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ABSTRACT 

A new refined theory for laminated composite and sandwich beams that contains the kinematics of the 

Timoshenko Beam Theory as a proper baseline subset is presented. This variationally consistent 

theory is derived from the virtual work principle and employs a novel piecewise linear zigzag 

function that provides a more realistic representation of the deformation states of transverse-shear 

flexible beams than other similar theories. This new zigzag function is unique in that it vanishes at the 

top and bottom bounding surfaces of a beam. The formulation does not enforce continuity of the 

transverse shear stress across the beam’s cross-section, yet is robust. Two major shortcomings that are 

inherent in the previous zigzag theories, shear-force inconsistency and difficulties in simulating 

clamped boundary conditions, and that have greatly limited the utility of these previous theories are 

discussed in detail. An approach that has successfully resolved these shortcomings is presented 

herein. Exact solutions for simply supported and cantilevered beams subjected to static loads are 

derived and the improved modelling capability of the new “zigzag” beam theory is demonstrated. In 
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particular, extensive results for thick beams with highly heterogeneous material lay-ups are discussed 

and compared with corresponding results obtained from elasticity solutions, two other “zigzag” 

theories, and high-fidelity finite element analyses. Comparisons with the baseline Timoshenko Beam 

Theory are also presented. The comparisons clearly show the improved accuracy of the new, refined 

“zigzag” theory presented herein over similar existing theories. This new theory can be readily 

extended to plate and shell structures, and should be useful for obtaining relatively low-cost, accurate 

estimates of structural response needed to design an important class of high-performance aerospace 

structures. 
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1. INTRODUCTION 

 Performance and weight advantages of advanced composite materials have led to their sustained 

and increased application to military and civilian aircraft, aerospace vehicles, naval and civil 

structures. To design efficient and reliable composite structures, improved analytical and 

computational methods that accurately incorporate principal non-classical effects are necessary. In 

relatively thick and/or heterogeneous beams, shear deformation may influence, to a significant 

degree, such design-significant response quantities as the normal stresses, deflection, vibration 

modes, and natural frequencies. The inherent assumptions of classical deformation theories generally 

render such theories less than adequate for application to advanced composites. This shortcoming is 

particularly manifested in relatively thick structures with material layers that exhibit large differences 

in the transverse shear properties, often leading to non-conservative predictions for deformation, 

stresses, and natural frequencies. It is further noted that, in these classical shear deformation models, 

transverse shear stresses fail to satisfy equilibrium conditions at the layer interfaces. 

 The two key assumptions of Bernoulli-Euler beam (known as the Kirchhoff-Love hypotheses in 

plates and shells) are those of zero transverse shear strain and non-deformable transverse normal – the 

assumptions that are fully consistent for the bending of very slender beams that exhibit negligibly 

small shear deformations. The bending deformation may thus be defined in terms of a single 

deflection variable. Here Hooke’s law only leads to a zero transverse shear stress. Instead, a beam 

equilibrium equation is used to obtain the shear force from which an average shear stress is computed. 

Timoshenko1 introduced an additional kinematic variable, the bending rotation, to account for shear 

deformation in an average sense while retaining the non-deformable normal assumption. This 

improvement over the classical beam theory allows the transverse shear stress to be obtained from 

Hooke’s law, and extends the range of applicability to thick beams.  

 Timoshenko beam theory, and analogous shear-deformation theories for plate and shell structures, 
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has been widely used in structural analysis of homogeneous and composite beam-type structures.  The 

theory produces inadequate predictions, however, when applied to relatively thick composite 

laminates composed of material layers that have highly dissimilar stiffness characteristics. Even with 

a judiciously chosen shear correction factor, which is dependent on the stacking sequence, 

Timoshenko theory tends to underestimate, often substantially, the axial stress on the top and bottom 

surfaces. Moreover, along layer interfaces, the transverse shear stress often exhibits excessively 

erroneous discontinuities. The reason for these difficulties might be traced to a higher complexity of 

the ‘true’ displacement field across a highly heterogeneous cross-section. Clearly, the linear through-

thickness displacement assumption for the axial displacement is the main shortcoming of Timoshenko 

theory when the modelling of complex material systems is undertaken.  

