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Abstract 

 A concurrent multiscale modeling methodology that embeds a molecular 

dynamics (MD) region within a finite element (FEM) domain is used to study 

plastic processes at a crack tip in a single crystal of aluminum. The case of 

mode I loading is studied. A transition from deformation twinning to full 

dislocation emission from the crack tip is found when the crack plane is 

rotated around the [ ] crystallographic axis. When the crack plane 

normal coincides with the [112] twinning direction, the crack propagates 

through a twinning mechanism. When the crack plane normal coincides with 

the [011] slip direction, the crack propagates through the emission of full 

dislocations. In intermediate orientations, a transition from full dislocation 

emission to twinning is found to occur with an increase in the stress intensity 

at the crack tip. This finding confirms the suggestion that the very high 

strain rates, inherently present in MD simulations, which produce higher 

stress intensities at the crack tip, over-predict the tendency for deformation 

twinning compared to experiments. The present study, therefore, aims to 

develop a more realistic and accurate predictive modeling of fracture 

processes. 
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I. Introduction 

Physics-based modeling of fracture begins at the nanometer-scale where atomistic simulation 

is used to predict the formation, propagation, and interaction of fundamental damage 

mechanisms. These mechanisms include dislocation formation and interaction, interstitial void 

formation, and atomic diffusion. The development of these damage mechanisms progress into 

microscale processes such as local plasticity and small crack formation. Ultimately, damage 

progression leads to macroscopic failure modes such as plastic yielding of components and large 

cracks exhibiting Mode I, II, and III deformation.  

Fracture inherently involves mechanisms that operate at a broad range of time and length 

scales – atomistic bond breaking at the crack tip, dislocation-governed plasticity in the damage 

zone near the crack tip, and statistically homogenized elasto-plastic properties of the material 

that influence the crack behavior at larger length scales. Multiscale modeling strategies have 

been developed to study these fundamental mechanisms while keeping the problem 

computationally tractable. Multiscale analyses attempt to bridge length scales by providing 

different physics-based models that can most appropriately represent damage mechanisms at 

each scale. These methods are especially useful in modeling of fracture in ductile metals, such as 

aluminum, which is the focus of this study.  

Recently, a number of atomistic simulation studies1-5 on crack propagation in aluminum have 

been published. The results of these investigations show that two main mechanisms of crack 

propagation operate. These mechanisms are propagation through deformation twinning, and 

propagation through the emission of full dislocations from the crack tip. However, some of these 

results disagree with experiment2. The experimentally observed dominant deformation mode is 

dislocation slip, while deformation twinning is rarely found. Whereas, the simulations 

significantly and systematically overestimate the degree of twinning in pure aluminum. This 

discrepancy between simulations and experiments has attracted considerable attention among 

researchers3,5 because it prevents the reliable and accurate modeling of fracture in particular, and 

puts doubt on the reliability of the atomistic simulations in general. Most likely, the source of 

this discrepancy is related to the very different length (nanometers vs millimeters) and time 
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(nanoseconds vs seconds) scales at which simulations and experiments are usually performed. 

Nonetheless, the exact mechanism of how these length and time scales affect the propagation 

process remains unclear.  

In an attempt to resolve the issue, Tadmor and Hai3 systematically studied the role of 

crystallographic orientation of the crack plane on the propagation mechanism. Their assumption 

was that the constraint imposed by the boundary conditions (dimensionality constraints in a 

periodic system or surface effects in very thin specimens)3 used for systems of very small sizes 

in atomistic simulations inhibit dislocation slip and favor twinning.  

More recently, Warner et al.5 suggested that the crack propagation mechanism is strongly 

affected by the rate of propagation through the required applied stress intensity at the crack tip. 

To obtain a measurable propagation in the time frame of the simulation (a few nanoseconds), 

much larger stress intensities have to be applied as compared to the experimental time frame 

(seconds). According to Warner et al.5, higher stress intensities favor twinning, and thus 

twinning is more often found in simulations than in experiments.  

