference 3 (sec. 6.1, p. 14). 

Table 1 summarizes speed and torque requirements for transmission and clutch components. 
 

TABLE 1.⎯REFERENCE DESIGN PARAMETERS 
Transmission and clutch design requirements 

aSpeed and torque required 
High range.............................................................15 000 rpm, 21 000 in.-lb, 5000 hp 
Low range ................................................................7500 rpm, 31 500 in.-lb, 3750 hp 

 
Maximum torque......................................................................................31 500 in.-lb 
Max. hydraulic pressure ........................................................ 1000 psi (clutch release) 

aConditions per July 24, 2007, meeting RFH/DGL/MAS. 

Reversing Concepts 

Reversing Concepts 00 
During the creation of possible driveline concepts, a need for reversing direction of rotation between 

two rotating elements arose on a few occasions. In both instances the concept looked viable except for a 
major flaw in that the output direction was opposite of that desired. Except for the reversal issue, the 
concept was viable. A correction to reverse rotation for the one operating speed range was needed. The 
second reverse rotation issue arose with the consideration of a continuously variable (CV) speed 
configuration, which for this endeavor was a CV toroidal drive. The geometry of the toroidal variator 
configuration is such that the output rotation is reverse of the input direction of rotation. For this instance, 
the need for rotation reversal would be necessary at all times. Initially reverse rotation was not seen as a 
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problem, but later, the idea of employing the above in a split-power configuration led to a need to reverse 
the output so that it could be integrated into the overall concept. 

Several schemes for reversing the direction of rotation were considered during the course of this task, 
but the following three methods for reversing output rotation emerged: First, a double star idler gear 
arrangement. The second, an offset parallel shaft spur and helical gearing arrangement. The third, 
opposing face ring gears with multiple idlers or a similar configuration employing bevel gear geometry. 

The first, the double star idler is shown in figure 5. 
The double star idler configuration, though appearing simple, is highly geometrically restrictive since 

the star gears and idler gears must fit between the sun and ring gears and properly mesh. In addition to 
basic pitch diameter restrictions, it is further restricted by diametral pitch and the limitations, which are 
placed on the number of teeth in mesh. As with any planetary system, even basic assembly may be an 
issue. The highly restricted aspect was immediately obvious during fitting to the given concept. 
Provisions for adjusting backlash could be addressed with a pivoting cam arrangement but would be 
costly and less than ideal with respect to locking the adjustment. Concepts of how to provide backlash 
adjustability were considered, but not developed due to the perceived low probability of overall viability. 
The configuration is not readily applicable to any ratio and diametral pitch. For the above reasons, 
viability in application is highly limited. 

Secondly, the offset parallel-shaft spur or helical gear configuration is shown in figure 6. 
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The offset parallel-shaft spur and helical gearing configuration employs a high number of gears, 
shafts, and bearings. Adjustability of backlash is easily addressed. However, the heaviness of this 
configuration makes it undesirable for a flight application. 

Lastly, opposing ring gears driving through multiple idlers is shown in figure 7. 
This configuration comprises opposing ring gears with multiple idlers utilizing either face gear 

geometry or possibly bevel gear geometry, is the most advantageous of the above. The face gear geometry 
is a proven configuration, relatively light, load distributing, and highly flexible with respect to the number 
of idlers that reduce gear tooth loads through load sharing. The configuration could potentially 
accommodate multiple power takeoffs should the application warrant. The idler configuration may either 
be spider supported as depicted above or the idlers could be of cantilevered pinion configuration. 
Although a basic configuration for cantilevered idlers was created, only the spider configuration is 
presented. 

Backlash adjustability for individual idlers is easily addressed with bevel gear geometry whereas it 
may be more difficult with face gear geometry. In addition, face gear geometry is more restrictive with 
respect to gear tooth strength than bevel gear geometry where tooth width can generally be increased 
reducing bending and contact stresses. 

The above is ideally suited to application as a post or secondary reversal stage to a variator path such 
as a toroidal variator. In contrast to the toroidal variator, which requires significant axial loads, the 
opposing ring face gear idler arrangement must be axial (separation) load limited. The design must 
address control and limiting the thrust loading within the gearing while conversely addressing the 
opposing requirement of high axial loads for the toroidal variator. 

Summary of Reversing Mechanisms 
From the above configurations, the following is concluded: The opposing ring gears with either the 

face gear or bevel gear geometry should be incorporated into the final selection driveline concept(s) if 
required. 

Driveline Concepts 

Driveline Concept 1—Dual-Input Planetary Differential (Redundant Drive Concept) 
This concept, as shown in figure 8, is based on a dual-input, single-output planetary differential. In 

basic form, the concept uses two inputs powering a single output. The primary input, engine number one, 
drives the sun gear while the secondary input, engine number two, drives the idler gear, spinning the ring 
gear. The configuration has rotational output when both or either individual input is spinning. The 
configuration is used in fail-safe lifting and towing devices. 
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The basic concept capitalizes on a planetary differential in which primary power is input to the sun 
gear, power is output from the carrier, and output speed variation is achieved by varying the speed of a 
special ring gear from zero to full speed with a variable-speed controller device. The ring gear is special 
in that it has both an internal pitch diameter and an external pitch diameter in an integral ring. As 
depicted, the ring gear speed is varied from full to zero speed by a second input. The second input drives 
the external pitch diameter of the ring gear. As depicted, drive ratio is 1:1 but may be varied. As depicted, 
the second input rotates in the same direction as the engine via an idler. 