 Higher-order terms, with respect to the thickness coordinate, have been added to the in-plane 

displacements and, in some cases, to the transverse displacement. This leads to the so-called higher-

order theories that are also commonly known as equivalent single-layer theories2. While notable 

response improvements have been achieved with several of such theories, they generally fall short as 

far as predicting correct shear and axial stress behaviour in highly heterogeneous lay-ups in 

moderately thick laminates and high-frequency dynamics.  

 Departing from the equivalent single-layer modelling assumptions, layer-wise theories assume that 

the behaviour of a laminate is due to an assembly of the individual layers whose kinematic fields are 

independently described while satisfying certain physical continuity constraints2. The increased 

kinematic freedom provided by the layer-wise schemes enable the enforcement of the interlaminar 

stress continuity conditions and the modelling of the zigzag displacement through a laminate 

thickness. The major drawback of such theories, however, is that the number of kinematic variables is 

dependent on the number of layers; thus, for thick laminates with a large number of plies, a great 

number of variables results, making such approaches computationally unattractive. Notable early 

contributions to layer-wise schemes are those due to Ambartsumian3 and Sun and Whitney4. While 

providing relatively accurate approximations, these theories possess a large number of variables and 
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are particularly cumbersome to implement within a displacement-based finite element method5.  

 The so-called zigzag theories constitute a special sub-class of layer-wise theories. They assume a 

zigzag pattern for the in-plane displacements and enforce the continuity of the shear stresses across 

the entire laminate thickness. They give rise to bending theories based on the same number of 

kinematic variables regardless of the number of layers in a laminate. Thus, the early efforts of Di 

Sciuva6-8 and Murakami9 employed zigzag-like displacement fields that satisfy a priori the transverse 

shear stress and displacement continuity conditions at the layer interfaces while keeping the number 

of kinematic variables independent of the number of layers.  Di Sciuva10-11 also demonstrated that 

such models are well-suited for finite element approximations. 

 In Di Sciuva’s earlier efforts6-7, a form of shear deformation theory is augmented by adding a 

piecewise linear (“zigzag”) function to the in-plane displacement. To retain only the kinematic 

variables of the classical theory, a constant shear stress is enforced across the entire laminate 

thickness. This procedure led to the desired enhancement in the axial displacement and 

simultaneously achieved the shear stress continuity along layer interfaces. Furthermore, for 

homogeneous cross-sections the zigzag shape function vanishes identically, thus resorting back to a 

shear deformation theory. Di Sciuva12-13 also introduced further enhancements to the zigzag model by 

adding to a zigzag function a cubic in-plane displacement. The Di Sciuva theories require C1–

continuous shape functions for formulating suitable finite elements. Such approximation schemes are 

significantly less attractive, especially for plate and shell finite elements, than the C0–continuous 

displacement interpolations associated with Timoshenko-type theories. 

 Exploring the new linear14 and cubic15 zigzag beam models with a view on C0–continuous finite 

elements, Averill modified the Di Sciuva approach by starting with Timoshenko theory, adding an 

additional kinematic variable associated with a zigzag function, and by introducing an ad hoc penalty 

term in the variational principle. The penalty term serves to enforce the continuity of transverse shear 

stress across the cross-section in a limiting sense.  

 Di Sciuva’s theory runs into theoretical difficulties in an attempt to interpret the physical 
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significance of the shear stress associated with the theory. The difficulty is especially evident at the 

clamped support, where the cross-sectional area integral of the shear stress, obtained from constitutive 

relations, does not correspond to the total shear force. Thus, the correct shear force and the average 

shear stress can be determined from an equilibrium equation relating the shear force to the derivative 

of the bending moment, as in Bernoulli-Euler theory. Averill’s theory also suffers from its inability to 

model correctly a clamped boundary condition, where it predicts erroneously that the transverse shear 

stress and the corresponding resultant force vanish. To alleviate this anomaly, Averill proposed a 

boundary condition compromise at the expense of variational consistency of the theory, in which a 

kinematic variable representing the amplitude of the zigzag displacement is left out of the 

variationally required boundary condition.  Consequently, extensive analytic and numerical studies 

that have been conducted primarily focused on beams and plates with simply supported boundaries6-

7,12-15. Recently, a zigzag plate analysis was discussed for clamped plates16; however, no results were 

presented for the shear stresses along the clamped edges. 

