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Preliminary verification and validation of an efficient Euler solver for adaptively refined Carte- 
sian meshes with embedded boundaries is presented. The parallel, multilevel method makes use of a 
new on-the-fly parallel domain decomposition strategy based upon the use of space-filling curves, and 
automatically generates a sequence of coarse meshes for processing by the multigrid smoother. The 
coarse mesh generation algorithm produces grids which completely cover the computational domain 
at every level in the mesh hierarchy. A series of examples on realistically complex three-dimensional 
configurations demonstrate that this new coarsening algorithm reliably achieves mesh coarsening 
ratios in excess of 7 on adaptively refined meshes. Numerical investigations of the scheme's local trun- 
cation error demonstratenan achieved order of accuracy between 1.82 and 1.88. Convergence results 
for the multigrid scheme are presented for both subsonic and transonic test cases and demonstrate W- 
cycle multigrid convergence rates between 0.84 and 0.94. Preliminary parallel scalability tests on both 
simple wing and complex complete aircraft geometries shows a computational speedup of 52 on 64 
processors using the run-time mesh partitioner. 

1 Introduction cretization since the arbitrary nature of geometric intersec- 

T HIS paper documents the development of a new inviscid 
flow solver designed for Cartesian meshes with embed- 

ded boundaries. The ability of these meshes to automatically 
handle extremely complicated geometries has led to a sub- 
stantial increase in their use over the past decade[']-[*]. As 
recently as five to ten years ago, mesh generation was fre- 
quently the most time consuming task in a typical CFD cycle. 
Adaptive Cartesian mesh generation methods are capable of 
producing millions of cells around complex geometries in 
minutes and have substantially removed this bottleneck. 

Why write yet another Euler solver? With robust mesh gen- 
eration largely in-hand, solution time resurfaces as the pacing 
item in the CFD cycle. The current work attacks this issue by 
designing a scalable, accurate Cartesian solver with robust 
multigrid convergence acceleration. Our primary motivation 
is to gain efficiency by capitalizing on the simplifications and 
specialized data structures available on Cartesian grids. Sig- 
nificant savings in both CPU time and storage may be real- 
ized by taking advantage of the fact that cell faces are 
coordinate aligned. In addition, second-order methods with 
good limiters are generally easier to design and perform more 
robustly on uniform Cartesian meshes. 

Secondly, in any embedded-boundary Cartesian solver, the 
body-intersecting cut-cells demand special attention. These 
cells can impose a substantial burden on the numerical dis- 
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tion implies that one cut-cell may be orders of magnitude 
smaller than its neighboring cells. This fact contrasts sharply 
with the comparatively smooth meshes that are generally 
found on a good quality structured or unstructured mesh. 
Substantial research into these cut-cell issues have been stud- 
ied by references [9],[10] , [6],[8],  and [12] (among others) 
and we hope to take advantage of on this investment. 

Thirdly, this work investigates a multigrid strategy that is 
specialized for adaptively refined Cartesian meshes. In our 
approach, all grids in the multigrid hierarchy cover the entire 
domain and include cells at many refinement levels. The 
smoother therefore iterates over the entire domain when it is 
invoked on any grid in the hierarchy. In this respect, the 
approach shares more with agglomeration or algebraic multi- 
grid techniques than with many other Cartesian or AMR 
methods which iterate over only cells at the same level of 
refinementii3], or employ a "lifting" strategy[14]. The deci- 
sion to treat all grids globally follows in large part from con- 
siderations of parallel efficiency. 

A major unanswered question about multigrid for non-body- 
fitted Cartesian meshes concerns the degree to which geo- 
metric fidelity must be preserved on coarser grids in the hier- 
archy to avoid adversely impacting the convergence rate. 
With very little overhead, our design permits a variable level 
of geometric detail to be retained on the coarser grids so that 
this issue may be investigated. 

Finally, a truly scalable solver demands that parallel consid- 
erations be incorporated into its architecture from the begin- 
ning. The current work adopts a domain decomposition 
approach with explicit message passing. At run time, space- 
filling curves are generated on-the-fly and are used to parti- 
tion the mesh for any number of subdomains (and proces- 



sors). Although the solver explicitly passes messages 
between subdomains, the implementation uses a shared- 
memory approach (currently aimed at distributed shared 
memory architectures). This approach provides direct control 
of memory placement and CPU scheduling which is neces- 
sary to reliably obtain good scalability. These issues differen- 
tiate this approach from more routine implementations. 

This paper documents the current status in the development 
of this solver. Section 2 presents an overview of the spatial 
discretization and includes a mesh refinement study to pro- 
vide initial verification and accuracy assessment. Section 3 
motivates and describes a new multigrid coarsening strategy 
for adapted Cartesian meshes. Examples in this section dem- 
onstrate preliminary multigrid convergence rates on domains 
with embedded boundaries in both subsonic and transonic 
flow regimes. Section 4 discusses the parallel domain decom- 
position, and is followed by scalability results on both a sim- 
ple wing and a full aircraft geometry.. 