It was initially conceived that the above configuration could be adapted to be a variable-speed output 
drive if the second input were replaced with a controller. 

Thus, the concept is an engine being the primary input, driving the sun gear, and a controller, the 
secondary input, driving the ring gear. This configuration is a basic variable-speed device where the 
engine is operated at full speed and output variability is achieved by varying the ring gear speed with a 
controller. The controller is operated between full speed (engine speed), or some reduced speed, if a gear 
speed increasing gear train is included, and zero or near zero speed. At a controller speed of zero, the 
carrier output speed ratio is 3.0 resulting in an output speed of one-third of that of the engine. 

If the ring gear is rotated, the carrier output speed is increased. If the controller is operated at a low 
speed equal to one-sixth of the engine speed, then the carrier output speed would be one-half the engine 
speed. The configuration is a variable-speed device with a positive method of power transfer, gear teeth. 

This concept was an impetus toward the development of some other concepts so it is presented 
primarily in the light of being a basis for other concepts. The speed controller may be a variety of possible 
devices, either externally powered and controlled, or internally driven from a power takeoff gear with 
only the output speed varied. The power takeoff may be a CV speed device as discussed elsewhere. 
Possible configurations for a speed controller are also discussed in another section. Also, a possible 
configuration for a planetary differential drive with integral CV control is presented in a later section. 
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Driveline Concept 2—Inline Two-Speed Planetary Drive 
This concept, as shown in figure 9, was one of the earliest conceived during this effort. The 

configuration is a discrete two-speed unit. Operation is in either of two discrete speeds. The configuration 
uses one clutch, one sprag, and a star planetary gear train to achieve the 50 percent speed reduction for the 
low-speed cruise mode. 

The power flow during high-speed output mode is straight-through with the main clutch engaged and 
the output ratio is 1:1. The planetary gear train free-wheels or overruns the overrunning clutch (sprag). 
The power flow during a low-speed operation is directed through the star planetary gear train into an 
overrunning clutch (sprag) by disengaging the main clutch. With the clutch disengaged, transfer of power 
through the planetary is directed to the sprag, which is now the driving element. The star planetary 
achieves a 2:1 output ratio. Power requirements for the high-speed range is full power with reduced 
power being required for the low-speed range, thus power routing is optimally directed. 

The primary shortcoming of this concept is that the direction of rotation for the low-speed range is 
opposite to that of the high-speed range. Though not explicitly stated at the beginning of this task, it was 
assumed that the input and output rotation would be the same direction. If however, they are opposite, this 
does not necessarily pose a show-stopping problem, especially for new application design. However, 
when the output of one of the two speeds is opposite to the other, this is a show stopper. 

Three concepts, 2A, 2B, and 2C, are based on the above concept except that they incorporate 
potential resolutions to the reverse output issue utilizing three different possible approaches to make the 
concept viable as a discrete two-speed transmission. 

Driveline Concept 2A—Inline Two-Speed Planetary (Modified⎯Double Star Idler) 
This configuration, shown in figure 10, evolved out of the need to reverse the output direction of 

rotation for a planetary stage with fixed planets, the basic gear train of the previous concept. The overall 
concept of this configuration is the same as the inline two-speed configuration discussed in the last 
section. The basic problem with using a planetary gear train with input via the sun and output via the ring, 
with the star gears being fixed, is that the output direction of rotation is reverse of the input rotation. 
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The most basic method to reverse the output direction of two gears in mesh is through the addition of 
an idler gear. An idler reverses rotation through the first mesh and re-reverses it through the second mesh 
without changing the speed ratio of the original two gears. 

For the planetary train, this means adding a second star gear to act as an idler. By adding a second star 
gear, serving as an idler, the direction of rotation of the output rings is reversed. The second star gear is 
mounted in an unconventional manner allowing it to act as an idler gear between the first star gear and the 
output ring gear. As an idler, the output direction of rotation of the driven gear is reversed. 

The double star idler configuration is a highly restrictive design. It is difficult to achieve the desired 
overall ratio, simultaneously obey diametral pitch constraints, and obtain a set of gears that assemble and 
mesh properly. When one is fortunate enough to get the desired ratio, obtain proper pitch meshing, and 
maintain reasonable idler speeds, a very lightweight configuration for reversing the output direction of 
rotation in this form of planetary gear train is achieved. Further discussion of the double star idler is 
contained in a separate section of reversing concepts. 

Driveline Concept 2B—Two-Stage Counter-Rotating Planetary 
The two-stage counter-rotating planetary drive configuration, as shown in figure 11, also evolved out 

of the need to reverse the output direction of rotation for a planetary stage with fixed star gears. The basic 
concept of this configuration is the same as the inline two-speed configuration except that it employs two 
stages of planetary gearing to achieve the necessary output ratio and change in direction of rotation. In 
this concept, the basis is to split the required overall ratio into two identical stages of input sun, fixed star, 
and output ring. The output from each stage does a rotation reversal. By combining two identical stages in 
series, the result of the end output is rotation in the required direction, the same as the input. 