The present study investigates in detail the conditions responsible for twinning or dislocation 

emission from a crack tip under Mode I loading. A recently developed embedded statistical 

coupling method (ESCM)6,7 for concurrent multiscale modeling is used. The approach is based 

on the construction of a coupled atomistic-continuum model. In this method, an atomistic 

domain is embedded within a larger continuum domain (Fig. 1). The circular atomistic region 

containing the crack tip is simulated using molecular dynamics (MD), while the surrounding 

continuum region is simulated using the finite element (FE) method. The authors have previously 

used the ESCM approach to study intergranular fracture along a grain boundary in aluminum8. 

The same approach is applied here to study transgranular fracture in a single crystal of 

aluminum. 
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Figure 1: Model geometry of the MD-FEM coupled system with an embedded edge crack ending inside the 
MD domain. 

 

II. The Simulation Approach 

The simulation approach used in this study, based on the ESCM, is a coupled atomistic-

continuum model that allows a large atomistic domain (containing 105 or more atoms) to be 

embedded within a continuum domain of micron dimensions. The atomistic domain is simulated 

using MD, where the interatomic forces are represented by an atomistic potential suitably fitted 

to reproduce the material properties of aluminum9. The continuum domain is simulated by using 

the FEM with anisotropic elastic properties derived from the aluminum potential at room 

temperature (300K). The ESCM approach provides elastic boundary conditions for the atomistic 

domain by transferring the applied far field mechanical load through the continuum domain into 

the atomistic system. 
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The ESCM method is based on the concept that the continuum representation of a material, 

in terms of stress-strain fields, is a statistical representation of its atomic structure. Following this 

idea, the connection between the atomistic and the continuum representations at the MD/FE 

interface is performed using a statistical mechanics approach. The method uses statistical 

averaging over both time and volume of atomistic subdomains at the MD/FE interface to provide 

nodal displacement boundary conditions to the continuum FE domain. The FEM generates 

interface reaction forces that are uniformly distributed over the interface atoms in the form of 

constant traction boundary conditions10,11 to the MD domain. Thus, this approach is based on 

solving the special boundary value problem (BVP) at the MD/FE interface for a coupled MD-

FEM system and may be described as a local-nonlocal BVP because it relates local continuum 

nodal quantities with statistical averages of nonlocal atomistic quantities over selected atomic 

volumes. For this study, one finite element at the interface encompasses a region of several 

hundred atoms, the positions of which have been averaged over a 1 ps time interval. At this 

scale, the discreteness of the atomic structure is sufficiently homogenized so that the FEM 

domain responds to the atomistic domain as an extension of the continuum. The constant traction 

boundary conditions of the MD domain ensure that the elastic field from the FEM domain is 

correctly transferred to the atomistic region. An iterative procedure using the MD statistical 

displacements establishes a balance between the FEM-computed forces and the MD-computed 

forces at the interface. This force balance ensures stress continuity at the interface.  

The model geometry used to study transgranular crack propagation in an aluminum single 

crystal is shown in Fig. 1. A circular MD domain with a diameter dMD = 40 nm was embedded in 

a square FEM mesh with side dimension dFE = 20dMD = 0.8 µm. In this model, the system 

represents a single crystal with a pre-inserted edge crack propagating along the x-direction. The 

crack plane normal is along the y-direction, and the crack front is along the z-direction. The crack 

from the continuum region is initially extended into the MD domain equal to 1/3 dMD (see the 

enlarged central zone in the inset in Fig. 1). The atomically sharp crack tip in the MD domain is 

formed by screening the atomic forces between the atoms on both sides of the crack plane 

starting from the MD/FEM interface along a distance of 1/3 dMD inside the MD domain.  
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The crack propagation direction, x, is fixed along the  axis, so that the crack plane is 

perpendicular to the  slip plane. The crack front lies in the intersection of the  slip 

plane and the crack plane (Fig. 2). The orientation of the crack front line is chosen as the z-

direction in the model. Under these circumstances, the only variable parameter for the 