2 Governing Equations and Discretization 
The three dimensional Euler equations governing inviscid 
flow of a perfect gas may be written for a control volume S2 
with closed boundary aQ as: 

where Q is the state vector of conserved variables 
Q = [p, pu, pv, pw, p ~ ] ~  and A is an outward facing unit vec- 
tor. F is the tensor of flux density with components for all 
three Cartesian fluxes. The mean-preserving, cell-centered 
implementation locates the state vector at the centroid of all 
control volumes as shown in Figure la. Assuming control 
volumes with planar faces which are fixed in time, and apply- 
ing a midpoint quadrature rule, we arrive at the semi-discrete 
form of the governing equations, 

where j is? running variable over the faces of the control vol- 
ume and Q is now the integral cell average of the state. 

2.1 Spatial Discretization 
A unique value of the numerical flux on each face, F ,  is 
computed using either the approximate Riemann solver of 
ref. [ I  11 or van Leer's flux vector splitting, using the imple- 
mentation of ref.[l5]. 

To produce a s~cond-order accurate scheme, the Riemann 
solver on each face uses linearly reconstructed data from the 
left and right neighboring cells. Both flux functions have 
been implemented using either primitive or conserved vari- 
ables in the reconstructed state. A least-squares procedure 
provides estimates of the gradients within each cell using 
data from the distance-one face neighbors in the connectivity 
graph as shown in Figure lb. The connectivity matrix of each 
cell is inverted using the normal equations to compute the 
gradients within each control volume. Options exist to apply 
either Minmod or Venkatakrishnan's flux limiter[16] to con- 
trol overshoots in the reconstructed data. 

2.2 Data Structures 
A typical swatch of Cartesian mesh is shown in the left frame 
of Figure 1. It is instructive to examine the connectivity 
graph, G = { Y  E } ,  as sketched in Figure lb. In this dual view 
of the mesh, flow-through faces in the physical mesh form 
the set of edges, E, and the control volumes, V,  appear as 
nodes. 

Using notation similar to that taken by ref. [6] ,  G can be 
decomposed into two parts. 

G I  = { V I ,  El }  is formed by the set of control volumes in V 
which are uncut Cartesian cells. The edges, El in this sub- 
graph, include only those edges in { E }  which connect &Q 

uncut Cartesian cells. The cut graph, G ,  = {V,, E,} ,  consists 
of all control volumes, V, =V-  VL, which exist within the set 
of Cartesian hexahedra which actually intersect the geometry, 
and any edge, E, = E - EL, which is incident upon at least one 

1 a. Cartesian mesh with lb. connectivity graph G = G ( Y  E} lc. Connectivity graph of non- 
embedded geometry Cartesian cells and faces 

Figure 1: Control volumes in a Cartesian mesh with embedded geometry showing uncut Cartesian cells, a-g, cut-cells, h-o, and split- 
cells, p and q. The connectivity graph, G may be divided into subsets GI and G, where G, includes all non-Cartesian control vol- 
umes and any edge in the connectivity graph connected to at least one non-Cartesian cell. 
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member of {V,.). Its important to note that due to the pres- I 
ence of split-cells (like p and q in Figure la) the number of 
cut-control volumes does not have to be equal to the number euact solrltiorz: P(") = 

of cut Cartesian hexahedra. The composition of the cut graph 
differs from that in ref. [6]  since G,. includes the graph edges 
which connect cut-cells to uncut cells. Figure l c  further illus- 
trates the composition of G,. 

The utility of this decomposition becomes clear when plan- 
ning data structures for the control volumes and edges in the 
Cartesian mesh. The uncut graph includes only Cartesian 
cells and faces. In three dimensions with N3 control volumes 
in the mesh, GI will contain 0(N3) control volumes and 
faces. Since the number of cut hexahedra scales with the sur- 
face area of the geometry being meshed, G, will contain only 
0(N2) cells. Geometric information for the Cartesian control 
volumes and faces in GI can be computed on-the-fly using Figrcre 2: Overview of supersonic vortex model 
the packed storage scheme of ref. [2] while more conven- problem from ref. L20] wed to investigate the 

order of accuracy of the solver. Mesh sequence 
tional unstructured data structures are used for recording the right shows series of telescoping meshes 
cut graph, G,. Since the number of cut-cells becomes small used in the investigation, at conditions: 
with respect to the total number of cells on large meshes, the M 111 = 2.25, pill = lly, pi,, = 1,  ri = 1,  r, = 1.384. 
storage ;equirements for all cell size and -position data 
asymptot~ca~~y approaches the limit of 1.5 (64-bit) words Although this example is only two dimensional, the full three 

2 .  . :- ., . . I  r was run using a 3-D geometry made by presented in ref. [2]. ulmenslonal solva 
extrusion. 

In addition to less expensive data storage, specialization of 
the integration scheme within GI permits simplification of 
the operators evaluated on the right-hand-side of eq. (2). For 
example, the vector reconstruction operator which takes data 
from the cell centroid to the face centroids becomes a single 
multiply-add instruction for each element in the state vector. 
Similar simplifications are used in construction of the gradi; 
ents within Cartesian control volumes. Timing results indi- 
cate that, on average, the residual computation in a pure 
Cartesian cell in GI requires approximately 113 the CPU time 
of a cut-cell in G,. 

