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Abstract

The measured value of the QCD coupling αs at the energy MZ0 , the variation of αs as a function

of energy in QCD, and classical relativistic dynamics are used to investigate virtual pairs of quarks

and antiquarks in vacuum fluctuations. For virtual pairs of bottom quarks and antiquarks, the

pair lifetime in the classical model agrees with the lifetime from quantum mechanics to good

approximation, and the action integral in the classical model agrees as well with the action that

follows from the Uncertainty Principle. This suggests that the particles might have small de

Broglie wavelengths and behave with well-localized pointlike dynamics. It also permits αs at the

mass energy twice the bottom quark mass to be expressed as a simple fraction: 3/16. This is

accurate to approximately 10%. The model in this paper predicts the measured value of αs(MZ0)

to be 0.121, which is in agreement with recent measurements within statistical uncertainties.
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I. INTRODUCTION

Recently ’t Hooft and others have investigated the possibility that physics at small scales

might be governed by “basic dynamical Laws” of a deterministic underlying theory [1].

These laws would not invalidate quantum mechanics, but would yield quantum mechanics

when subjected to statistical analysis. In view of that possibility, this paper considers a

classical dynamical model that might underlie quantum chromodynamics (QCD [2], [3], [4])

at small scales. The model becomes semiclassical in the usual sense in a natural way.

If a quark and its antiquark are positioned at rest in their center of mass reference frame

and are released, then in general their mutual attraction will draw them to a collision at the

origin where they will annihilate. Photons or other particles would result, given sufficient

energy. However, the quark and antiquark experience a potential energy U(R) [5] as a

function of their separation distance that could reduce the mass-energy of the system, if the

separation R between particles is small enough. The energy conservation relation

ε = 2γ mqc
2 + U(R) = 0 (1)

is possible to satisfy, where the first term is the total relativistic energy of the particles,

kinetic plus rest mass. (R = 2r with r the radius of either particle from the center of mass.)

In classical physics, the collision would not yield any energy and so no photons or particles

could be emitted.

If the time-reversed trajectory occurred, with the vacuum spontaneously creating a quark-

antiquark pair obeying Eq. (1), then the particles only could move apart in one-dimensional

motion to reach turning points separated by Rmax. Continuing this trajectory so that

the particles fall from the turning points back to the origin, they would disappear back

into the vacuum, like a virtual quark-antiquark pair (VQAP; see Fig. 1 for the Feynman

diagram). This is similar to virtual electron-positron pairs discussed by Greiner (p. 3 of

ref. [6]) and Sakurai (p. 139 of ref. [7]). Such virtual pairs of antiparticles are believed

to appear and disappear spontaneously in vacuum fluctuations. Considering ’t Hooft’s

exploration of deterministic physics that might underlie quantum mechanics, it would make

sense to compare the classical treatment of this problem with the quantum-mechanical

VQAP.

Quantum theory implies that this two-particle system of quarks would obey the time-
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FIG. 1: Feynman diagram of a virtual quark-antiquark pair (VQAP). Time increases from bottom

to top of figure. The curling segment represents gluon interaction.

energy uncertainty relationship for the energy fluctuation ∆ε (p. 139 of ref. [7])

∆ε∆t =
1

2
h̄ = 5.273 × 10−28erg s. (2)

The energy fluctation is ∆ε = 2mqc
2, since the mass-energy of each quark contributes mqc

2.

The quantum-mechanical lifetime of the fluctuation is ∆t. Since h̄ is the quantum of action,

Eq. (2) establishes an action integral that characterizes a VQAP that has ∆ε = 2mqc
2.

The first purpose of this paper is to present classical computations of ∆t and the action

integral for the trajectory described above, which turn out to give results that satisfy Eq. (2)

remarkably well, provided that the QCD interaction between the particles is well-described

by the potential energy function.

The second purpose of the paper follows from the fact that QCD cannot specify the value

of αs at arbitrary energy or 4-momentum scale Q without an established measurement of αs

at some particular energy µ [8]; but once the renormalized coupling αs(µ
2) is measured, then

QCD precisely gives the variation of αs as a function of energy (the “running” coupling).

The present paper offers a theory based on the action integral that establishes the value of

αs at the energy scale twice the bottom quark mass-energy to good approximation. This

enables one to use the QCD running coupling αs(Q
2) to determine the coupling strength in

general in the usual way to good approximation, and suggests that the magnitude of αs is

fundamentally established by this underlying dynamical law.
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II. QCD POTENTIAL ENERGY FUNCTION

As discussed in detail by Lucha et al. (especially pp. 161-162 of ref. [5]), a potential energy

function serves to describe the bound states of heavy quarks (charm, bottom, and top). For

light quarks the QCD interaction is not satisfactorily described by a potential energy function

and will not be attempted here. Here we apply the standard potential energy treatment to

the intermediate-mass charm and bottom quarks. More elaborate treatment of the most

massive top quark case is necessary, due to effects of spin-spin interactions between the top

quark and antiquark [9].