The configuration employs standard gear meshing configuration and should be easily designed to be 
robust. The drawback to this configuration is the increased number of gears, shafts, and bearings. The 
gears and shafts may ultimately be made integral to reduce bolted connections and weight resulting in 
high costs. 
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Driveline Concept 2C—Inline Two-Speed Drive 
(Modified⎯Opposing Ring Gear and Idler Reversing Stage) 

This configuration, as shown in figure 12, also evolved out of the need to reverse the output direction 
of rotation for a planetary stage with fixed star gears. The overall concept of this configuration is the same 
as the basic inline two-speed configuration except that rotation reversal is achieved through the use of the 
basic idler coupled with face gear technology. The basis of this concept is to employ two identical face 
gears oriented in opposition transferring power through multiple idlers. By powering through the idler 
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arrangement, the face gears rotate in opposite directions just as the case of a pair of spur gears separated 
by an idler. The primary difference is the respective orientations and locations of the gear axes. The face 
gear arrangement permits input-output to be coaxial whereas the spur gear arrangement permitted a 
parallel offset axis arrangement. The face gear idler arrangement is a compact reversing stage. The 
configuration employs proven face gear geometry meshing configuration and it should be possible to 
design this as a robust reversing stage. 

Driveline Concept 3—Offset Compound Gear 
The offset compound gear drive, as shown in figure 13, is an inline discrete two-speed device. This 

concept was evolved from the double reversing idler concept which employed a double idler(s) between 
the pitch diameter of a smaller and larger gear pair. 

The configuration is based on a novel approach of off-setting and embedding a gear mesh. The heart 
of the concept is the offset compound gear, which uses identical pitch diameter in both an internal 
configuration on the input end and an external configuration on the output end, thus allowing it to mesh 
with both a smaller external gear and a larger internal gear in series resulting in an inline reduction gear 
set. The above geometry permits the compound gear to be offset and mesh with the input gear and the 
output gear both of which are on the same centerline. The configuration provides a 50 percent reduction 
in two stages, or meshes, utilizing only three gears replacing multiple gears in a conventional planetary 
stage. The concept will require very robust and ultimately wide gears. Although the concept is simplistic 
from the gearing perspective, the challenge is how to support the offset compound gear on bearings. 

Low-speed operation is accomplished in two meshes: a 5.0-in.-pitch-diameter input gear to 7.50-in.-
pitch-diameter intermediate gear (0.667 reduction mesh) and a 7.50-in.-pitch- diameter intermediate gear 
to a 10.00-in.-pitch-diameter output gear (0.750 reduction mesh). The resultant low speed ratio is 2:1, 
(output speed = 0.500 = 0.667 stage one reduction by 0.750 stage two reduction). The input and output 
shafts spin on rolling-element bearings while the intermediate gear shaft (the offset compound gear) spins 
on fluid film journal bearings. Power transferred through the gear train drives a sprag. During this mode 
of operation, the main clutch is disengaged. 

The high speed, 1:1 ratio, is direct drive through the primary clutch. During this mode of operation, 
the gear train free-wheels an overrunning sprag. A slight reduction in input speed is required to overrun 
the sprag. The above gear train always spins. An alternative to spinning these gears in both speed ranges 
might employ the sprag at the forward end of the gear mesh allowing the gear train to quasi-idle when not 
transferring power. 
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The concept was initially conceived with v-groove rollers supporting the offset compound gear both 
radially and axially. External rollers led to an overall large cross section. Internal roller support was also 
explored. The size of the rollers relative to the gears being supported also led to rotational speed and load 
issues. Whether roller support was external or internal⎯roller support was not well received due to 
potential compressive stress (contact) fatigue issues. Alternate methods of support considered included 
direct support via idler gears. Once again, the concept was not well received. Gas foil bearings were 
considered but were not determined to have the required load capacity. A latter attempt, to stretch the 
forward end of the concept to permit the introduction of fluid film journal and thrust bearings, seems 
workable. 

While the concept was initially conceived as a discrete two-speed device, it is adaptable to a quasi-
variable-speed drive using a speed synchronizer to power and speed up the output shaft to match the 
speed of the input shaft. With some minor modifications the above configuration can be explored as a 
variable-speed transmission. The proposed configuration is depicted in figure 14. 

Driveline Concept 4A—Double Clutch Drive (Variable Control⎯Alternate Version) 
Two configurations were based on the basic dual clutch configuration shown in figure 15. Figure 16 

shows the first of two concepts based on the schematic in figure 15. 
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The dual-clutch variator split power drive (alternate configuration), shown in figure 16, is an inline 
configuration. This is a significant departure from the basic concept (fig. 15). Gear reduction is 
accomplished using two-stage by 1.412 ratio (two-stage by 8.5-in.-pitch diam. and 12.0-in.-pitch diam.) 
reduction. Gears on both the input shaft (high-speed shaft) and loop shaft (low-speed shaft) are rigidly 
coupled and spin in rolling-element bearings. A third shaft carries a CV element, which is used to 
transition between the high- and low-speed ranges. This configuration uses two clutches, each on a 
separate shaft. High-speed range is achieved with the central high-speed clutch engaged and the low- 
speed clutch disengaged. Conversely, low-speed range is achieved with the low-speed clutch engaged and 
the high-speed clutch disengaged. During high-speed operation, power is transferred through the high-
speed clutch and the output ratio is 1:1. During low-speed operation, the low-speed clutch is engaged and 
power is transferred through two-stage gear reductions of 1.412:1 (8.5-in.-pitch diam. and 12.0-in.-pitch 
diam.). While in either the high- or low-speed range, one of the clutches is always engaged while the 
other is disengaged. Other than during transition, power is either transferred through directly (main clutch 
engaged) or through the gear mesh (opposite clutch engaged). Clutches operate mutually exclusively. 
During transition between high and low speed, power is transferred through the CV element until input 
and output shaft speed synchronization is achieved. 

