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Updating the Finite Element Model of the Aerostructures 
Test Wing Using Ground Vibration Test Data 

Shun-fat Lung * and Chan-gi Pak† 
NASA Dryden Flight Research Center, Edwards, CA 93523-0273 

Improved and/or accelerated decision making is a crucial step during flutter certification 
processes. Unfortunately, most finite element structural dynamics models have uncertainties 
associated with model validity. Tuning the finite element model using measured data to 
minimize the model uncertainties is a challenging task in the area of structural dynamics. 
The model tuning process requires not only satisfactory correlations between analytical and 
experimental results, but also the retention of the mass and stiffness properties of the 
structures. Minimizing the difference between analytical and experimental results is a type 
of optimization problem. By utilizing the multidisciplinary design, analysis, and optimization 
(MDAO) tool in order to optimize the objective function and constraints; the mass 
properties, the natural frequencies, and the mode shapes can be matched to the target data 
to retain the mass matrix orthogonality. This approach has been applied to minimize the 
model uncertainties for the structural dynamics model of the Aerostructures Test Wing 
(ATW), which was designed and tested at the National Aeronautics and Space 
Administration (NASA) Dryden Flight Research Center (DFRC) (Edwards, California). This 
study has shown that natural frequencies and corresponding mode shapes from the updated 
finite element model have excellent agreement with corresponding measured data. 

Nomenclature 
AR = aspect ratio 
ATW = aerostructures test wing 
CG = center of gravity 
DFRC = Dryden Flight Research Center 
DOF = degrees of freedom 
DPR = driving point residues 
d = number of degrees of freedom 
E = effective independent matrix 
EI = effective independence 
F = original objective function 
FE = finite element 
FIM = Fisher information matrix 
G = subscript for target values (or measured quantities) 
GA = genetic algorithm 
GVT = ground vibration test 
gi = inequality constraints 
hj = equality constraints 
IXX = computed x moment of inertia about the center of gravity 
IXXG  = target x moment of inertia about the center of gravity 
Ixy = computed xy moment of inertia about the center of gravity 
IXYG = target xy moment of inertia about the center of gravity 
IYY = computed y moment of inertia about the center of gravity 
IYYG = target y moment of inertia about the center of gravity 
IYZ = computed yz moment of inertia about the center of gravity 
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IYZG = target yz moment of inertia about the center of gravity 
IZX = computed zx moment of inertia about the center of gravity 
IZXG = target zx moment of inertia about the center of gravity 
IZZ = computed z moment of inertia about the center of gravity 
IZZG = target z moment of inertia about the center of gravity 
Ji = objective functions (optimization problem statement number i = 1, 2, … , 13) 
K = stiffness matrix 

 = orthonormalized stiffness matrix 
KE = kinetic energy 
KE ik  = kinetic energy associated with the i-th DOF in the k-th target mode 
L = new objective function 
l = number of modes 
M = mass matrix 

 = orthonormalized mass matrix 
MAC = modal assurance criterion 
MDAO = multidisciplinary design, analysis and optimization  
m = number of sensors (or number of measured degrees of freedom) 
n = number of modes to be matched 
q = number of inequality constraints 
r = number of equality constraints 
SEREP = system equivalent reduction expansion process 
SMI = structural mode interaction 
T = transformation matrix 
W = computed total mass  
WG = target total mass  
X = x-coordinate of computed center of gravity 

 = design variables vector 
XG = x-coordinate of target center of gravity 
Y = y-coordinate of computed center of gravity 
YG = y-coordinate of target center of gravity 
Z = z-coordinate of computed center of gravity 
ZG = z-coordinate of target center of gravity 
ε = small tolerance value for inequality constraints 
λ = Lagrange multiplier 
Φ  = computed eigen-matrix ( ) 
ΦG = target eigen-matrix ( ) 

 = Reduced modal matrix ( ) 
φi = i-th mode shape ( ) 
Ωj = j-th computed frequency 
ω k  = corresponding natural frequency 

I. Introduction 
test article called the aerostructures test wing (ATW) was developed and flown at the National Aeronautics and 
Space Administration (NASA) Dryden Flight Research Center (DFRC) (Edwards, California) on the 

McDonnell Douglas NF15B test bed aircraft as shown in Fig. 1 for the purpose of demonstrating and validating 
flutter prediction methods during flight.1 The first aerostructures test wing (ATW1), flown in 2001, was originally 
developed to directly address requests for better flight flutter test techniques by providing a functional flight test 
platform. While the first series of tests was extremely successful, the minimum amount of instrumentation 
(structural accelerometers and strain gages) was chosen to satisfy the scope of the program. These sensors were 
limited in their capability to answer questions of aeroelastic interactions, sources of nonlinearity, physical 
mechanisms of aeroelastic coupling, and feedback dynamics between the structure and aerodynamics.  
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Figure 1. Aerostructures test wing mounted on the NF15B for flight flutter testing. 

 
 A second aerostructures test wing (ATW2), as shown in Fig. 2, was built for the demonstration of state-of-the-art 
sensor technologies for simultaneous; distributed; collocated measurement of shear stress (skin friction); steady and 
unsteady pressures; and structural strain and accelerations for mode shapes as well as other modal properties. Like 
the ATW1, the ATW2 was flown on the NF15B aircraft. In order to have a successful prediction of the onset flutter, 
the structural dynamics finite element (FE) model has to be robust and accurate. The ground vibration test (GVT) is 
used as one of the validation methods for robustness of the FE model. 
 

 
Figure 2. Aerostructures test wing 2. 