Both the cut and uncut graphs are stored usingjat data struc- 
tures similar to those typically encountered in unstructured 
flow solvers. This approach contrasts with the hierarchical 
(tree-based) or logically rectangular storage schemes often 
encountered in the literature of Cartesian and AMR 
approaches. At the cost of an explicitly stored face-list, the 
unstructured approach facilitates reordering of the main 
arrays for both improved cache-performance and graph parti- 
tioing. It also easily supports anisotropic cell refinement as 
investigated in ref. [17]. 

2.3 Verification and Order of Accuracy 
We use a model problem to both verify that our implementa- 
tion correctly solves the Euler equations and to demonstrate 
the order of accuracy of the spatial discretization on actual 
meshes. This investigation relies upon a closed-form, ana- 
lytic solution to the Euler equations for the supersonic vortex 
flow of ref. [20]. The presence of an exact solution permits 
examination of the truncation error of the discrete solution 
using a series of telescoping meshes. Since this is a shock- 
free flow, the measured order of accuracy is not corrupted by 
limiter action near shocks, and the behavior is indicative of 
the scheme's performance in smooth regions of a flow. 

To investigate the local truncation error of the scheme, the 
domain was initialized with the exact solution and integrated 
one time step. The residual in each cell then offers a direct 
measure of the difference between the discrete scheme and 
the governing equations, including the effects of boundary 
conditions. Prior research on this topic suggests that the 
behavior of the lobal error mimics that of the one-step trun- 
cation error. [lo18811191 

Figure 2 presents an overview of the investigation. The 
sketch at the left shows the inviscid flow between two con- 
centric circular arcs, while the frame at the right shows the 
sequence of five Cartesian meshes used in the investigation. 
The meshes were created by nested subdivision. The coarsest 
of these grids had 105 cells in a 2D slice, the finest had over 
21000. A11 meshes in this example are uniformly refined. 

Figure 3 contains a plot of the L1 norm of density error 
resulting from this analysis. 

v . p .  z Jl Je.*ac, - PJI 
Ilerrorlll = cell" 

vJlpJe.y"cs 
cells 

The error plot is remarkably linear over the first 4 meshes, 
but shows signs of a slight tailing-off on the final mesh. Over 
the first 4 meshes, the average order of accuracy is 1.88. If 
the finest mesh is included, this estimate drops to a value of 
1.82. Both of these slopes are comparable to those in the 
investigation of reconstruction schemes on body-fitted 
unstructured meshes in ref. [20], and we note that the abso- 
lute magnitude of error in the present scheme is more than a 
factor of two lower than was reported by the best scheme in 
that investigation. The slight tailing-off of the results for 
mesh 5 is likely the result of using an under-resolved discrete 
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Figure 3: L2 norm of density truncation error for sequence 
of refined meshes shown in fig. 2. 

representation of the geometry, but this issue is still under 
investigation. 

The results shown in fig. 3 were generated using the Colella 
flux function, without flux limiters. Results with the van Leer 
option are essentially identical. 

Next, we present a validation study examining the flow over 
an OMERA M6 wing which has been widely cited in the lit- 
erature. This transonic M, = 0.84, a = 3.06" case is often 
used in the validation of inviscid techniques. This experiment 
was performed at a relatively high Reynolds number (based 
on root chord) of 12 x , which mlnimlzes effects of the 

Figure 4: Cp vs. d c  for ONERA M6 wing example at six spanwise 
locations. M, = 0.84, a = 3.06". Experimental data from ref. 
[21] shown as symbols, inviscid discrete solution shown with 
solid line. 

displacement thickness making accurate comparisons of sec- 
tional pressure distributions possible. Other viscous effects in 
the experimental data are limited to a slight separation which 
fills in the Cp distribution behind the lambda shock on the lee 
surface. 

Simulation of this test was conducted using the geometry of a 
wing in free air, with the far-field boundary located 30 chords 
from the wing. The final mesh contained 525000 control vol- 
umes, with 25000 cut-cells and 528 split-cells. The discrete 
solution was converged 6 orders of magnitude (in the L1 
norm of density) using the van Leer flux function. 

Figure 4 provides a quantitative assessment of the solution 
through pressure profiles at six spanwise stations. This figure 
displays Cp vs. x/c at spanwise stations at 20, 44,65, 80,90, 
and 95% span. The inboard stations correctly display the 
double-shock on the upper surface, while stations at 90 and 
95% confirm accurate prediction of the merging of these 
shocks. The experimental data at stations 20 and 44% indi- 
cate that the rear shock is followed by a mild separation bub- 
ble triggered by the shock-boundary layer interaction. As is 
typical in such cases, the inviscid discrete solution locates 
this rear shock slightly behind its experimental counterpart. 

3 Coarse Mesh Generation and Multigrid 
The major decisions one faces in implementing a multigrid 
scheme concern both the choice of operators for prolongation 
and restriction and the design of an effective grid coarsening 
strategy. The development in $3.1 intends to illustrate imple- 
mentational details concerning the operators used in our 
approach. $3.2 outlines an automatic coarse grid generation 
algorithm intended to both adequately represent the solution 
on the coarse meshes and yet still coarsen fast enough to 
reduce the computational work. 