A positive aspect of this configuration is that during high-speed operation, or hover mode, power is 
transferred via direct drive without going through a gear mesh. During low-speed operation, or cruise 
mode, where full power is not required, power is passed through the gear train. Power requirements for 
the high-speed range are full power with reduced power required for the low-speed range, thus power 
routing is optimally directed. 

Driveline Concept 4B—Dual Clutch (Variable Control⎯Original Basis) 
The dual-clutch variator split power drive (original basis configuration), shown in figure 17, is the 

second of two variations based on a basic dual clutch configuration. 
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In this variation, input and output shafts are offset and gear reduction is accomplished by a single-
stage 2.0:1 ratio (8.0-in.-pitch diam. and 16.0-in.-pitch diam.). The gears on the input shaft are rigidly 
coupled to the shaft whereas the gears on the central shaft ride on rolling-element bearings and are 
coupled to a central clutch. A third shaft carries a CV element, which is used to transition between the 
high- and low-speed ranges. Other than during transition, power is transferred through the gear trains. 

Whereas the previous configuration employed two clutches, each on a separate shaft, this 
configuration employs a unique switching clutch located on the central shaft. The configuration of this 
clutch permits directing power to one of two paths from within a single unit in lieu of controlling two 
separate clutches. The clutch channels power to either the right or left side. Clutch design is such that 
either the right or left side of the clutch is exclusively engaged while the opposite side is automatically 
disengaged. The right side, or low-speed side, is hydraulically activated whereas the left side, or high- 
speed side, is mechanically activated with the spring(s) being fail-safe to the high-speed side.  

While in either the high- or low-speed range, one side of the clutch is always engaged while the other 
is disengaged. During transition between high and low speed, power is transferred through the CV 
element until input and output shaft speed synchronization is achieved. The period for the range transition 
and the clutch shifting will need to be refined during the actual design of the clutch concept. This would 
be accomplished by adjusting and tuning the damping in the hydraulic circuit of the clutch. 

Speed changes are made via a CV traction drive to achieve speed synchronization of the central shaft 
with the desired gear train (power path). High-speed operation⎯the power is transferred through the high-
speed clutch and the output ratio is 1:1. During low speed operation, the low-speed clutch is engaged and 
power is transferred through a single-stage 2.0:1 (8.0-in.-pitch diam. and 16.0-in.-pitch diam.). 

For high-speed operation (hover mode) and low-speed operation (cruise mode), power is always 
transferred through gear mesh. This is in direct contrast with the other dual clutch configuration in which 
power transfer for high-speed mode is directly through the main clutch and not through a gear mesh. 

Driveline Concept 5—Differential Drive (Basic) 
The differential planetary drive, shown in figure 18, is a basis for a family of concepts that capitalizes 

on the output variability of a dual- to single-output differential with one input acting as a controller. 
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The basic concept is a planetary differential in which primary power is input to the sun gear, power is 
output through the carrier, and speed variation is achieved by varying the speed of a special ring gear 
from zero to full speed with a variable-speed controller device. The ring gear is special in that it has both 
an internal tooth pitch diameter and an external tooth pitch diameter contained within an integral ring 
(i.e., teeth on both the inside and outside diam.). As depicted, the ring gear speed is varied from zero to 
full engine speed by a speed controller. The speed controller drives the external pitch diameter of the ring 
gear. As depicted, the controller ratio is 1:1 but may be varied in design permitting selection of the 
optimal power and speed range. As depicted, the controller rotates in the opposite direction of the primary 
input but may be the same if an idler is employed. The speed controller may be a variety of possible 
devices either externally powered and controlled or driven from a power takeoff from the primary power 
with only output speed being controlled. The power takeoff may be a CV speed device as discussed 
elsewhere. A possible configuration for a planetary differential drive with integral CV control is presented 
in a later section. Possible configurations for a speed controller are also discussed in another section. 

The speed controller is operated between zero and full engine speed or it may operate a maximum 
speed lower than that of the engine if a suitable gear train is incorporated. 

A primary advantage of the two-input planetary differential configuration is that it is a variable-speed 
device with power transfer through gear teeth. Unknowns at this point are the optimal power and speed 
requirements for the controller. If this avenue is pursued, prudent testing to aid in the identification and/or 
design of a controller element would be in order in the form of a basic test rig, which would mount a 
planetary train consisting of a sun-star-ring gear train and determine the power requirements to control the 
ring speed. 