 
The primary objective of this study is to obtain the GVT validated structural dynamics FE model for minimizing 

model uncertainties in the predicted flutter boundaries. Discrepancies are common between the test data and the 
analytical results. However, the FE model can be fine tuned through the use of the GVT data. Accurate and reliable 
GVT results are important to this adjusting process. Selection of measurement locations can be critical to the success 
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of an experimental modal survey. So, different sensor and exciter placement algorithms for pre-test evaluations were 
investigated to ensure the quality of the modal test.  

Manual trial-and-error methods provide an inefficient approach to correlate the FE model with test data. A more 
efficient approach is to use a mode matching technique for the model refinement of both ground and flight-based 
models. A model tuning technique utilized was NASA Dryden’s multidisciplinary design, analysis, and optimization 
(MDAO) tool,2 which was used to adjust the structural properties so that the analytical results and the measured data 
were matched.  

II. Sensor/Actuator Placement Methods 

It is important to assure that an adequate number of proper sensor locations are identified for the collection of 
data during the GVT. There are several existing techniques that can be used for the determination of measurement 
locations. These algorithms start with a full or selected set of finite element degrees of freedom (DOFs) with the 
desired number of mode shapes as shown in Eq. (1): 

 
  (1) 
 
where  is the reduced modal matrix ( ). Depending on the algorithm, the unwanted DOFs can be eliminated 
in one cycle or iteratively until the desired number of sensors is reached. 

A. Effective Independence:  
The objective of the effective independence (EI) method is to select sensor locations that make the target modes 

linearly independent, while retaining as much information as possible. This procedure starts from a large set of 
candidate sensor locations in which the effective independence matrix E can be formed as shown in Eq. (2).3 

 
  (2) 

 
The DOF with the smallest value is removed and the E matrix is re-calculated for the new candidate set. The 

iterative process continues until the desired number of sensors is reached. 

B. Genetic Algorithm:  
Selection of the sensor locations is a kind of optimization problem with discrete design variables. One of the 

solution methods for this optimization problem is the genetic algorithm (GA).4 Using the determinant of the Fisher 
information matrix (FIM) as objective function, and sensor locations as design variables, the optimal sensor 
locations can be determined. The FIM is defined as shown in Eq. (3).5 

 
  (3) 
 

The sensor locations, which are based on the desired number of sensors, are randomly picked and the GA 
method will find the best set of locations that gives the maximum determinant value of the FIM. The determinant of 
the FIM indicates the amount of information in the data that is retained at the reduced set of coordinates. 
Maintaining a high value for this determinant is desired so that the FIM retains as much information as possible. 
The optimization problem statement can be written as: 

 
Maximize the objective function  for any set of sensor positions with no constraint equations. 

C. Kinetic Energy Sorting: 
The kinetic energy sorting technique involves an examination of each DOF’s contribution of kinetic energy to 

each mode shape. The calculation of the kinetic energy in terms of the mode shapes can be expressed as shown in 
Eq. (4): 

 

  (4) 
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where KE ik is the kinetic energy associated with the i-th DOF in the k-th target mode. The total kinetic energy for 
each DOF is the summation of the normalized kinetic energy of each DOF for each mode. Those DOFs having the 
greatest contribution or most kinetic energy can be identified and selected as sensor locations. 

D. Guyan Reduction: 
The purpose of the Guyan reduction6 is to remove the number of DOFs in a large FE model, but still maintain 

the characteristics of the original model at the lower frequencies. Higher frequency modes are neglected because 
these DOFs can be removed based on the fact that the inertia forces are negligible compared with the elastic forces. 
This process involves examining the ratio of stiffness over mass for each DOF. If the ratio is small, then there are 
significant inertia effects associated with the DOF, and thus it should be retained. If the ratio is large, then the inertia 
effects are negligible and the corresponding DOF can be removed. 

E. Iterative Guyan Reduction: 
Unlike the standard Guyan reduction, the iterative Guyan reduction7 removes the DOF one at a time so that at 

each stage the effect of each DOF removed is redistributed to all of the remaining DOFs, resulting in greater 
accuracy than the non-iterative approach. 

F. Driving Point Residues: 
Driving point residues (DPR) are equivalent to modal participation factors. They are proportional to the 

magnitude of the mode shapes. A driving point is a point in the structure where the excitation DOF and the response 
are equal. If the modal matrix is mass normalized, then the driving point residues for the DOF i of the mode shape k 
can be computed8 as shown in Eq. (5): 

 

 DPRk i, i( ) = Φ i( )⊗Φ i( )
ω k

 (5) 

 
where  is the corresponding natural frequency and  is the element-by-element multiplication operator. The 
normalized DPR can then be used to calculate the average, minimum, maximum, and weighted modal displacement 
of all the target modes. The optimal sensor/exciter locations are then selected based on the values of the weighted 
driving point residue and the number of sensors/actuators available for the test. In this study, the weighted minimum 
was used for the selection of the sensor locations in order to opt out of those DOFs at the nodal point of a mode. The 
weighted minimum DPR was obtained as shown in Eq. (6). 
 

  (6) 

 
The weighted maximum was used for the selection of the excitation locations so that those easily excited DOFs 

could be identified. The weighted maximum DPR can be expressed as shown in Eq. (7): 
 

  (7) 

 
where  is the normalized DPR. 