crystallographic orientation of the crack is the twist angle, ϕ, formed between the crack plane 

normal (the y-direction in Fig. 2) and the [112] twin axis, lying in the  slip plane. The 

reason behind this crystallographic setup is based on the Peierls criterion for deformation 

twinning suggested by Tadmor and Hai3. According to this criterion, the tilt angle, θ, between 

the slip plane and the crack plane does not affect the tendency of the crack tip to nucleate a twin 

or a full dislocation under mode I loading. This tendency depends only on the twist angle, ϕ. In 

this way, setting θ = 90o is a convenient choice, because it permits the ϕ angle to vary while 

keeping the crack front parallel to the most 

active  slip plane. Because of the 

symmetry of the f.c.c. lattice, one can only 

examine variations of ϕ between 0o and 30o. 

Altogether six values of ϕ have been considered 

here: ϕ = 0o, 13.90o, 16.10o, 19.11o, 21.05o, and 

30o that satisfy the crystallographics of the 

system. The corresponding crystallographic 

orientations of the crystal lattice are presented in 

Table 1. These orientations were chosen in order 

to examine values for ϕ around 15o, as will be 

discussed in Section III.  

 
Figure 2: Crystallographic orientation of the crack with 

respect to the  slip plane in the f.c.c. lattice. 

 

Periodic boundary conditions were applied in the z-direction of the MD system to emulate 

bulk atomic state. To achieve a correct calculation of the interatomic potential energy and force, 

the thickness h in the z-direction of the MD domain has to include a whole number of periods of 



 
American Institute of Aeronautics and Astronautics 

 

7 

the crystal lattice in this direction. In addition, to ensure that at least 10 atomic planes are present 

in the z-direction (for consistency with the previous simulations by this group4), a condition h > 2 

nm was imposed. The choices of h at 0 K for each value of ϕ are given in Table 1. The condition 

that the thickness in the z-direction is the same everywhere in the MD domain corresponds to a 

plane strain condition in the continuum domain.  

 

ϕ [deg] x y z h [nm] 

0    2.864 

13.90    2.065 

16.10    3.577 

19.11    3.031 

21.05    2.762 

30    2.976 

Table 1: Crystallographic orientations of the crystal lattice and thickness, h, of the MD system for the applied set of 

ϕ - angles.  

 

The system has been loaded in uniaxial tension along the y-axis, through applying uniform 

displacement boundary conditions on the outer boundaries of the FEM square domain. The 

resulting stress intensity at the crack tip follows the continuum definition for KI for the presented 

geometry12. The loading started from zero strain, ε = 0, and was incremented by 0.1% every 20 

ps of simulation time, equivalent to a strain rate of 5x107 s-1. The applied strain increments of 

0.1% resulted in increments of the stress intensity at the initial crack tip of KI = 0.049 MPa-m1/2. 

The strain rate was sustained until a nano-twin or a full dislocation was emitted from the crack 

tip. The average stress along the periodic z-direction in the MD domain was maintained at zero 

by applying the Parrinello-Rahman constant stress technique13. The MD system was simulated at 

constant temperature (300K) using the Nose-Hoover thermostat14. 

To analyze the processes taking place in the atomistic domain, the common-neighbor-

analysis (CNA) technique was applied15. CNA identifies the local crystallographic state of an 
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atom based on the relative positions of its neighbors. For this study, two specific crystallographic 

states were of interest: the f.c.c. state – the ground state – and the h.c.p. state, which indicates a 

twin boundary (a single plane of h.c.p. atoms) or a stacking fault (a double plane of h.c.p. atoms). 