Operation of the unit is as described below: 
 
High-speed mode 
 Engine 1 and controller 2 rotate at the same speed⎯output speed is same as E1 and C2. 
 Planetary stage rotates as a locked unit without relative motion between the gears. 
 Output speed equals whatever speed that both E1 and C2 are operated. 

 
Low-speed mode 
 E1 rotates at full speed and C2 speed is reduced. 
 As C2 speed is reduced, the output speed is also reduced. 
 When C2 speed is zero, the carrier output speed is one-third that of E1. 

NASA/TM—2009-215456 27



By varying the C2 speed, output speed is continuously varied between the high- and low-speed 
ranges. 

This configuration should be tested for the desired ratio while measuring the speed and power 
required. By varying the second motor power and speed, the speed controller rating requirements can be 
established. This would permit the concept to evolve in the direction of either an internally driven 
variable-speed device powered by a gear takeoff on the input end of the transmission or a separate 
externally powered speed controlling device. 

As with concept 1, the concept as shown has 3:1 ratio output when ring gear is at rest; one can obtain 
50 percent speed output with controller rotating at 16.67 percent of E1. 

Driveline Concept 5A—Differential Drive (Co- and Counter-Rotating) 
The differential drive concepts, shown in figure 19, permit either a co-rotating (same direction) or 

counter-rotating configuration dependent upon application requirements. 
This concept retains much of the advantage of the basic two-input differential configuration in that it 

is a variable-speed device with power transfer through gear teeth. In the previous concept, ring gear speed 
was varied with an external variable-speed controller device. In this concept, speed variation is achieved 
internally through the use of a sprag and brake. 

The sprag provides a basic automatic shifting function based on input speed. Above the sprag 
engagement speed, a condition of split power flow is realized with a portion transferred through the sun 
gear and a portion through the sprag and on to the ring gear. By slowing input speed near and below the 
sprag design speed, power is entirely transferred to the sun gear. With the aid of a brake, the ring gear is 
slowed down resulting in reduced planetary carrier output speed. Ultimately stopping the ring gear 
permits the carrier output speed to achieve the low-speed output range. At this point, all power transfer is 
completely through the planetary system. Although full power is being passed in through the planetary 
gear train, it is being done so at a reduced level. Reduced power requirement is a result of the vehicle 
speed being sufficient to realize wing lift. Thus, the engines need only provide power for forward flight as 
the power required for lift is transferred from the rotors to the wings.  

Transitioning from cruise to hover requires a slow release of the brake and simultaneous increase in 
input speed to engage the sprag, thus reinitiated split power flow. Although the mechanical aspects of the 
range changes are present with this concept, the dynamics of the range changes are unknown. With close 
control of input speed change, coupled with rate of braking in both application and release, smooth and 
continuous transitions should be realizable. If the required degree of transitional smoothness be 
unacceptable, the concept is adaptable to accommodate the addition of a speed controller to aid in 
improving synchronization of shaft speeds during changes in speed range.  

Unknowns at this point: What is the power split and just how smooth are the transitions between the 
speed ranges? Some prudent experiments to aid in the identification and/or design of such a controller 
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element would be to set up a basic test rig, which would mount a planetary train consisting of a sun-star-
ring gear train and determine the power requirements. This configuration should be tested for the desired 
ratio with the speed, power required measurement, as well as dynamics measurements range change 
dynamics. This would permit the concept to evolve in the direction of either a speed controller⎯less 
relying on the controlled engagements of the sprag and brake or if a speed control device is required. 

As with concept 1, the concept as shown has 3:1 ratio output when ring gear is at rest; one can obtain 
50 percent speed output with ring gear rotating at 16.67 percent of input speed. 

Driveline Concept 5B—Differential Drive (Variable Control) 
The differential drive with CV element, shown in figure 20, is a split-power parallel three-shaft 

system. The figure represents the concept as being coplanar for presentation purposes only; it is not. It 
comprises a central input power shaft that drives a sun gear on which a centrifugal under-running sprag is 
mounted on the input end. A secondary clutch shaft is driven by the above sprag in parallel with the main 
shaft. The output of secondary clutch shaft drives the ring gear in the planetary gear system. The output of 
the planetary system is the carrier. With the above basic parallel shaft system, two speeds can be achieved 
by either driving in parallel through the clutch and sprag for high-speed 1:1 drive, or directly through the 
clutch while the sprag overruns. The later providing a low speed 3:1 drive when the ring gear is 
stationary. The basic speed change is a function of the ring gear speed. A brake is included to positively 
lock in the low-speed range. The above configuration allows for two different output speeds. By 
introducing a tertiary shaft with a takeoff-driven CV element, the above parallel shaft system becomes a 
CVT (i.e., a two-input differential planetary) with a speed range of 100 to 50 percent of the input speed. 
Basic operation is outlined below: 

High speed⎯In the high-speed mode, power is split between the central shaft and the main clutch 
shaft and planetary gear train. In this mode; however, the gear train rotated as a locked train without any 
internal relative motion. Power is combined at the planetary gear train and output through the carrier. 
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Low speed⎯In the low-speed mode, power is transferred through the central shaft and planetary gear 
train. In this mode, only the ring gear is locked and power is transferred through the planetary system with 
the output through the carrier. 