3.1 Multigrid 
The Full Approximation Stora e FAS) scheme we describe 
is based upon work by lameso$22j. It is driven by a modified 
Runge-Kutta smoother which takes the current estimate of 
the solution, q, from pseudo-time level n to n + 1. At conver- 
gence on a grid with spacing h, the smoother produces the 
discrete solution qh. The operator Lh represents the spatial 
discretization on the right-hand-side of eq. (2). 

Before convergence, qh does not exactly satisfy the govern- 
ing equations, producing the fine grid residual rh. 

Lh 4h -fh = 'h  (6) 

or Lhqh-Lh  qh = rh (7) 
- 
qh differs from the discrete solution qh by an error term eh. 

Since the high frequency components of eh can be rapidly 
annihilated by the fine grid smoother, multigrid seeks to com- 
pute the remaining smooth error, e ~ ,  on coarser grids. 
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Since FAS is designed for non-linear problems, the coarse 
grid operator must be applied to both terms on the right- 
hand-side of eq. (9) rather than to the correction itself. If the 
smoother has eliminated the higher frequency modes this will 
be balanced by the restricted residual from the fine mesh. i 

In our cell-centered implementation, a volume weighted 
restriction operator j: transfers the fine solution estimate to 
the coarse mesh. The restricted residual in a coarse cell (RHS 
of eq. (10)) is the arithmetic sum of the residuals in the fine 
grid cells which it encloses. 

To ensure that evolution on the coarse grid is driven by the 
fine grid residuals, the coarse grid forcing function is defined 
in the usual way. 

Thus, when the fine grid has reached steady state, the fine 
grid residual vanishes and the coarse grid does not produce 
any further correction. 

After smoothing (or solvin ) on the coarse grid, the coarse 
- n + l  #! grid correction. (q, - G q;) is brought back tohthe fine 

grid state vector through the prolongation operator I,. 

The preliminary results in this report use direct injection (i.e. 
piecewise constant prolongation). It is well known that such a 
crude operator introduces high-frequency modes into the fine 
grid which can adversely affect the overall convergence rate, 
and generally smoother prolongations are preferred. We have 
not yet compared direct injection with a linearly interpolated 
prolongation scheme. The best practical combination of pro- 
longation operators and various multistage schemesr231 will 
be the topic of future study. 

3.2 Automatic Generation of Coarse Grids 
A central issue in the implementation of multigrid smoothers 
on unstructured meshes is the construction of a series of 
coarse grids. A variety of approaches have been suggested in 
the literature, however, the asymptotic coarsening ratio in 
some of these has been insufficient to ensure that the method 
will extract the full benefit of multigrid. Multigrid does not 
appear to be widely used in a production setting, and at least 
part of the reason for this stems from the lack of a robust and 
automatic mesh coarsening scheme. Additionally, the 
approach in refs. [2] and [17] permits the cells to divide 
anisotropically and therefore, we revisit the issue of efficient 
coarse mesh generation. 

In contrast to coarse grid generation problems on general 
unstructured meshes, cells in a Cartesian mesh are naturally 
nested. In addition, the cells can be organized such that any 
cell in the mesh may be uniquely located by a set of integer 

Figure 5: Top: A two dimensional adaptively refined Cartesian 
mesh. Cut-cells are shown shaded. Bottom: The same mesh, 
after reordering with a specially designed comparison operator 
in preparation for coarsening. 

indicesL2]. The combination of these two facts lead to a novel 
coarse mesh generation algorithm for adaptively refined Car- 
tesian meshes. The asymptotic complexity of this algorithm 
is O(N log N), where N is the number of cells in the fine 
mesh. This result stems from the fact that a central compo- 
nent of the algorithm is a standard quicksort routine, and all 
other operations may be performed in linear time. 

Our multigrid strategy is based upon the use of a global grid 
at the finest level consisting of cells at many levels of refine- 
ment. This is in contrast to block structured AMR for exam- 
ple, where the finest level grids are not global, but cover only 
patches of fine cells throughout the domain. Given this glo- 
bal grid, coarser meshes are generated by coalescing the 
neighboring fine cells into their coarser parent. These fine 
cells are siblings and can coalesce into a single parent as long 
as they are at the same refinement level. As is standard, cells 
coarsen by a factor of two (per direction) with each coarsen- 
ing pass. If one or more in a set of siblings has children of its 
own, then coarsening is blocked (or "suspended) until those 
children have been coarsened away. Coarsening is accom- 
plished by the "sibling sort" as described below, and coalesc- 
ing sets of siblings which are at the same refinement level. 