 Scrutiny of the zigzag theories discussed herein has revealed some serious shortcomings. The aim 

of the present study is to present a new refined zigzag theory that is free of these shortcomings and 

amenable to finite element implementation. In particular, the present paper discusses a new refined 

zigzag beam theory of Tessler, Di Sciuva and Gherlone17,18 that is consistently derived from the virtual 

work principle, by refining the ideas of Timoshenko, Di Sciuva, and Averill. The key attributes of the 

present theory are, first, the proposed zigzag function vanishes at the top and bottom surfaces of the 

beam and does not require full shear-stress continuity across the laminated-beam depth. Second, all 

boundary conditions, including the fully clamped condition, can be modelled adequately. And third, 

the theory requires only C0-continuous kinematics for finite element modelling, as do elements based 

on the theories of Timoshenko1, Mindlin19, and Reissner20.  This latter attribute lends itself to 

developing computationally efficient and robust beam, plate, and shell finite elements. Overall, the 

theory appears as a natural extension of Timoshenko theory to laminated composite beams, and it is 

devoid of the drawbacks of the zigzag theories discussed previously. 
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  In the remainder of the paper, the concept of zigzag kinematic assumptions is first described. 

Then the original zigzag schemes of Di Sciuva and Averill are elaborated in detail, and their 

deficiencies with respect to the transverse shear properties and clamped boundary conditions are 

highlighted. A unique zigzag function is then introduced to formulate the basis for the refined zigzag 

theory, giving rise to the transverse shear stress that has a piecewise constant distribution across the 

laminate thickness.  As an added explanation of the underlying reasons for the drawbacks of Averill’s 

formulation, a penalized form of the constitutive equations is introduced within the present theory. 

The equations of equilibrium and associated boundary conditions are then derived from the virtual 

work principle. Finally, the refined zigzag theory is assessed quantitatively by way of exact solutions 

for simply supported and cantilevered composite and sandwich beams. Thick beams composed of 

highly heterogeneous material lay-ups are considered. Comparisons are made with several beam 

theories, exact elasticity solutions, and results obtained with high-fidelity, two-dimensional elasticity 

finite element models. 

  This paper is an enhanced version of the article18 presented at the VI International Symposium 

on Advanced Composites and Applications for the New Millennium, held in Corfù, Greece, in May 

2007. 

 

2. CONCEPT OF ZIGZAG KINEMATICS 

 The response of heterogeneous, anisotropic laminated beams exhibiting the bending, shear and 

axial deformations is generally manifested by a zigzag-like through-thickness displacement field. 

Here the axial displacements are dominant, mainly in thick and/or heterogeneous beams, in their 

influence on the bending strain and stress. The cross-section of the deformed beam tends to distort 

according to a piecewise C0-continuous pattern, having discontinuous thickness-direction derivatives 

along the material layer interfaces. Within the individual material layers, the displacement 

distributions are generally nonlinear and sufficiently smooth. Such observations, based on exact 
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elasticity solutions (e.g., Pagano21), prompted Di Sciuva7 to add a zigzag kinematic term to a first-

order shear deformation theory in which shearing angles appear as independent variables. Following 

Di Sciuva’s work, Averill14 proposed a similar zigzag enhancement for application to beam bending 

analysis of composite laminates using the standard form of Timoshenko theory in which the bending 

rotation is represented by an independent variable appearing in the axial displacement expansion. In 

what follows, the essential aspects of Di Sciuva and Averill zigzag models are examined in order to 

set the stage for the new refined zigzag bending theory. The theoretical anomalies encountered by 

these earlier zigzag models are discussed in sufficient detail.  

 Consider a narrow beam with the cross sectional area A. The beam is made of N orthotropic 

material layers that are perfectly bonded to each other and are parallel to the x axis. For the sake of 

the present discussion, only planar deformations are considered under the static loading which 

includes a distributed transverse pressure q(x) (units of force/length) and the prescribed axial (Txa, Txb) 

and shear (Tza, Tzb) tractions at the two reference cross sections x=xa and xb (refer to Figure 1). 

 

 

Figure 1. Beam subjected to transverse loading and end tractions. 