Speed transition⎯In the transitional mode, power is split between the main shaft and the CV element 
combining in the planetary gear train. Partial power is transferred from the main shaft driving the sun gear 
and partial power is transferred from sprag to CV element to the ring gear. The above power split is 
combined at the planetary gear train and output through the carrier. 

As with concept 1, the concept as shown has 3:1 ratio output when ring gear is at rest and can obtain 
50 percent speed output with ring gear rotating at 16.67 percent of input speed. To achieve 50 percent 
would require the CV element to provide the required power. 

Driveline Concept 6—Two-Speed Drive (Compound Gear) 
The two-speed drive (compound gear) concept, shown in figure 21, is a discrete two-speed 

configuration, which includes a speed synchronizer device (to be determined) to match shaft speeds when 
engaging and disengaging clutches to achieve the smoothest speed range transitions possible for two-
speed discrete device. This configuration utilizes a conceptual dual-output element clutch configuration, 
which has the capability to direct output power to either of the two output elements controlled from 
within a single clutch unit. It operates in a mutually exclusive manner. The clutch configuration depicted 
in this concept was initially conceived for another transmission concept was reconfigured for this one. 
Clutch operation is described below as it pertains to this concept. Several concept clutches are discussed 
in more detail in the previous dedicated section. 

This is an inline configuration. Low-speed gear reduction is accomplished using a two-stage by 1.412 
ratio (8.5-in.-pitch diam. and 12.0-in.-pitch diam.) reduction. Power is transferred through a clutch, a 
double-reduction gear train, and then through the sprag. High-speed (1:1) output is transmitted directly 
through the clutch. The gear at the input shaft (high-speed shaft) rides on rolling-element bearings and is 
coupled directly to the high-speed output element of the concept dual-output element clutch. The gears on 
the loop shaft (low-speed shaft) are rigidly coupled to their shaft, which spins in rolling-element bearings. 
A third shaft, identical to the above loop shaft, is coupled to a speed synchronizing device, which is used 
to smooth the transition between the high- and low-speed ranges.  
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A high-speed range is achieved by engaging the clutch high-speed output element while the low-
speed output element is disengaged. Conversely, a low-speed range is achieved with the clutch low-speed 
output element engaged and the high-speed output element disengaged. During high-speed operation, the 
power is transferred through the clutch high-speed output element and the output ratio is 1:1. During low-
speed operation, the clutch low-speed output element is engaged and power is transferred through two 
gear reductions of 1.412:1 in series (8.5-in.-pitch diam. and 12.0-in.-pitch diam.). Speed matching is 
achieved through shaft speed matching using a synchronizing device (e.g., CV traction drive) to achieve 
speed synchronization between the clutch power input shaft and either of the two power output elements. 
While in either high- or low-speed range, one of the clutch output elements is always engaged while the 
other is disengaged. Clutch design dictates engagement of only one range while the other is automatically 
disengaged. Other than during transition, power is either transferred through directly (high-speed output 
element engaged) or through the gear mesh (low-speed output element engaged). 

The only exception to mutual exclusive operation of the output elements is the short duration of time 
during the shift. In the concept this period, or duration, and the resulting smoothness is a key factor that 
will need to be tuned in the analysis of the overall system dynamics. Smoothness can be improved at the 
cost of an increase in clutch slippage. Ideally, during transition between high and low speed, power is 
transferred through the speed synchronizer (CV element) until input and output shaft speed 
synchronization is achieved. If the speed synchronizing device is incapable of passing the required power, 
then clutch slippage can be tuned to approach a smoother transition. The transition from low to high speed 
being the most severe of the two speed changes as this would commonly be a full-power transition. 

Positive aspects of this configuration are that during high-speed operation, or hover mode, power is 
transferred via direct drive without going through a gear mesh. In addition, the sprag is being overrun, 
thus the gears within the low-speed loop do not spin. During low-speed operation, or cruise mode, where 
full power is not required, power is passed through the gear train. Thus gearing may possibly be of lighter 
duty resulting in lower weight as well as lower cost in hardware and maintenance. Power requirements for 
the high-speed range are full, and reduced power is required for the low-speed range, thus, power routing 
is optimally directed. This assumes that the primary mission is short range. 

Proposed operation for a tilt rotor application (per Robert F. Handschuh) 
  
Start engine with hydraulic clutch #1 engaged 
 Input speed = output speed 
 Sprag clutch overruns 
 Speed synchronize and gears 1, 2, 3, and 4 do not spin 

 
Transition from helicopter mode to cruise 
 Feather back the rotor speed (reduced torque required) 
 Start to spin up the speed synchronizer and gears 
 Throttle back the engine 
 When sprag starts to drive, release clutch #2 
 When engine input speed matches clutch #1 speed, lock up clutch #1 
 Increase engine speed back to full throttle 

 
Transition from cruise to hover 
 Reduce torque at propeller (feather propeller) 
 Reduce engine speed 
 When engine speed equals output shaft speed, release clutch #1, engage clutch #2, and overrun 

sprag 

Driveline Concept 7—Two-Speed Planetary Drive (ref. 3) 
The Bossler concept is shown in figure 22. The high- and low-speed power flows are shown in  

figure 23. 
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Bossler Planetary 
One Glenn concept is similar in some respects yet quite different with advantage 
 Bossler 