Figure 5 displays a two dimensional, directionally refined 
Cartesian mesh which illustrates the coarse mesh generation 
strategy. The mesh shown (top) is the input or "fine mesh" 
which the algorithm coarsens. The boundary of a hypotheti- 
cal body is indicated, and the crosshatching indicates where 
there are no cells in the mesh. Gray shaded cells denote cut- 
hexahedra. In the lower frame of this figure lies a second 
view of the mesh after it has been processed by the sibling 
sort. The cell indices in this mesh indicate the sorted order, 
which is further illustrated by a partial sketch of the path 
shown through cells 9-16. 
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The comparison operator of the sibling sol t performs a iecur- 
sive lexicographical ordering of cells which can coarsen into 
the same coarse cell. Adaptively refined Cartesian meshes are 
formed by repeated subdivision of an initial coarse mesh 
(referred to as the level 0 mesh), therefore any cell, I ,  is trace- 
able to an initial "parent cell" in the level 0 mesh. Similarly, 
if cell i has been refined R times, it will have parent cells at 
levels 0 through (R - 1). If a cell has never been divided, then 
it is referred to as a "level 0 cell" and is identical to its level 0 
parent. 

The sibling sort consists of two steps. 
I. Cells on the level 0 mesh are sorted in lexicographic 

order using the integer coordinates of their level 0 par- 
ents as keys. 

2. If a cell has been subdivided, recursively sort its children 
lexicographically. 

This algorithm can be implemented with a single quicksort 
using a comparison operator which examines the integer 
indices of two input cells on a bit-by-bit basis. As noted 
above, its asymptotic complexity is proportional to that of the 
sorting method used. 

After sorting the fine mesh, coarsening proceeds in a straight- 
forward manner. Cells are processed by a single sweep 
through the sorted order. If a contiguous set of cells are found 
which coarsen to the same parent they are coalesced into that 
parent. Cells which do not meet this criteria are "not coarsen- 
able" and are injected to the coarse mesh without modifica- 
tion. 

The upper frame in Figure 6 shows the coarse mesh resulting 
from one application of the coarsening algorithm. Notice that 
cells 16 and 17 in Figure 5 do not coarsen in the first pass 
since some of their siblings have children (cells 18 through 
25). Notice also that fine grid cells on the level-0 mesh are 

Figure 6: Top: Adapted Cartesian mesh from Figure 5 after one 
coarsening. Outline of geometry is indicated, and cut-cells are 
shown in grey. Bottom: Same mesh after one additional appli- 
cation of the coarsening algorithm 

F~ne Mesh After one coarsening Flne mesh After one coarsentng 

Figure 7: Cell coarsening with split-cells. (a) Four cut-cells 
become 2 split-cells when the mesh is coarsened, (b) 2 volume 
cells, and 4 split cells become 2 split-cells after coarsening. 

frrlly coarsetzed and do not coarsen beyond their initial size 
(cell 1 for example). The lower frame in Figure 6 shows the 
mesh resulting from a second application of the coarsening 
operator. In this second pass, we observe that the coarsened 
cells in the upper frame were automatically constructed in the 
sorted order so that this further coarsening does not require 
any additional sorting. 

To summarize, fine grid cells will not coarsen if (1) they are 
fully coarsened; or (2) one (or more) of a cell's siblings are 
subdivided. A final restriction is that cells cannot 'coarsen if 
doing so will create a difference of more than one refinement 
level between adjacent cells in the coarsened mesh. 

One subtlety that the coarsening algorithm must contend with 
is indicated in Figure 7. Split-cells on the fine mesh may 
become merely cut (but not split) cells on the coarse mesh. 
Conversely, cut-cells on the finest mesh may become split- 
cells on the coarse mesh. While open questions still exist 
concerning the level of geometric fidelity required on coarser 
meshes, we insist that regions of the domain that are disjoint 
on the fine mesh must remain disjoint in the coarse mesh. 
The algorithm checks that sibling cells on the fine grid share 
at least one common face in order to coalesce into the same 
parent cell on the coarse grid. 

Since the work bound of a multigrid scheme depends upon 
the achievable coarsening ratio, we investigate this ratio on 
realistic domains in three dimensions. The mesh generator of 
ref. [2] was used to produce geometry refined meshes for 
both an ONERA M6 wing and a twin-engine business jet. 
These meshes varied in size from 7600 to 3.6 M cells. Both 
were produced from initial background meshes of around 
1000 cells. Figure 8 plots the coarsening ratio for these 

id 10' 10" I of' 10' 
Number of Cells in Mesh Before Conrsenin_e 

Figure 8: Achievable mesh coarsening ratios on realistic domains 
in three dimensions. 
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examples as a function of input mesh size. For both the sim- 
ple wing, and full aircraft, the coarsening ratio starts out 
rather low when the meshes are very coarse, but rapidly 
increases with input mesh size. Both configurations demon- 
strate mesh coarsening ratios above 4 when the initial mesh 
contains approximately lo4 cells, and the coarsening ratio 
rapidly approaches a limit of around 7.25 at finer resolutions. 
These results are characteristic of the performance of the 
coarsening scheme on all examples tested to date. 

The four frames in Figure 9 displays a coarsening sequence 
for the twin engine business jet beginning with the 3.6 M cell 
mesh from the study in fig. 8. This mesh was successively 
coarsened to produce the four meshes displayed. The coars- 
ening algorithm achieved ratios of 7.24,7.16 and 6.49 to pro- 
duce the coarsest mesh shown (lower right frame) with 10700 
cells. With these ratios, the computational effort for a 4-grid 
multigrid W-cycle would be only 1 . 3 8 ~  more than that of a 
single fine mesh timestep. 