III. Structural Dynamic Model Tuning Procedure 
Discrepancies in frequencies and mode shapes are minimized using a series of optimization procedures.9-11 There 

are two optimization algorithms adopted in NASA Dryden’s MDAO tool: the traditional gradient-based algorithm12  
and the genetic algorithm. Gradient-based algorithms work well for continuous design variable problems, whereas 
GAs can handle continuous as well as discrete design variable problems easily. When there are multiple local 
minima, GAs are able to find the global optimum results, whereas gradient-based methods may converge to a locally 
minimum value. In this research work, the GA was used for the solution of the optimization problem. 
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The GA is directly applicable only to unconstrained optimization; it is necessary to use some additional methods 
in order to solve the constrained optimization problem. The most popular approach is to add penalty functions in 
proportion to the magnitude of constraint violation to the objective function.13 The general form of the penalty 
function is shown in Eq. (8): 

 

 L(X) = F(X) + λi
i=1

q

∑ gi X( ) + λ j+q
j=1

r

∑ h j X( )
 

(8) 

 
where  indicates the new objective function to be optimized,  is the original objective function,  is 

the inequality constraint,  is the equality constraint, λi are the Lagrange multipliers,  is the design variables 

vector, and q and r are the number of inequality and equality constraints, respectively. 
The analytical mass properties, the mass matrix orthogonality, and the natural frequencies and mode shapes are 

matched to the target values based on the following three tuning steps. 

A. Step 1: Tuning mass properties 
The difference in the analytical and target values of the total mass, the center of gravity (CG) location, and the 

mass moment of inertias at the CG location are minimized to have the improved rigid body dynamics as shown in 
Eqs. (9) through (18).  

 
   (9) 

   (10) 

   (11) 

   (12) 

   (13) 

   (14) 

   (15) 

   (16) 

   (17) 

  (18) 

B. Step 2: Tuning mass matrix 
The off-diagonal terms of the orthonormalized mass matrix are reduced to improve the mass orthogonality as 

shown in Eq. (19): 
 

  (19) 

 
where n is the number of modes to be matched and  is defined as shown in Eq. (20). 
 

  (20) 
 

In the above equation, the mass matrix M is calculated from the FE model, while the target eigen-matrix  is 
measured from the GVT. The eigen-matrix  remains constant during the optimization procedure. A 
transformation matrix T in the above equation is based on Guyan reduction, improved reduction system14 or the 
system equivalent reduction expansion process (SEREP).15 This reduction is required due to the limited number of 
available sensor locations and difficulties in measuring the rotational DOFs.  
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C. Step 3: Tuning frequencies and mode shapes 
Two different types of approach can be used for tuning the frequencies and mode shapes. In the first option, 

shown in Eqs. (21) and (22), the objective function considered combines the normalized errors between GVT and 
computed frequencies with the total error associated with the off-diagonal terms of the orthonormalized stiffness 
matrix. 

 

  (21) 

 

  (22) 

 
The matrix are obtained from the matrix products as shown in Eq. (23): 

 
  (23) 

 
where the stiffness matrix, K, is calculated from the FE model. 

In the second option, shown in Eqs. (24) and (25), the error norm combines the normalized error between GVT 
and computed frequencies with the total error between the GVT and computed mode shapes at given sensor points.  

 

  (24) 

 

 J13 = Φij − ΦijG( )
j=1

n

∑
2

i=1

m

∑  (25) 

 
In this study, the second option for tuning frequencies and mode shapes was employed since the definition of the 

objective function is much simpler than in the first option for this application. Any errors in both the modal 
frequencies and the mode shapes are minimized by including an index for each of these in the objective function. 
For this option, a small number of sensor locations can be used at which errors between the GVT and computed 
mode shapes are obtained. Any one of J1 thru J13 can be used as the objective function with the others treated as 
constraints. This gives the flexibility to achieve the particular optimization goal while maintaining the other 
properties at as close to the desired target value as possible. The optimization problem statement can be written as 

 
   Minimize Ji 
   Such that Jk  εk , for k = 1 thru 13 and k  i 
 

where εk is a small value which can be adjusted according to the tolerance of each constraint condition. 

IV. Test Article 
The ATW2 was used to demonstrate NASA Dryden’s MDAO tool through the process of ground vibration 

testing and the model tuning technique. This test article was a small-scale airplane wing comprised of an airfoil and 
wing tip boom as shown in Fig. 3, based on the ATW1 design. This wing was formulated based on a NACA-
65A004 airfoil shape with a 3.28 aspect ratio. The wing had a half span of 18 in. with root chord length of 13.2 in. 
and tip chord length of 8.7 in. The total area of this wing was 197 in2. The wing tip boom was a 1-in. diameter 
hollow tube of 21.5 in. length. The total weight of the wing was 2.66 lb.  
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Figure 3. Dimension of the ATW2. 

 
Since the ATW was attached to the F15B flight test fixture, the construction of the wing was limited to 

lightweight materials with no metal, due to safety concerns. The wing and spar were constructed from fiberglass 
cloth, the boom was constructed from carbon fiber composite, the wing core was constructed from rigid foam, and 
the components were attached by epoxy. The wing skin was made of three plies of fiberglass cloth, each about 0.01 
in. thick. The internal spar located at the 30% chord line was composed of 10 plies, 0.05 in. thick of carbon at the 
root but decreases to 1 ply, 0.005 in. thick at the tip. 

V. Test Setup 
Ground vibration tests were performed to determine the dynamic modal characteristics of the ATW2. In the test 

set up, the ATW2 was clamped on to a circular plate, which was bolted to a mounting panel, and then installed into a 
small strong back called the ground test fixture in the NASA Dryden Flight Loads Laboratory. The PONTOS 
photogrammetry optical measuring system (Gesellschaft für Optische Messtechnik, Braunschweig, Germany), as 
shown in Fig. 4, was used to measure output displacement/acceleration at the sensor points. For the excitation 
method, an impact hammer with an impedance head was used to excite the ATW2’s natural frequencies and mode 
shapes as well as to measure input forces. 
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Figure 4. The PONTOS photogrammetry optical measuring system. 