− 100 percent/85 percent 
 Glenn 

− 100 percent/50 percent (Concept 2B, “Two-stage counter-rotating planetary”) 
 Similarities 

− Both utilize multiple planetary stages 
− Both would use similar mode of changing speed ranges (clutch and brake) 

 Differences 
− Bossler uses a brake and Glenn uses a clutch; both require slippage 

 Glenn advantages 
− Hover power 1:1 going through the locked multidisc clutch⎯not gear train 

• Highest loading does not go through the gear train in Glenn concept 
• Highest loaded gears are sun gears in the Bossler concept 

 Glenn disadvantages 
− Complex hydraulic system required to release clutch (seals prone to failure) 

• Clutch is disengaged during cruise (hydraulic lines pressurized) 
• Desirable to have the ability to lock out the clutch  

Traction Drive Variators 

Variator Concept 999—Variator (Toroidal) 
Utilizing a CV drive as a speed-changing device, or variator element, in a split-power two-speed 

transmission is considered a viable configuration to meet the requirements of this task. The CV drive (CV 
element) is used to transition between two fixed speeds of a two-speed device. The benefit of this 
configuration is to capture the highly desirable aspects of a CV traction device with its disassociation 
from the constraints of gear tooth geometry, fixed ratios, yet exploit the power capacity and reliability of 
gearing. In addition, capitalizing on other benefits of variable-speed ratio such as smooth and continuous 
transition yet having positive mechanical drive for the major portion of the mission (i.e., high- and low-
speed output range). Operation in the high and low speeds comprises the majority of any mission. The 
speed range transition period, a minor portion of the operational mission, is primarily important as a 
highly desirable operational characteristic, that being smooth and continuous speed range changes. 

Based upon review of many variable-speed mechanisms, a configuration of the toroidal-drive-based 
variator is selected as the most plausible to meet the objectives of the above configuration. The development of 
a toroidal variator for this task is limited to geometric concepts and integration into the concept drivelines. A 
basic conceptual layout of the variator was made to the scale of the driveline concepts being pursued. The 
initial concept for a toroidal unit was based on a textbook schematic in figure 24. 

The configuration comprises two opposed concave toroidal contoured discs between multiple rollers. 
The volume contained between the two concave surfaced discs is in the form of a torus. The rollers, 
located within the torus volume between the two discs, transfer torque from one disc to the other via 
traction or friction force. In application, power is transmitted through fluid traction or fluid shear, not 
metal-to-metal friction. The rollers are mounted on individual trunnions, which are synchronized, thus 
permitting them to be simultaneously pivoted. When the rollers are oriented parallel to the axis of rotation 
of the discs, contacting points on each disc are at the same radius and the resulting drive ratio is 1:1. By 
pivoting the rollers toward the aft disc (clockwise), the contact radius on the forward disc is greater than 
when the rollers are parallel to the axis of rotation and conversely the contact radius at the aft disc if 
smaller. This results in the aft disc spinning faster than the forward disc. When the rollers are pivoted the 
opposite direction (counter clockwise), the aft disc spins slower than the forward disc. The ratio is 
proportional to the angle of the roller pivot. 
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Initially, a basic scaled concept was created based on a two-roller configuration with a crank and 

bevel gear arrangement to angle the rollers. Although this unit in itself was not deemed acceptable for 
full-power transfer, it was felt that it could be used as a transitioning element with a differential gear train 
of some sort in a split-power configuration. With that application in mind, the concept was evolved into a 
three-roller configuration. Roller pivoting was again accomplished with bevel gearing. 

Upon continued search of the open literature, it was discovered that a variable-speed transmission 
based upon toroidal drive was patented by Adiel Dodge from 1932 to 1939. Figure 25 shows a small 
portion of the artwork depicting the basic two-roller configuration.  

It should be noted that the above is much more complete, insightful, and elegant than the image above 
might suggest. Dodge’s considerations included configurations for a three-roller system, and reversing the 
output rotation that were independently paralleled. 

The above concept is considered a full toroidal configuration. In the open literature, similar variable-
drive configurations can be found employing a half-toroidal geometry where the rollers are contoured 
such that the contact (line of action) is at an angle with the roller axis of rotation and contacts the torus 
below its inflection point (lowest point on the contour) on the forward and aft contoured discs. The 
geometry of the half-toroidal is smaller, therefore, is lighter and has less inertia. In practice, it may not 
necessarily be able to transmit the most power. It would seem that the geometry is such that side loads on 
the rollers are higher than that of the full toroidal configuration. The contact force acts normal to the 
surface and the vector does not pass through the axis of the roller thus side loads are much higher than 
that of the full-toroidal variator. The rollers employed in a half-toroidal variator configuration rotate on a 
smaller contact radius than that of a full toroidal. The angle through which the rollers are rotated to 
achieve the output ratio is less of an angle and as a result has less overall ratio range potential. In both the 
full- and half-toroidal configuration, the neutral position of the rollers, or 1:1 ratio position, is when the 
rollers are oriented parallel to the axis of rotation of the discs, (i.e., their pivot axis is perpendicular to the 
overall drive axis). 