3.3 Multigrid Convergence Studies 
With the characteristics of the mesh coarsening algorithm 
established, we begin a very preliminary study of the conver- 
gence rate of the multigrid scheme. The transonic ONERA 
M6 wing case from Figure 4 forms the basis of this initial 
investigation. The mesh in that computation contained 
525000 cells and now forms the finest mesh in the multigrid 
sequence. Successive coarsening of this mesh by ratios of 
7.02,6.04, and 5.13 produced the four grid sequence used in 
this study. To prevent limiter fluxuations from contaminating 
the convergence study, the code was run first-order in this 
example. Sawtooth W-cycle multigrid was used, with the 
"optimal 5-stage scheme" of ref. [23] providing time 
advance. 

Figrtre 9: The initial fine (upper left) and first three coarse meshes 
for a twin engine business jet configuration. The initial mesh has 
3.6 x lo6. Successive coarsening ratios of 7.24, 7.16 and 6.49 
produce the coarsest mesh with 10700 cells. 

Figure 10 displays convergence behavior both in terms of 
multigrid cycles and as a function of computational work. 
The "work" abcissa in the lower figure is normalized by the 
cost of a single fine mesh residual computation. On 4 meshes, 
the convergence rate for the first 6 orders of the L i  residual 1s 
approximately 0.84. Unfortunatly, this rate decreases over the 
later iterations to give an overall rate of 0.94 for the entire 
computation. Despite the slowdown, the lower frame in Fig- 
ure 5 demonstrates a 5x savings in the computational effort to 
bring the residual to machine zero. 

One likley cause for the slowdown in convergence rate 
observed in fig. 10 is the formation of shocks in the flowfield 
over the wing. To investigate the convergence behavior in a 
shock-free flowfield, the free stream Mach number was 
reduced to 0.54, leaving all other parameters unchanged. 
With a fully subsonic flow, flux limiters were turned off and 
the van Leer scheme was run second-order. 

- L1, Slngle gr~d 
L1, 2gr1d - L1, 3grid 

10 ' L1, 4 grid 

Muitigrid cycles 

Fine Mesh Residual Evnlnations 

Figrtre 10: Convergence of transonic ONERA M6 wing test case 
as a function of both multigrid cycles (upper) and computa- 
tional work (lower). M ,  = 0.84, cr = 3.06". 
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Figure 11 shows convergence results for this example. a) 
Results with 4 and 5 grids both converge at an overall rate of 
0.86. While slowdown in convergence observed in the tran- 
sonic case is much less prominent it still exists. The most 
obvious culprit is certainly the use of direct injection for pro- 
longation, and future efforts will examine smoother operators 
and their associated computational cost. Despite this short- 
cornming, these preliminary results are encouraging and per- 
formance is comparable to examples in the literature. 

4 Domain Decomposition and Scalability 

4.1 Domain decomposition 
One novel aspect of this work lies in its approach toward 
domain decomposition. The option exists to apply a commer- 
cial grade uni-processor partitioner like the multi-level nested 
dissection tool in reference [241 or its multi-processor vari- 
ant[251. However, an attractive alternative stems from exploit- 
ing the nature of Cartesian meshes. We have built-in a 

Multigid cycles 

F i e  Mesh Residual Evaluations 

Figure I I :  Convergence of subsonic ONERA M6 wing test case 
as a function of both multigrid cycles (upper) and computa- 
tional work (lower). M, = 0.54, a = 3.06". 

Figure 12: Space-filling curves used to order three Cartesian 
meshes in two spatial dimensions: a) Peano-Hilbert or "U- 
ordering", b) Morton or "N-ordering". 

partitioner based upon the use of space-filling curves, con- 
structed using either the Morton or Peano-Hilbert order- 
ings[261.~ Both of these orderings have been used for the 
parallel solution of N-body problems in computational phys- 
ic~['~], and the later scheme has been proposed for applica- 
tion to algebraic m ~ l t i ~ r i d [ ~ ~ ]  in the solution of elli tic PDEs 
and dynamic repartitioning of adaptive methods[']. Figure 
12 shows both Peano-Hilbert and Morton space-filling curves 
constructed on Cartesian meshes at three levels of refine- 
ment. In two dimensions, the basic building block of the Hil- 
bert curves is a "U" shaped line which visits each of 4 cells in 
a 2 x 2 block. Each subsequent level divides the previous 
level's cells by nested dissection, creating subquadrants 
which are, themselves, visited by U shaped curves as well. 
This "U-ordering" has locality properties which make it 
attractive as a partitioner[291. Similar properties exist for the 
Morton ordering which uses an "N" shaped curve as its basic 
building block. Properties and construction rules for these 
space-filling curves are discussed in refs. [30] and [31]. For 
the present, we note only that such orderings have 3 impor- 
tant properties. . . 