 
PONTOS is a non-contact optical 3D measuring system. It analyzes, computes and documents object 

deformations, rigid body movements and the dynamic behavior of a measuring point.16 The PONTOS system 
provides an alternative for complex sensor technology like laser sensor, draw-wire sensors or accelerometers, which 
are commonly used in GVTs for measuring responses of the structure. The features of the PONTOS system include:  

 
1) Unlimited number of sensors (the sensor markers are weightless, and a large number of sensors can be used 

at the same time without altering the total weight or the mode shapes of the structure) 
2) Non-contact acquisition of the precise 3D position of any number of measuring points  
3) Mobility and flexibility due to an easy and compact measuring system  
4) Easy and quick adaptation to different measuring volumes and measuring tasks  

 
The limitations of the PONTOS system include:  

 
1)  Measuring structural vibration up to 250 Hz  
2)  Measuring frame rate up to 500 Hz at 1280x1024 pixels  
3) Measuring volume up to 1700x1360x1360 mm3  
4)  Applying the sensors on a plane or slightly curved surface  
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VI. Sensor Placement Discussion 
Only a small number of sensors were placed on the wing for the GVT compared to the full FE model DOFs. The 

selection of sensor locations were based on the sensor placement algorithms previously discussed in Section II. In 
order to compare different sensor placement algorithms, the determinant of FIM was calculated for different sets of 
sensor locations. Results are summarized in Table 1 and the corresponding sensor locations are shown in Fig. 5. 

 
Table 1. Comparison of the determinant of FIM for different sensor placement algorithm. 

 
Sensor placement algorithms det(FIM) (30 sensors, 3 modes) 
Effective independence 753.1 
Genetic algorithm* 753.1 
Kinetic energy 303.6 
Iterative Guyan reduction 59.5 
Non-iterative Guyan reduction 8.6 
Model configuration (25 sensors) 50.0 
Driving point residue 97.0 

 * Based on 150 populations and 500 generations  
 

 
Figure 5a. DPR method. 

 
Figure 5b. KE method. 

 
Figure 5c. Guyan reduction method. 

 
Figure 5d. Iterative Guyan Reduction method. 

 
Figure 5e. Effective Independence method. 

 
Figure 5f. Genetic Algorithm. 

Figure 5. Sensor locations from different sensor placement algorithms. 
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In Table 1 the EI and GA methods have the same determinant of FIM value. This is due to the fact that the EI 
method is also an optimization process. In this application, both the EI and GA methods found the globally optimal 
value. The sensor locations with higher determent of FIM value were used for the GVT response measurement 
locations.  

For the excitation point selection, the weighted maximum driving point residue method was used to determine 
the excitation locations. The predicted sensor locations and excitation point based on the FE model of the ATW2 is 
shown in Fig. 6 and the corresponding coordinates are given in Table 2. 

At the time of this ATW2 research work, only the GVT results with the sensor placements based on the model 
configuration were available. Therefore, these data were used for the FE model tuning process. The sensor locations 
and excitation point of this GVT are shown in Fig. 7, and its coordinates are listed in Table 3. Figure 8 shows the 
typical time history and frequency response curves of the ATW2 ground vibration tests. 

 

 
Figure 6. Predicted sensor/excitation locations. 

 

 
Figure 7. GVT sensor/excitation locations. 

 
 



 
American Institute of Aeronautics and Astronautics 

 
 

12 

Table 2. Sensor locations for Figure 6. Table 3. Sensor locations for Figure 7. 
 

Coordinates (inch)  Coordinates (inch) Sensor 
point X Y Z  

Sensor 
point X Y Z 

1 20.9244 -10.80 -0.05  1 19.125 -18.00 0 
2 21.9750 -10.80 0  2 27.825 -18.00 0 
3 19.0499 -7.20 0  3 17.212 -16.20 0 
4 17.5875 -5.40 -0.001  4 26.362 -16.20 0 
5 19.8735 -10.80 0.1016  5 15.300 -14.40 0 
6 19.4167 -9.00 0.0537  6 24.900 -14.40 0 
7 18.3209 -9.00 0.1059  7 13.387 -12.56 0 
8 17.9092 -7.20 0.0559  8 11.475 -10.80 0 
9 23.4375 -12.60 0  9 21.975 -10.80 0 

10 22.4317 -12.60 0.0493  10 9.5625 -9.00 0 
11 21.9750 -10.80 0  11 20.5125 -9.0 0 
12 12.7500 -18.50 0  12 7.65 -7.2 0 
13 14.5000 -18.50 0  13 19.0499 -7.2 0 
14 15.1250 -18.50 0  14 5.7375 -5.4 0 
15 15.6250 -18.50 0  15 17.5875 -5.4 0 
16 16.1250 -18.50 0  16 3.825 -3.6 0 
17 16.5000 -18.50 0  17 16.125 -3.6 0 
18 17.1250 -18.50 0  18 1.9125 -1.8 0 
19 17.6250 -18.50 0  19 14.6625 -1.8 0 
20 18.1250 -18.50 0  20 0 0 0 
21 28.3250 -18.50 0  21 13.2 0 0 
22 28.8250 -18.50 0  22 23.4375 -12.6 0 
23 29.3250 -18.50 0  23 12.75 -18.5 0 
24 29.8250 -18.50 0  24 19.125 -18.5 0 
25 30.3250 -18.50 0  25 32.825 -18.5 0 
26 30.8250 -18.50 0      
27 31.3250 -18.50 0      
28 31.8250 -18.50 0      
29 32.3250 -18.50 0      
30 32.8250 -18.50 0      
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Figure 8. Typical time history and frequency response GVT results for the ATW2. 