 

For any material point within the k-th layer, the displacement vector, which is general enough to 

describe the kinematics of the Di Sciuva, Averill, and the present refined zigzag theory, is expressed 

herein as 
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Figure 6. A cantilevered beam. 

 

5. RESULTS AND DISCUSSION 

 Results are presented in this section for the two beam examples previously described. The results 

include comparisons of those obtained from the new zigzag theory to those obtained using 

Timoshenko, Di Sciuva and Averill’s zigzag theories, exact elasticity solutions, and high-fidelity 

finite element solutions. A thick, three-layer beam is considered for all problems, with total thickness 

2h=2 [cm] and length L=10 [cm]. The span-to-thickness ratio is L/2h = 5 and each beam has a 

rectangular cross-section. The mechanical properties of six layer materials that were used to generate 

results are presented in Table 1. The major principal axis of each material is aligned parallel to the 

beam axis.  Three unidirectional laminate stacking sequences that were considered are presented in 

Table 2.  The layer thicknesses are presented in the form (2h(1), 2h(2), 2h(3)) and the first layer in each 

laminate starts at  z = - h. Similarly, the material composition of each layer is presented in the form 

(M(1), M(2), M(3)), where “M” denotes the material type. 

 

5.1 Reference Solutions 

The following reference solutions, used for the purpose of assessing the predictive capability of the 

present theory, are briefly described.  

1.  “Exact” refers to an exact elasticity solution for a simply supported beam21. 

2.   “FEM/NASTRAN” refers to a high-fidelity, two-dimensional FEM solution obtained with the 
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Figure 9. Simply supported beam, laminate A: Normalized transverse shear stress at left end. 

 

 The results in Figures 7-9 show that modelling the deformations of Laminate A is a particularly 

challenging problem for any structural theory. The beam is relatively thick (L/2h=5) and has a high 

degree of anisotropy typical of sandwich construction: a highly compliant thick layer bounded by two 

relatively stiff, thin face sheets. For this problem, Timoshenko theory under predicts the deflection by 

a factor of about 15 (Figure 8). All zigzag theories produce comparable displacement and stress 

results that correlate well with the exact solutions. As seen from Figure 9, only slight differences are 

observed in the shear stress as predicted by the original and refined zigzag theories, its distribution 

being respectively constant and piecewise constant. Contrasted with the zigzag results, Timoshenko’s 

shear stress is substantially under estimated in the core and grossly over estimated in the face sheets. 
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Figure 10. Simply supported beam, laminate C: Normalized axial displacement at left end. 

 

 

Figure 11. Simply supported beam, laminate C: Normalized transverse displacement at mid-span. 
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Figure 14. Cantilevered beam, laminate A: Normalized axial stress at clamped end. 

 

 

Figure 15. Cantilevered beam, laminate A: Normalized axial displacement at free end. 
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Figure 16. Cantilevered beam, laminate A: Normalized axial displacement along top 
face of beam. 

 

 

Figure 17. Cantilevered beam, laminate A: Normalized transverse shear stress at 
clamped end. 
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Figure 18. Cantilevered beam, laminate A: Normalized transverse shear stress at x=L/10. 

 

 

Figure 19. Cantilevered beam, laminate A: Normalized transverse shear stress at free end. 

 



41 

 

Figure 20. Cantilevered beam, laminate A: Normalized shear force along beam span. 

 

 The sandwich-type Laminate A is again a major challenge for Timoshenko theory that over 

estimates the over all stiffness of the beam and under estimates the maximum deflection by over 80% 

and the maximum axial stress by over 50% (Figures 13 and 14). These results contrast with those of 

the zigzag theories that produce very accurate displacements and stresses.  

 Differences between the various zigzag solutions are observed by way of through-the-depth 

distributions for the displacements and stresses examined at various locations along the span, 

including the clamped end. The axial stress and displacement depicted in Figures 14-16 are accurately 

modelled by all zigzag theories examined, exhibiting only minor quantitative differences. This is 

attributed to their built-in zigzag kinematics, giving rise to the requisite slope changes at the layer 

interfaces due to the layer differences in shear moduli.  

 Examination of the transverse shear stress reveals specific solution differences corresponding to the 

beam theories examined. At the clamped end (Figures 17), the refined zigzag theory yields a non-

vanishing stress, whereas the original zigzag theory produces an erroneous, zero shear stress. Away 
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