1.  Mapping 3id + U : The U and N orderings provide a 
unique mappings from the d-dimensional physical 
space of the problem domain 3id to a one-dimen- 
sional hyperspace, U, which one traverses following 
the curve. In the U-order, two cells adjacent on the 
curve remain neighbors in this one-dimensional 
hyperspace. 

2. Locality: In the U-order, each cell visited by the 
curve is directly connected to two face-neighboring 
cells which remain face-neighbors in the one dimen- 
sional hyperspace spanned by the curve. Locality in 
N-ordered domains is almost as good[261. 

3. Compactness: Encoding and decoding the Hilbert or 
Morton order requires only local information. Follow- 
ing the integer indexing for Cartesian meshes outlined 
in ref. [2], a cell's 1-D index in U may be consycted 
using only that cell's integer coordinates in 3i and 
the maximum number of refinements that exist in the 
mesh. This aspect is in marked contrast to other parti- 
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physical 
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Figure 13: An adapted Cartesian mesh y d  associated space-filling 
curve based on the U-ordering of '% + U with the U-order- 
ing illustrating locality and mesh partitioing in two spatial 
dimensions. Partitions are indicated by the heavy dashed lines 
in the sketch 
tioning schemes based on recursive spectral bisection 
or other multilevel decomposition approaches which 
require the entire connectivity matrix of the mesh in 
order to perform the partitioning. 

To illustrate the property of compactness, consider the posi- 
tion of a cell i in the N-order. One way to construct this map- 
ping would be from a global operation such as a recursive 
lexicographic ordering of all cells in the domain. Such a con- 
struction would not satisfy the property of compactness. 
Instead, the position of i in the N-order may be deduced 
solely by inspection of cell i's integer coordinates (xi, yi, zi). 

Assume (x , ,  j , ,  Z i )  is the bitwise representation of the integer 
coordinates (xi, yi, zi) using m-bit integers. The bit sequence 
{ i , ' y  f Z,' ) denotes a 3-bit integer constructed by interleaving 
the first bit of xi, yi and zi. One can then immediately compute 
cell i's position in U as the 3m-bit integer 
{i,'jtz,'i,2j,2i ,2... i y j y Z ~ } .  Thus, simply by inspection of a 
cell's integer coordinates, we are able to directly calculate its 
position in the one-dimensional space U without any addi- 
tional information. Similarly compact construction rules exist 
for the U-orderf3 'I. 

Figure 13 illustrates these mapping and locality properties for 
an adapted two-dimensional Cartesian mesh, partitioned into 
three subdomains. The figure demonstrates the fact that for 
adapted Cartesian meshes, the hyperspace U may not be fully 
populated by cells in the mesh. However, since cell indices in 
U may be explicitly formed, this poses no shortcoming. 

The quality of the partitioning resulting from U-ordered 
meshes have been examined in ref. [29]. and were found to 
be competitive with respect to other popular partitioners. 
Weights can be assigned on a cell-by-cell basis. One advan- 
tage of using this partitioning strategy stems from the obser- 
vation that mesh refinement or coarsening simply increases 
or decreases the population of U while leaving the relative 
order of elements away from the adaptation unchanged. Re- 
mapping the new mesh into new subdomains therefore only 
moves data at partition boundaries and avoids global remap- 

pings when cells adaptively refine during mesh adaptation. 
Recent experience with a variety of global repartitioners sug- 
gest that the communication required to conduct this remap- 
ping can be an order of magnitude more expensive than the 
repartitioning i t ~ e l f I ~ ~ ] .  Additionally, since the partitioning is 
basically just a re-ordering of the mesh cells into the U-order, 
the entire mesh may be stored as a single domain. At run- 
time, this single mesh may then be partitioned into any num- 
ber of subdomains on-the-fly as it is read into the flow solver 
from mass storage. In a heterogeneous computing environ- 
ment where the number of available processors may not be 
known at the time of job submission, the value of such flexi- 
bility is self-evident. 

The SFC reordering pays additional dividends in cache-per- 
formance. The locality property of the SFC produces a con- 
nectivity matrix which is tightly clustered regardless of the 
number of subdomains. Our numerical experiments suggest 
that SFC reordered meshes have about the same memory 
cache hit-rate as those reordered using RCM. 

Figure 14 shows an example of a three dimensional Cartesian 
mesh around a triple teardrop configuration partitioned using 
the U-order. The mesh in this figure contains 24000 cells and 
is indicated by several cutting planes which have been passed 
through the mesh, with cells colored by partition number. 
The upper frame shows the mesh and partition boundaries, 
while the lower frame offers further detail through an 
exploded view of the same mesh. 

In determining partition boundaries in this particular exam- 
ple, cut-cells were weighted lox as compared to un-cut Car- 

Partitioned Domain 

Exploded View of Partitioning .d 

Figure 14: Partitioning of 6 level adapted mesh around a trip1 
teardrop geometry with 24000 cells into four subdomain 
using space-filling curves. The mesh is shown by a collectio 
of cutting planes through each partition. 
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Scalability tests were conducted on the 525000 cell transonic 
ONERA M6 wing example from fig. 4 ($2.3) using from 1 to 
32 processors on a 250Mhz Mips RlOOOO based SGI Origin 
2000. Figure 15 shows a view of the partitioned mesh (8 sub- 
domains) accompanied by a contour plot of pressure coeffi- 
cient in the discrete solution. Each processor of this platform a.MFLOPS counted using 250MHz RlOOOO hardware counters on 

optimized code, with single cycle MADD instruction disabled. 
has a 4Mb Level 2 cache, and two processors on each board Floating-point multiply, add, and divide each counted as one flop. 