VII. Model Tuning 
The frequencies and mode shapes of first bending, first torsion and second bending modes; and total mass from 

the GVT are listed in Table 4. The measurements of Table 4 were based on the time history responses data collected 
by the PONTOS system at each of the sensor points. The eigensystem realization algorithm routine, which was 
developed by Juang and Pappa17 at NASA Langley Research Center (LaRC) (Hampton, Virginia) was then used to 
identify the frequencies and mode shapes of the system. 
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Table 4. Measured frequencies and mode shapes (Z direction). 
 

Sensor 
point 

Mode 1 
(17.24 Hz) 

Mode 2 
(44.10 Hz) 

Mode 3 
(84.00 Hz) 

1 0.481 -0.398 -0.325 
2 0.755 0.409 -0.187 
3 0.386 -0.390 -0.149 
4 0.670 0.353 0.142 
5 0.311 -0.408 0.088 
6 0.589 0.254 0.455 
7 0.214 -0.320 0.113 
8 0.139 -0.252 0.157 
9 0.368 0.082 0.912 

10 0.085 -0.177 0.131 
11 0.281 0.036 1.000 
12 0.047 -0.116 0.140 
13 0.196 0.021 0.917 
14 0.018 -0.067 0.053 
15 0.157 0.018 0.870 
16 0.006 0.022 -0.012 
17 0.081 0.026 0.587 
18 0.008 0.007 0.006 
19 0.035 0.025 0.345 
20 0.010 0.008 0.017 
21 0.014 0.022 0.125 
22 0.451 -0.111 0.765 
23 0.312 -1.000 -0.582 
24 0.518 -0.432 -0.523 
25 1.000 0.962 -0.196 

 
Corresponding numerical FE model frequencies and mode shapes computed using MSC/NASTRAN (MSC. 

Software Corporation, Santa Ana, California)18 are shown in Fig. 9. The FE model in the MSC/NASTRAN format is 
provided in the appendix of NASA/TM-2009-214646. The frequency differences between the GVT and the 
numerical results before model tuning (shown in Table 5) were 53% in the second mode and 12% in the third mode, 
both of which greatly exceed the 3% limitation for the primary modes allowed by military specifications.19, 20 
Therefore, the FE model needs to be updated for a more reliable flutter analysis.  
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Figure 9a. MSC/NASTRAN FE Model 

 
Figure 9b. Mode 1 (1st bending): 17.7048 Hz. 

 
Figure 9c. Mode 2 (1st torsion): 20.9207 Hz. 

 
Figure 9d. Mode 3 (2nd bending): 88.3203 Hz. 

Figure 9. Finite element model and mode shapes before tuning. 
 

Table 5. Frequencies and total weight of the ATW2 before and after model tuning. 
 

Before After 
 GVT 

(Hz) MSC/NASTRAN 
(Guyan/Full; Hz) Error (%) MSC/NASTRAN 

(SEREP/Full; Hz) Error (%) 

Mode 1 17.24 17.71/17.70 2.72/2.68 17.79/17.79 3.19/3.19 
Mode 2 44.10 20.93/20.92 -52.5/-52.6 44.71/44.71 1.38/1.38 
Mode 3 84.00 93.91/88.32 11.80/5.14 84.33/84.33 0.39/0.39 

Total weight (lb) 2.66 2.77 4.13 2.72 2.25 
 
Since Guyan reduction is a static condensation, it is only accurate for lower modes. For higher modes, the errors 

become too large as shown in Table 5. Unlike the Guyan reduction, the SEREP process preserves the dynamic 
character of the original full system model for selected modes of interest. Therefore the dynamic characteristics of 
the reduced model were virtually the same as the full model shown in Table 5. Therefore, the SEREP model 
reduction process was used in this ATW2 model update application. 

Using frequency difference as an objective function; and mass properties, mass orthogonality, and mode shapes 
as constraint equations; the frequencies before and after model tuning are presented in Table 5. Dramatic 
improvement was noted, in that after model tuning, the frequencies difference was reduced to 1.38% in the second 
mode and 0.39% in the third mode.  

Table 6 shows the center of gravity, moment of inertia, orthonormalized mass matrix, and modal assurance 
criterion (MAC) values of the ATW2 before and after model tuning. The off-diagonal terms of the orthonormalized 
mass matrix, maximum of 37% before model tuning, were minimized in the second tuning step. The maximum off-
diagonal term of 7.4% after model tuning is observed in table 6, and this off-diagonal term of the orthonormalized 
mass matrix satisfies the 10% limitation allowed by military specifications. Model correlation with the test data prior 
to model tuning was poor and unacceptable to proceed with flight. The MAC values of 0.52 and 0.73 for modes 2 
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and 3 before model tuning become 0.97 and 0.95, respectively. Therefore, we can conclude that excellent model 
correlation with the test data was achieved after model tuning, which lead to a more reliable flutter speed prediction. 

 
Table 6. Summary of center of gravity, moment of inertia, orthonormalized mass matrix and MAC values for 
the ATW2 before and after model tuning. 
 

 Before tuning After tuning 
C.G. (X,Y,Z) 14.22, -11.86, -0.011 13.089, -7.61, -0.0080 

Ixx 73.44 97.52 
Iyy 74.74 118.13 
Izz 148.1 215.5 
Ixy -43.03 -85.55 
Ixz 0.032 0.0286 
Iyz -0.02 0.0956 

 1 2 3 1 2 3 
1 1 25.0% 4.6% 1 4.0% -5.7% 
2 0.2467 1 37.0% 0.0395 1 -7.4% 

Orthonormalized mass matrix 

3 0.0463 0.3681 1 -0.0565 -0.0743 1 
Mode 1 0.90 0.99 
Mode 2 0.52 0.97 MAC 
Mode 3 0.73 0.95 

VIII. Concluding Remarks 
This paper describes the ground vibration test (GVT) and model tuning procedures for the second aerostructures 

test wing (ATW2), which was developed at the National Aeronautics and Space Administration (NASA) Dryden 
Flight Research Center (DFRC) (Edwards, California) for demonstrating flutter and advanced aeroelastic test 
techniques. In the sensor locations selection process, it was found that the effective independence (EI) and the 
genetic algorithm (GA) gave a higher determinant value of the Fisher information matrix (FIM) and thus, should be 
used for determining the sensor locations.  