Atoms that were not identified as being in either of these two states were considered as 

disordered atoms. In a single crystal, the disordered atoms indicate a dislocation core or a 

vacancy. In addition, atoms that have lost more than 1/3 of its neighbors in the vicinity of their 

interaction range were considered as free surface atoms. In this model surface atoms indicate the 

crack surface. In the simulation snapshots presented in the paper (e.g., Figs. 3, 6 and 7, discussed 

in Section III), atoms in these various crystallographic states were color-coded to aid in 

visualization. All atoms in an f.c.c. state were colored in grey, and f.c.c. atoms that interface with 

the FEM nodes6,7 were colored in dark-gray. Atoms in h.c.p. state were colored in red, disordered 

atoms were colored in blue and surface atoms were colored in brown. For example, in Section 

III, the consecutive emission of the three partial dislocations, formations d1, d2, and d3 seen as 

blue dots in Fig. 3(a), produce a nano-twin indicated by parallel red lines that begin at the crack 

tip.     

 

III.  Results and Analysis 
 

III.1. Twin-dislocation transition with orientation 

The first set of simulations was performed to study the initiation process of a twin or a full 

dislocation emission from the crack tip during crack propagation under mode I loading. As 

explained in Section II, the crack was gradually loaded by increasing the applied tensile strain in 

the FEM domain and monitoring the processes at the crack tip in the MD domain. The initial 

twin or dislocation nucleation for all six simulated crystallographic orientations is given in Fig. 

3. The nucleation process was first observed when the stress intensity reached KI = 0.34 MPa-

m1/2. However, because of the incremental increase of KI in steps of 0.049 (see Sec. II), the 

critical stress intensity KIC, at which the first dislocation d1 in Fig. 3 is nucleated, was estimated 

to be between 0.29 and 0.34 MPa-m1/2.  
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Figure 3: Simulation snapshots of the initiation of plastic processes at the crack tip for the set of 

orientations given in Table 1.  

 

To distinguish between the occurrences of twinning or full dislocation emission, at least two 

of the dislocations nucleated from the crack tip (d1 and d2 in Fig. 3) need to be examined. If the 

second dislocation leaves an extrinsic stacking fault15 behind, indicated by two parallel lines of 
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h.c.p. atoms separated by one line of f.c.c. atoms16 (Fig. 3a and Fig. 3b), then a nano-twin 

nucleation has taken place15,16. Further emissions of dislocations would most likely broaden the 

nano-twin15 as the third dislocation has done in Fig. 3(a) and Fig. 3(b). If the second dislocation 

terminates the stacking fault left behind the first dislocation (Figs. 3c-f) then a full dislocation 

(consisted of two partial dislocations, d1 + d2 in Fig. 3c) emission has taken place. 

The snapshots in Fig. 3 indicate a transition from twin nucleation to full dislocation 

nucleation during changes in the angle ϕ from 0o to 30o. The Thompson Triangle17 shown in Fig. 

4 is now used to illustrate the transition from twinning to full dislocation nucleation in the active 

 slip plane. At ϕ = 0o (Fig. 4a) the direction of the tensile load, the y-direction, is parallel to 

the twinning direction [112]. In this case, both nucleated partial dislocations, d1 and d2, are of 

the same type with Burgers vectors in the [112] direction. This is the situation when a twin is 

formed. At ϕ = 13.90o (Fig. 4b), the Thompson triangle is slightly rotated in a clockwise 

direction, so that the y-direction of the tensile load is slightly inclined to the twin direction [112], 

but the inclination angle ϕ is too small to affect the dislocation nucleation process. The 

dislocation nucleation process is similar to that in Fig. 4(a), and twinning still takes place. 

However, further increase of the angle ϕ does change the deformation mode from twinning to 

full dislocation emission. At ϕ = 16.10o (Fig. 4c), the second dislocation d2 is nucleated in the 

 direction. Both partial dislocations, d1 and d2, combined to form a full dislocation d3 with 

a resultant Burgers vector along the [011] direction. The same situation occurs for the remainder 

of the ϕ angles as indicated in Figs. 4(d-f).  