Figure 15: Partitioned mesh and C contours for the ONERA M6 wing exam le. The mesh contains 525000 cells at 9 levels of 
fl refinement, mesh partitions arlshown by color-coding and outlined in eavy lines. Cp contours are plotted using a cell- 

by-cell reconstruction of the discrete solution. M, = 0.84, a = 3.06, van Leer flux. 

tesian hexahedra. Numerical experiments indicate that a Table 1: Parallel scalability and processing rate per processor. 
wieghting foactor of 2.7 provides better load-balancing, and Results for each partitioning reflect average of three runs. 
this factor was used in all the results presented in the follow- ONERA M6 wing, 525000 control volumes, 200 iterations per test. 

share the same local memory. Examination of this plot shows 
generally good scalability, however, communication does 
appear to slow this particular computation on 4 and 8 proces- 
sors when the problem initially gets spread over several 
boards within the machine. On 32 processors the timings 
show a "cache bubble" evidenced by the fact that the results 
on 32 processors are more than a factor of two faster than the 

ing section. 

4.2 Scalability and Performance 

c - -a Measured (Origin 2000,250Mhz) 

Ideal 

25 / 1 

Figrlre 16: Preliminary investigation of parallel scalability of 
single mesh (no-multigrid) ONERA M6 wing case. Data 
reflect average results from 3 runs with each partitioning. 

No. of 
Processors 

1 

timings on 16 processors. Table 1 shows the per-processor 
execution rate and parallel speed-up for this example. Results 
in this table show a 4% increase in per-processor execution 
rate on 32 processors as each processor's L2 cache was very 
nearly sufficient to store the individual subdomains. The 
table demonstrates no substantial decrease in performance 
with larger numbers of subdomains. Results in Table 1 and in 
Figure 16 were obtained by averaging the results of 3 sepa- 
rate sets of tests since timings on this machine are known to 
vary by as much as 10%. 
Figures 17 and 18 provide a final look at solver scalability. 
This example shows the twin engine business jet from fig. 9 
run at a freestream Mach number of 0.84 and 1.81" angle of 
attack. Figure 17 shows a contour plot of pressure coefficient 
on the body surface and in the symmetry plane. In this exam- 
ple the mesh contained 1.42 M cells at 11 levels of refine- 
ment. The case was run on from 1 to 64 processors on the 
same machine as the ONERA M6 example. Figure 18 shows 
a plot of computational speedup against number of CPU's. 
Performance is comparable to that of the preceeding case, 
and on 64 processors, this example achieved a computational 
speedup of 52.3. 

5 Conclusions and Future Work 
This paper presented preliminary verification and validation 
of a new, parallel, multilevel Euler solver for Cartesian 

CPU 

(set.> CPU 
2559 

Mflopsl 

81.4 

Parallel 
Speed-up 

1 

Ideal 
CPUVpeedup 

1 
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Figrire 17: Symmetry plane and surface pressure coefficient for 
twin engine business jet computed on 64 processors for scal- 
ability testing. The mesh contains 1.42 M cells at 11 levels of 
refinement. Cp contours are plotted using cell-by-cell recon- 
struction of the discrete solution, M, = 0.84, a = 1.8 1 ", van 
Leer flux 

meshes. Comparison of the scheme's local truncation error 
with an analytic solution demonstrated an achieved order of 
accuracy between 1.82 and 1.88. Preliminary validation by 
direct comparison to experimental results on a three dimen- 
sional wing configuration was also performed, demonstrating 
that the discrete solutions were competitive with other solu- 
tion procedures. 

Documentation of a new on-the-fly SFC based parallel 
domain decomposition strategy was also presented. This 
strategy enables SFC reordered meshes to be pre-sorted and 
stored as a single domain. This mesh can then be decom- 
posed into any number of partitions in at run time. Investiga- 
tions demonstrated that this decomposition strategy produces 
a parallel speed-up in excess of 52 on 64 processors. 

meshes were also presented. In this approach, every mesh in 
the multigrid hierarchy covers the entire computational 
domain. Examples on realistically complex three dimen- 
sional configurations demonstrated that this algorithm gener- 
ally achieves mesh coarsening rattos in excess of 7 on 
adaptively refined meshes. Preliminary convergence results 
for W-cycle multigrid on simple geometries produced con- 
vergence rates between 0.84 and 0.94. 

The next step in our development focuses upon scalability of 
the multigrid method, and an examination of the trade-offs 
between smoothness of the prolongation operator and com- 
putational expense. Future investigations will consider the 
degree of geometric fidelity required to maintain good 
asymptotic performance of the multigrid smoother. 
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