The finite element (FE) model tuning process was a challenging task, which depended not only on the accuracy 
of the experimental data, but also required a good prediction of the design variables for the optimization. After 
tuning the FE model, the frequency differences between GVT and the numerical results were within 3%, and the off-
diagonal terms of the orthonormalized mass matrix were within 10%, both of which satisfy the military 
specifications. Excellent mode shape correlations were also achieved through the high modal assurance criterion 
(MAC) value (greater than 95%). With the updated FE model, the accuracy of flutter analysis can be improved and 
the flutter boundary prediction will be more reliable. 
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  Support the Aeronautics Research Mission Directorate (ARMD) guidelines at NASA's Dryden 
Flight Research Center. 
  Supported by Subsonic Fixed Wing (SFW) & Supersonics (SUP) projects under Fundamental Aeronautics 

(FA) Program  
  Reduce uncertainties in the structural dynamics model of the Aerostructures Test Wing 2 to increase 

the safety of flight 
  Develop model update techniques based on design optimization to improve analysis/test correlation 

ATW 1: Flutter speed was lower than what we predicted. 

Objectives 

0.82 

9645 ft 
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  Flutter Analysis 

  Uncertainties in the structural dynamic model are minimized through the use of 
“model tuning technique” 

  Based on analytical modes 

  Validate Structural Dynamic Finite Element Model using Test Data and Update if needed  

  Use MDAO (Multidisciplinary Design, Analysis, and Optimization) tool with 
Model Tuning Capability or Standalone Model Tuning Code 

  Model tuning is based on optimization. 

  Design Variables 

•  Structural sizing information: Thickness, cross sectional area, 
area moment of inertia, etc. 

•  Point properties: lumped mass, spring constant, etc. 

•  Material properties: density, Young’s modulus, etc. 

  Constraints 

Flutter Analysis Procedure @ NASA Dryden 

Validated  

Finite Element Model 

MDAO tool with Model 
Tuning Capability 

Structural Dynamic 
Finite Element Model 

Measure Weight, C.G., 
Moment of inertia, 

 GVT: FG,wG 

Create Unsteady 
Aerodynamic Model 

Perform Flutter Analysis 
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Test Article: Exploded View of ATW 2 

A A 

A-A Cross Section 
Foam 

Aluminum 

Cross Sectional Shape: 
NACA-65A004  



Chan-gi Pak-5 Structural Dynamics Group 

Structural Dynamic Finite Element Model 

  Based on MSC/NASTRAN code 
  265 nodes 
  Use 10 modes for the flutter analysis 

Top 

Front 

Side 

Flow 

Boundary Conditions 

Rigid Elements 
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Unsteady Aerodynamic Model 

  Based on ZAERO code 
  416 elements 
  Select 16 reduced frequencies between 0 & 1 
  Mach = .60, .75, .82, and .95 
  Linear Theory 
  Use Matched Flutter Analysis 

Top 

Front 

Side 

Flow 

Splining Points 
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Mode 1: 17.60 Hz 

First Bending 

Splined Mode Shape 

Input Mode Shape 

Structural Dynamic 
Finite Element Model 

Unsteady 
Aerodynamic 

Model 
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Mode 2: 23.26 Hz 

First Torsion Input Mode Shape 

Nodal Line 
Splined Mode Shape 

Structural Dynamic 
Finite Element Model 

Unsteady 
Aerodynamic 

Model 
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Mode 3: 93.99 Hz 

Second Bending 

Nodal Line 

Splined Mode Shape 

Input Mode Shape 

Structural Dynamic 
Finite Element Model 

Unsteady 
Aerodynamic 

Model 
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Splined Aerodynamic Loads at Mach = 0.82 

Input: Cp Distribution 

Output: Splined Loads 

Structural Dynamic 
Finite Element Model 

Unsteady 
Aerodynamic 

Model 
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V-g and V-w Curves at Mach = 0.82 Before Model Tuning  

Flutter Mode Speed Frequency Altitude 

1 407.4 Keas 22.86 Hz 15010 ft 

3% 
Damping Mode Frequency Modal Participation Factor 

1 17.60 Hz 75.0 % 

96.6 % 2 23.26 Hz 16.8 % 

3 93.99 Hz 4.8 % 

4 135.4 Hz 0.0 % 

3.4 % 

5 163.1 Hz 2.6 % 

6 174.5 Hz 0.0 % 

7 257.5 Hz 0.5 % 

8 391.6 Hz 0.0 % 

9 394.3 Hz 0.1 % 

10 445.6 Hz 0.3 % 

Speed (Keas) 

D
am

pi
ng

 
Fr

eq
ue

nc
y 

(H
z)

 

700 300 200 400 500 600 
Speed (Keas) 

700 300 200 400 500 600 
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Summary of the Modal Participation Factors 

  Participation of the first three modes is a function of Mach number. 
  In-plane modes do not participate for the first flutter mechanism at all. 

  Modes 4, 6, and 8 
  Primary Modes: Modes 1, 2, and 3 

  Frequency error should be less than 3%. 
  Secondary Modes: Modes 4 through 10 (higher) 

  Frequency error should be less than10%. 