A simplified but illustrative explanation of the change in the deformation mode from twinning 

to full dislocation emission can be given. Deformation twinning produces displacements in the 

crystal lattice along the <112> family of directions through the consecutive emission of parallel 

Shockley partial dislocations15 such as d1 and d2 in Fig. 4(a) and Fig. 4(b). Full dislocation 

emission produces displacement along the <110> family of directions by the emission of two 

Shockley partial dislocations in non-parallel <112> directions with a combined Burgers vector 

along one of the <110> directions. Schematically, this is shown in Figs. 4(c-f) where the 

combined dislocation d3 is formed as a sum of the two non-parallel partial dislocations, d1 and 

d2. When ϕ < 15o, the tensile y-direction is closer to the [112] direction (Fig. 4a and Fig. 4b) and 

the displacement takes place in the [112] direction, which results in twinning. When ϕ > 15o, the 
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tensile y-direction is closer to the [011] direction (Figs. 4c-f), and it is more favorable for the 

displacement to take place in the [011] direction. In order for this to happen, the second partial 

dislocation d2 is nucleated in the  direction so that the total Burgers vector of d1 and d2 

produces a displacement along the [011] direction. 

 
 

 

Figure 4: Crystallographic orientations of the  slip system at the crack tip in Thompson schematics for the set 

of orientations given in Table 1. 

 

A more rigorous analysis of the process is given by Tadmor and Hai3. They calculate the 

critical stress intensities, 

€ 

KIC
twin and 

€ 

KIC
disl , required to nucleate a pair of parallel (for twinning) or 

non-parallel (for full dislocation emission) Shockley partials under a given direction of loading 

and crystal orientation. If 

€ 

KIC
twin  < 

€ 

KIC
disl  then twinning is the more energetically favorable process 

and is more likely to occur. If 

€ 

KIC
disl  < 

€ 

KIC
twin  then full dislocation emission is the energetically 
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more favorable result. Based on this consideration, Tadmor and Hai3 proposed a criterion for 

twinning against full dislocation emission as the ratio between 

€ 

KIC
disl  and 

€ 

KIC
twin  

 

€ 

T ϕ( ) =
KIC

disl

KIC
twin

T >1 twinning
T <1 dislocation

 .                 (1) 

 

For the case of pure mode I loading, the calculations show3 that, while 

€ 

KIC
disl  and 

€ 

KIC
twin  

separately depend on the tilt angle θ (Fig. 2), their ratio  does not. In this way, the results for 

θ = 90o, presented in this work, are representative for all tilt angles scenarios. Using the 

methodology by Tadmor and Hai3 to calculate 

€ 

KIC
disl ϕ( )  and 

€ 

KIC
twin ϕ( )  for the energetically most 

favorable pair of partial dislocations, the dependence of their ratio  on ϕ for aluminum is 

given in Fig. 5. The material parameters that enter into the calculation3 are the stable and 

unstable stacking fault energies, written as γsf and γus, respectively, as defined by Rice18, and the 

unstable twinning energy, γut, as defined by Tadmor and Hai3. These energies for the curve, 

presented in Fig. 5, were derived from the interatomic potential9 at T = 0 K. The specific values 

are given as9: γsf = 0.146 J/m2, γus = 0.168 J/m2, and4 γut = 0.21 J/m2. It is expected that their 

values at T = 300 K are slightly lower, and the curve on Fig. 5 may not be quantitatively 

representative for T = 300 K, but it is given here for qualitative analysis.  

From a qualitative point of view, Fig. 5 shows a maximum value of  at ϕ = 0o and a 

minimum at ϕ = 30o. Thus, twinning is expected at ϕ = 0o and full dislocation emission is 

expected at ϕ = 30o, which is in agreement with the simulation results in Fig. 4(a) and Fig. 4(f). It 

should be noted however, that the range where  in Fig. 5 is very narrow (about ), 

while the MD simulations show a predominant twinning in a broader range up to ϕ = 13.9o (Fig. 

4b). One possible explanation for this quantitative disagreement could be that the analytical 

curve in Fig. 5 is given for T = 0 K, while the simulations were performed for T = 300 K. A 

more likely explanation is that the analytical curve is based on a minimum energy consideration 

and represents a static case, while the simulations are dynamic and were performed at a very 

high strain rate of 5x107 s-1. The mechanisms by which the strain rate may affect the twin-

dislocation transition, as found in the atomistic simulations, are discussed in the next subsection. 
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Figure 5: Orientation dependence of the Tadmor-Hai criterion for deformation twinning at a crack tip in aluminum. 
 