As in the multiplate clutch, where the torque capacity is increased by adding plates, the capacity of 
the toroidal drive can similarly be increased by stacking (ref. 8). Though not necessarily for this 
application, a potential advantage of the twin toroidal drive is that power may be taken off between the 
twins in lieu of the end. The down side is that the output rotation is again reversed. Though, if output is 
taken in this manner and passed through a planetary gear train, the output rotation direction can be 
reversed. A configuration such as this was considered but is not presented. 

Applying a CV drive as a variator in the split-power two-speed configurations created to meet the 
objectives of this effort requires that the CV element output be the same as the input. A major drawback 
in applying the basic torus drive configuration as a variator in a split-power transmission configuration is 
that the output disc rotates opposite to that of the input disc. The drawback being a reversing feature is 
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needed if the concept is to be employed in parallel as part of a power split shaft system. The reversing 
feature is ultimately additional complexity, weight, and frictional losses. A few concepts for reversing the 
direction of output rotation were considered for this specific application and another. These are discussed 
in another section. 

Figure 26 shows a conceptual torus-based variator employed in a few of the driveline concepts 
developed for this task. This configuration, one of several generated, is an end-output configuration with a 
reversing gear system also depicted. Design and development of a toroidal variator will be a formidable 
task in itself. 

Variator Concept 999—CVT Goi, Tatsuhiko 
A search of the open literature revealed another variator drive concept (ref. 8). It is described as 

“…equipped with a power split type CVT, which consists of a high-speed traction drive variator (half-
toroidal type) and a planetary differential gear unit.” 

The above paper presents a CV drive element, which incorporates an inline twin CV configuration. 
The benefit of the above is that it doubles the torque capacity of the CV element by increasing the number 
of traction rollers. Doubling the torque capacity is accomplished and at the cost of also nearly doubling 
the weight of the CV element. Although a severe penalty in weight, this configuration is very desirable 
due to the low torque capacity of the CV element drive in general. The above uses the CVT as a range 
transitioning element in lieu of attempting a configuration which is a full-time traction drive CVT.  

An intriguing aspect of the paper is that the basic configurations share some similarities to NASA 
concepts generated independently. Although Goi’s work precedes the NASA concepts by over 10 years 
and the maturities of the work are vastly different, it is reinforcing to see that some of the directions are 
somewhat similar in design philosophy. This is taken to suggest the best configuration for the application 
will most probably incorporate these features.  

 
 Incorporating a planetary differential is the right path to pursue. 
 Striving for the most robust CV element possible and using it only during transition or in a split-

power transmission mode.  
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Similarities between the Goi and NASA CV concepts.—Goi (fig. 27) always runs power through the 
planetary train and CV drive. The NASA planetary differential concept uses a single clutch and spins 
gears for high speed. Goi (fig. 28) uses two clutches and has a direct drive for high speed. NASA’s dual 
clutch concept uses two clutches and also has direct drive for high speed. Goi uses the half-toroidal drive 
and NASA uses the full-toroidal drive. Why? Full-torus appears better than half torus considering axial 
forces⎯but why doesn’t Goi use it? 

In lieu of a true CVT traction drive, a key to a viable CVT may be to synthesize variability with a 
planetary gear system and a variable-speed element to control system output speed (e.g., a sun drive with 
carrier output and variable ring speed). 

NASA/TM—2009-215456 36



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188  

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this 
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB 
control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
01-03-2009 

2. REPORT TYPE 
Technical Memorandum 

3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 
Variable/Multispeed Rotorcraft Drive System Concepts 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Stevens, Mark, A.; Handschuh, Robert, F.; Lewicki, David, G. 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 
WBS 877868.02.07.03.01.01 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
National Aeronautics and Space Administration 
John H. Glenn Research Center at Lewis Field 
Cleveland, Ohio 44135-3191 

8. PERFORMING ORGANIZATION
    REPORT NUMBER 
E-16649 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
National Aeronautics and Space Administration 
Washington, DC 20546-0001 
and 
U.S. Army Research Laboratory 
Adelphi, Maryland 20783-1145 

10. SPONSORING/MONITORS
      ACRONYM(S) 
NASA, ARL 

11. SPONSORING/MONITORING
      REPORT NUMBER 
NASA/TM-2009-215456; ARL-TR-4758 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Unclassified-Unlimited 
Subject Categories: 07 and 37 
Available electronically at http://gltrs.grc.nasa.gov 
This publication is available from the NASA Center for AeroSpace Information, 301-621-0390 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Several recent studies for advanced rotorcraft have identified the need for variable, or multispeed-capable rotors. A speed change of up to 50 
percent has been proposed for future rotorcraft to improve vehicle performance. Varying rotor speed during flight not only requires a rotor 
capable of performing effectively over the extended operation speed and load range, but also requires an advanced propulsion system to 
provide the required speed changes. A study has been completed, which investigated possible drive system arrangements to accommodate 
up to the 50 percent speed change. These concepts are presented. The most promising configurations are identified and will be developed for 
future validation testing. 
15. SUBJECT TERMS 
Rotorcraft; Variable speed; Propulsion 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
      ABSTRACT 
 
UU 

18. NUMBER
      OF 
      PAGES 

44 

19a. NAME OF RESPONSIBLE PERSON 
STI Help Desk (email:help@sti.nasa.gov) 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS 
PAGE 
U 

19b. TELEPHONE NUMBER (include area code) 
301-621-0390 

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18