Mode Frequency 
Modal Participation Factor 

Mach = 0.60 Mach = 0.75 Mach = 0.82 Mach = 0.95 

1 17.60 Hz 68.1 % 

95.5 % 

72.9 % 

96.2 % 

75.0 % 

96.6 % 

79.7 % 

97.6 % 2 23.26 Hz 22.2 % 18.3 % 16.8 % 13.6 % 

3 93.99 Hz 5.2 % 5.0 % 4.8 % 4.3 % 

4 135.4 Hz 0.0 % 

4.5 % 

0.0 % 

3.8 % 

0.0 % 

3.4 % 

0.0 % 

2.4 % 

5 163.1 Hz 3.3 % 2.9 % 2.6 % 1.9 % 

6 174.5 Hz 0.0 % 0.0 % 0.0 % 0.0 % 

7 257.5 Hz 0.7 % 0.6 % 0.5 % 0.3 % 

8 391.6 Hz 0.0 % 0.0 % 0.0 % 0.0 % 

9 394.3 Hz 0.1 % 0.1 % 0.1 % 0.0 % 

10 445.6 Hz 0.4 % 0.3 % 0.3 % 0.2 % 
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Model Correlation Requirements 

  Everyone believes the test data except for the experimentalist, and no one believes the finite element 
model except for the analyst. 
  Some of the discrepancies come from analytical Finite Element modeling uncertainties, noise in the test results, 

and/or inadequate sensor and actuator locations. Not the same orientation for each sensor. 

  MIL-STD-1540C Section 6.2.10 
  Test Requirements for Launch, Upper-Stage, & Space Vehicles 
  Less than 3% and 10% frequency errors for the primary and secondary modes, respectively 
  Less than 10% off-diagonal terms in orthonormalized mass matrix 

  AFFTC-TIH-90-001 (Structures Flight Test Handbook) 
  If measured mode shapes are going to be associated with a finite element model of the structure, it will probably 

need to be adjusted to match the lumped mass modeling of the analysis. 
  Based on the measured mode shape matrix F and the analytical mass matrix M, the following operation is 

performed: 

  The results is near diagonalization of the resulting matrix with values close to 1 on the diagonal and values 
close to zero in the off-diagonal terms. Experimental reality dictates that the data will not produce exact unity or 
null values, so 10 percent of these targets are accepted as good orthogonality and the data can be confidently 
correlated with the finite element model. 
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Sensor/Actuator Placement Methods 

  Given Number of Sensors and Number of Modes 

  Find the best sensor locations 
  Effective Independence Method 

  Step 1: Compute 
  Step 2: Remove DOF with the smallest value 
  Step 3: Repeat 1 & 2 until number of DOFs equal to number of sensors 

  Genetic Algorithm 
  Maximize:  objective function = determinant of FIM 
  Design variables: Sensor location    

  Kinetic Energy Sorting 
  Guyan Reduction 
  Iterative Guyan Reduction 
  Driving Point Residues 

  Find the approach gives “maximum determinant value” of Fisher Information Matrix 
  FIM 
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Model Tuning Procedure 
  Optimization Problem Statement 

  Minimize 

  Such that 
  Step 1: Improve Rigid Body Mass Properties 

  Errors in Total Mass 
  Errors in CG Locations 
  Errors in Mass Moment of Inertias 

Mass Properties Objective Functions & Constraints 

Total Mass J1 = (W-WG)2/WG
2  

CG Locations 

J2 = (X-XG)2/XG
2  

J3 = (Y-YG)2/YG
2  

J4 = (Z-ZG)2/ZG
2  

Mass Moment of Inertias 

J5 = (IXX-IXXG)2/IXXG
2
 

J6 = (IYY-IYYG)2/IYYG
2
 

J7 = (IZZ-IZZG)2/IZZG
2
 

J8 = (IXY-IXYG)2/IXYG
2
 

J9 = (IYZ-IYZG)2/IYZG
2
 

J10 = (IZX-IZXG)2/IZXG
2
 

Feasible 
Infeasible 

Measure Weight, C.G., 
& Moment of inertia 
GVT                      

FG,wG 

Optimization Step 1: 
Update Mass Properties 
W, XCG, YCG, ZCG, Ixx, 
Iyy, Izz, Ixy, Iyz, & Izx 

End 

Optimization Step 2: 
Improve Orthogonality 

of Mass Matrix M 

Optimization Step 3: 
Update Frequencies 

& Mode Shapes 

Start 

Aero Model A 

Flutter Analysis 

FE Model M& K 
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  Step 2: Improve Mass Matrix 
  Off-diagonal terms of Orthonormalized Mass Matrix:  M = FG

T TTM TFG  
 Guyan reduction    

 Improved reduction system 

 System Equivalent Reduction Expansion Process (SEREP)  

FEM GVT 

Model Tuning Procedure (continued) 

Measure Weight, C.G., 
& Moment of inertia 
GVT                      

FG,wG 

Optimization Step 1: 
Update Mass Properties 
W, XCG, YCG, ZCG, Ixx, 
Iyy, Izz, Ixy, Iyz, & Izx 

End 

Optimization Step 2: 
Improve Orthogonality 

of Mass Matrix M 

Optimization Step 3: 
Update Frequencies 

& Mode Shapes 

Start 

Aero Model A 

Flutter Analysis 

FE Model M& K 
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  Step 3: Frequencies and Mode Shapes 
  Errors in Frequencies 

  Option 1: Off-diagonal terms of Orthonormalized Stiffness Matrix:  
                K= FG

T TTK TFG


  Option 2: Errors in Mode Shapes 

n: number of modes    m: number of sensors 

Model Tuning Procedure (continued) 

Measure Weight, C.G., 
& Moment of inertia 
GVT                      

FG,wG 

Optimization Step 1: 
Update Mass Properties 
W, XCG, YCG, ZCG, Ixx, 
Iyy, Izz, Ixy, Iyz, & Izx 