III.2. Twin-dislocation transition with stress intensity 

The effect of the high strain rate, inherently present in molecular-dynamics simulations, on 

the crack tip twinning in aluminum has recently been discussed by Warner et al.5 The main 

consideration in that work5, based on transition state theory19, was that to observe a dislocation 

nucleation from the crack tip in an MD simulation time frame (a few nanoseconds), the 

dislocation nucleation rate must be on the order of 109-1010 events per second. To achieve this 

high nucleation rate, much larger stress intensities have to be applied as compared to 

experimental conditions, where a nucleation rate of 100-101 is usually enough to observe 

dislocation nucleations in the time frame of seconds. The role of the stress intensity on the 

nucleation rate is accounted for in the Rice and Beltz model20 of dislocation nucleation at a crack 

tip. The analysis5 has shown that a transition stress intensity for twinning KIT exists, at which the 

deformation mode changes from full dislocation emission to deformation twinning. For the case 

ϕ = 0o, considered as a typical twinning case5, KIT was found to be substantially lower than 
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values of KI that are commonly observed in MD simulations of crack propagation. For a full 

dislocation emission to take place, the condition KI < KIT has to be fulfilled. However, according 

to transition state theory5,19, the dislocation nucleation rate at KI < KIT is so low that to record a 

dislocation emission event the observation time in the MD simulation has to be increased by 

more than four orders of magnitude to the level of 10-5 s (equivalent to a strain rate of 10-3 s-1 for 

1% deformation). To achieve this slowdown, an advanced coupled multiscale–accelerated 

dynamics technique, which involved scaling on both, space and time scales, was applied5. 

Warner et al. calculations5 for the transition from deformation twinning to full dislocation 

nucleation were found to agree qualitatively with the theoretical predictions, but substantial 

quantitative differences were also apparent, indicating that further study is needed to fully 

understand the process. The complexity of the applied multiscale-accelerated dynamics 

technique by Warner et al.5 made its use more difficult in a more systematic study of the 

problem. A different approach is presented in the present paper, which allows the twin-

dislocation transition to be reproduced and studied at the MD-accessible strain rate of 5x107 s-1. 

This permits the more computationally affordable conventional MD technique to be used and 

avoids some possible artifacts of applying an accelerated-dynamics technique. 

The new approach is based on the observed MD twin-dislocation transition with the change 

of crystal orientation as described in Sec. III.1. The observed transition from twinning to full 

dislocation emission shown in Fig. 4 can be interpreted as a result of increasing the transition 

stress intensity, KIT, as ϕ varies from 0 to 30o. Thus, at some intermediate angle, ϕ, between 

13.9o and 16.1o, KIT becomes higher than the applied stress intensity KI, and twinning is replaced 

by full dislocation emission. If this is indeed the case, then increasing the applied stress intensity 

above KIT would reinitiate the twinning mechanism, whereas full dislocation emissions were 

initially observed at lower stress intensities. This scenario is easier to test by MD simulations 

than the case studied by Warner et al.5, because in an MD simulation, an increase of KI is much 

easier to achieve than a decrease, as it avoids the use of accelerated dynamics techniques. The 

drawback is that increasing the stress intensity may induce additional deformation modes, such 

as the activation of a secondary slip system, as seen in Fig. 6, which will be discussed next. 

To examine the dependence of the twin-dislocation transition on increasing stress intensity, 

the first two values of ϕ, equal to ϕ = 16.10o and ϕ = 19.11o, were selected because they emitted 

full dislocations. The systems were subject to four levels of uniaxial tensile strain of εyy = 0.7%, 
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0.8%, 0.9%, and 1.0% corresponding to KI = 0.34, 0.39, 0.44, and 0.49 MPa-m1/2, respectively. 