End 

Optimization Step 2: 
Improve Orthogonality 

of Mass Matrix M 

Optimization Step 3: 
Update Frequencies 

& Mode Shapes 

Start 

Aero Model A 

Flutter Analysis 

FE Model M& K 
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Test Setup 

PONTOS photogrammetry 
optical measuring system  
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Results (Frequency Comparisons) 

Mode GVT 
Before Tuning After Tuning MIL-STD 

Requirements 
(%) 

Comments NASTRAN 
(Guyan/Full) 

% 
Error 

NASTRAN 
(SEREP/Full) 

% 
Error 

1 17.24 17.61/17.60 2.1/2.1 17.79/17.79 3.2/3.2 3 First Bending 

2 44.10 23.27/23.26 -47/-47 44.71/44.71 1.4/1.4 3 First Torsion 

3 84.00 99.02/93.99 18/6.3 84.33/84.33 .39/.39 3 Second Bending 

4 N/A …/135.4 N/A …/132.4 N/A 10 First In-Plane Wing Bending 

5 N/A …/163.1 N/A …/129.3 N/A 10 Second Bending + First Torsion 

+

-

Mode 1  Mode 2  

Mode 3  Mode 5  

   : GVT 
   : Before 
   : After 
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Results (Total Weight, Orthogonality, & MAC) 

Measured Before Tuning After Tuning 

Total 
Weight 2.66 lb 1.76 lb (error 34%) 2.72 lb (error 2.3%) 

Orthonormalized 
Mass Matrix 

1 2 3 1 2 3 

1 1 -24.9% 38.0% 1 3.95% -5.65% 

2 -.249 1 -66.1% .0395 1 -7.43% 

3 .380 -.661 1 -.0565 -.0743 1 

MAC 

Mode 1 .97 .99 

Mode 2 .70 .97 

Mode 3 .75 .95 

MIL-STD & AFFTC-TIH-90-001 Requirements: 10% 

Violate Satisfy 
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V-g and V-w Curves at Mach = 0.82 After Model Tuning  

Flutter Mode Speed Frequency Altitude 

1 365.3 Keas 37.32 Hz 20310 ft 

3% 
Damping Mode Frequency Modal Participation Factor 

1 17.79 Hz 12.3 % 

99.0 % 2 44.71 Hz 85.6% 

3 84.33 Hz 1.1 % 

4 129.3 Hz 0.3 % 

1.0 % 

5 132.4 Hz 0.0 % 

6 150.6 Hz 0.5 % 

7 185.5 Hz 0.0 % 

8 250.2 Hz 0.2 % 

9 297.8 Hz 0.0 % 

10 328.0 Hz 0.0 % 

D
am

pi
ng

 
Fr

eq
ue

nc
y 

(H
z)

 

700 300 200 400 500 600 
Speed (Keas) 

700 300 200 400 500 600 
Speed (Keas) 
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Flutter Results Before & After Model Tuning 

Mode Frequency 
Modal Participation Factors before Model Tuning 

Mach = 0.60 Mach = 0.75 Mach = 0.82 Mach = 0.95 

1 17.60 Hz 68.1 % 

95.5 % 

72.9 % 

96.2 % 

75.0 % 

96.6 % 

79.7 % 

97.6 % 2 23.26 Hz 22.2 % 18.3 % 16.8 % 13.6 % 

3 93.99 Hz 5.2 % 5.0 % 4.8 % 4.3 % 

Mode Frequency 
Modal Participation Factors after Model Tuning 

Mach = 0.60 Mach = 0.75 Mach = 0.82 Mach = 0.95 

1 17.79 Hz 6.7 % 

99.2 % 

9.8 % 

99.1 % 

12.3 % 

99.0 % 

24.3 % 

98.3 % 2 44.71 Hz 91.9 % 88.4 % 85.6 % 72.4 % 

3 84.33 Hz 0.6 % 0.9 % 1.1 % 1.6 % 

Mach = 0.60 Mach = 0.75 Mach = 0.82 Mach = 0.95 

Before 
Tuning 

Speed 453.0 Keas 421.5 Keas 407.4 Keas 377.9 Keas 

Frequency 23.18 Hz 22.97 Hz 22.86 Hz 22.53 Hz 

Altitude -7501 ft 8751 ft 15010 ft 25590 ft 

After 
Tuning 

Speed 361.3 Keas 364.6 Keas 365.3 Keas 367.0 Keas 

Frequency 38.47 Hz 37.73 Hz 37.32 Hz 36.20 Hz 

Altitude 5101 ft 16080 ft 20310 ft 26920 ft 

Speed Error 25.4 % 15.6 % 11.5% 3.0 % 
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Flutter Boundary vs. Flight Envelope 
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Conclusion 

  Model tuning based on GVT data is needed to minimize uncertainties in the structural 
dynamic model and to increase the safety of flight. 

  After model tuning (for ATW 2 case) 
  Maximum of 47% primary frequency error in second mode becomes 1.4%. 

  Should be less than 3% 
  Maximum of 66% error in off-diagonal terms of orthonormalized mass matrix becomes 7.4 %. 

  Should be less than 10% 
  Maximum error in flutter speed is 25% (Mach = 0.60) 

  Modal participation of the second mode vs. Flutter speed error 
  Mach = 0.60:  91.9%  25.4% 
  Mach = 0.75:  88.4%  15.6% 
  Mach = 0.82:  85.6%  11.5% 
  Mach = 0.95:  72.4%  3.0% 

  Without model tuning 40% of flutter margin is needed. 
  15% MIL-SPEC requirement + 25% modeling uncertainty 

  Modal participation of the first three modes are more dominant after model tuning. 