The results for ϕ = 16.10o are shown in Fig. 6. At KI = 0.34 MPa-m1/2 (Fig. 6a), the crack emitted 

a full dislocation and at KI = 0.39 MPa-m1/2, a twin was nucleated (Fig. 6b). Twin nucleation 

continued to be systematically observed at higher loads of KI = 0.44, and 0.49 MPa-m1/2 (Figs. 6c 

and 6d). From these results, it follows that the transition stress intensity at ϕ = 16.10o is 

approximately KIT = 0.39 MPa-m1/2. Similar behavior is found for ϕ = 19.11o, as shown in Fig. 7, 

but twinning starts at a higher load of KI = KIT = 0.49 MPa-m1/2. Thus, an increase in ϕ results in 

an increase in KIT by the same mechanisms that were observed in Fig. 6. The high stress at which 

twinning starts, induces the emission of partial dislocations on a secondary slip plane as seen in 

Figs. 6(c,d) and Figs. 7(c,d).  

 

 
Figure 6: Simulation snapshots of the initiation of plastic processes at the crack tip for ϕ = 16.10o at different stress 

intensities KI, as indicated in the figure.  
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The presented results confirm the conclusion of Warner et al.5 that a transition stress intensity 

KIT exists, below which the crack emits full dislocations, and above which deformation twinning 

takes place. The results also show that KIT is a function of the twist angle ϕ. At ϕ = 0, KIT is too 

low for a dislocation nucleation event to take place at typical MD time scales and full dislocation 

emission cannot be seen in a conventional MD simulation at this orientation. At orientations for 

which KIT is above the simulated KI, full dislocation emission becomes the dominant crack 

propagation mode. When KI is increased above KIT, deformation twinning is again observed.  

 

 
Figure 7: Simulation snapshots of the initiation of plastic processes at the crack tip for ϕ = 19.11o at different stress 

intensities KI, as indicated in the figure.  

 

 

 

IV.  Summary 
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The simulation method for this study is based on the embedded statistical coupling method 

(ESCM). The ESCM is a MD-FEM coupling method, which uses statistical quantities such as 

statistically averaged atomic displacements to connect the atomistic MD domain with the 

continuum FE domain. As a consequence, the ESCM technique makes possible relatively large 

atomistic domains (105 to 107 atoms) to be embedded in a continuum domain of micrometer 

dimensions. This capability is essential for the present study because it minimizes the finite size 

effects by allowing edge cracks of 0.45 µm size to be modeled while preserving the atomic 

representation of the material at the crack tip. The ESCM method so far has been successfully 

applied in the case of intergranular fracture, where the crack propagation direction was 

predefined by the existing grain boundary. The presented study is the first application of the 

ESCM approach for the case of transgranular fracture.  

Dislocation processes at a crack tip in a single crystal of pure aluminum were studied. Two 

types of processes were found to take place: deformation twinning and emission of full 

dislocations (i.e. dislocation slip at the crack tip). Studying the transition between these two 

processes reveals the existence of a transition stress intensity, KIT, below which the crack emits 

full dislocations and above which deformation twinning becomes dominant. The transition stress 

intensity depends on the crystallographic orientation of the crack front in mode I loading, 

through the twist angle ϕ between the tensile direction and the twinning [112] crystallographic 

axis. A minimum value of KIT is reached at ϕ = 0o where twinning becomes the dominant crack 

propagation mode in MD simulations due to their inherently very high strain rates of 107 s-1 or 

higher. A maximum value of KIT at ϕ = 30o defines the region of full dislocation emission at 

typical MD time scales. To be consistent with experimental observations, where deformation 

twinning at the crack tip in aluminum is rarely observed, this study suggests that crystallographic 

orientations close to ϕ = 30o should be used for atomistic characterization of crack tip plastic 

processes in aluminum. Orientations close to ϕ = 0o should be avoided as they produce the 

artifact of deformation twinning, that can substantially alter the predicted fracture parameters, 

such as the peak stress of debonding and energy of decohesion.   
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