We use the standard Cornell potential [10], [11]

V (R) = −4

3

αsh̄ c

R
+ aR , (3)

where αs is the dimensionless QCD strong coupling strength and a ≈ 0.25 GeV2. The second

term, aR, is only significant for R > 10−13 cm. We will not need to consider the aR term,

since the first term with the Coulomb-like dependence turns out to strongly dominate the

potential because Rmax ≪ 10−13 cm for VQAPs.

The VQAP is a form of bound state. The standard way to account for the variation

of αs(Q
2) in a quark bound state is to let αs depend on the quark masses and use Q2 =

(m1 + m2)
2, with the mi the quark masses (see p. 129 of ref. [12]). To model a VQAP we

may then compute αs to leading order (Eq. (6) of Ref. [8]). So the QCD coupling is then

given by

αs(Q
2) =

1

β0 ln(Q2/Λ2)
, (4)

where β0 is defined by

β0 =
33 − 2nf

12π
, (5)

nf is the number of quark flavors with masses much less than m1 + m2, and Λ is the QCD

scale energy,

Λ2 =
µ2

e1/(β0αs(µ2))
. (6)

Λ is approximately 0.093 GeV, assuming that µ ≡ MZ0 = 91.2 GeV (the mass-energy of the

Z0 particle), αs(MZ0) = 0.119 ± 0.002 (in units defining c ≡ 1). This is a typical value of Λ

for a one-loop approximation ([8] p. R31).

For the running coupling near the charm quark mass nf = 4, and near the bottom quark

mass nf = 5. We now can use m1 = m2 = mq in the expression for Q2 and compute αs
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from Eq. (4) for a running coupling. Then with a charm quark current mass mq = mc of

1.27 GeV/c2 we have αs(2mcc
2) = 0.228; with a bottom quark current mass mq = mb of 4.2

GeV/c2 we have αs(2mbc
2) = 0.167 [13].

III. CLASSICAL TRAJECTORY AND LIFETIME OF VQAP

Let us calculate the trajectory lifetime tvq for a VQAP. If one solves the energy equation

(1) for the dynamics using V (R), the nonrelativistic potential energy, then the particle

velocities nevertheless exhibit relativistic motion, approaching c asymptotically at the origin

r = 0. Thus it is necessary to correct the potential energy for relativistic effects. Jackson

([14], p. 185) demonstrates how this is done by using the relativity factor γ defined in

Eq. (10) below. For this trajectory of linear motion, the transformation R → γ R in the

expression for V (R) performs the appropriate modification of the potential energy function

(since we are considering the center-of-mass reference frame). The potential energy function

in Eq. (3) becomes

U(R) = −4

3

αs

γR
h̄ c. (7)

With this U(R) we can solve Eq. (1) for Rmax at the turning point (where γ = 1):

2mq c2 ≡ −U(Rmax) =
4

3

αs

Rmax

h̄ c (8)

Rmax =
2

3

αsh̄

mq c
. (9)

For the charm quark current mass mc of 1.27 GeV/c2 ≡ 2.26 × 10−24 g, we find the charm

VQAP has an Rmax = 2.35 × 10−15 cm.

Checking the terms in Eq. (3) for V (Rmax) shows that the first term is about -100 times

the second term. This confirms that the quarks are so deep in the potential well that the

aR term of the Cornell potential can be neglected in solving the problem.

Let us define the time from appearance of a quark at the origin r = 0 to the time that

the quark stops at the turning point r = 1
2
Rmax as 1

2
tvq. The tvq is the classical equivalent

of the quantum-mechanical ∆t that we seek. We note that

γ2 ≡ 1

1 − β2
β =

1

c

dr

dt
(10)
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and solve for dt, which we shall integrate. We rewrite the energy equation (1) with ζ ≡
R/Rmax as

γ2 = ζ−1 ⇒ dt =
dr

c
√

1 − ζ
. (11)

The time for the particle to fall from r = Rmax/2 back to r = 0 is also 1
2
tvq, so we have

tvq = 2
∫ Rmax/2

0

dr

c
√

1 − ζ
=

Rmax

c

∫ 1

0

dζ√
1 − ζ

=
Rmax

c

√
π Γ(1)

Γ(3
2
)

=
2Rmax

c
=

4

3

αsh̄

mqc2
(12)

The integral is given in ref. ([15], p. 974). The value of tvq is the total time for either quark

to travel from r = 0 to its turning point and back to r = 0.

For the charm quark, with mq = mc ≈ 2.26×10−24 g, we find the trajectory lifetime of the

VQAP to be tvq ≈ 1.57×10−25 s. In comparison, the standard lifetime of the charm VQAP,

given by the Uncertainty Principle expressed in Eq. (2), is ∆t = h̄/(4mcc
2) ≈ 1.29 × 10−25

s. So tvq from the classical computation is approximately 22% larger than ∆t. This is

remarkably close agreement of the classical lifetime with the quantum mechanical lifetime.

For the bottom quark, with mq = mb ≈ 7.48×10−24 g, we find the trajectory lifetime of the

VQAP to be tvq ≈ 3.47×10−26 s. In comparison, the standard lifetime of the bottom VQAP,

given by the Uncertainty Principle expressed in Eq. (2), is ∆t = h̄/(4mbc
2) ≈ 3.90 × 10−26

s. So tvq from the classical computation is approximately 11% smaller than ∆t. This also is

remarkably close agreement of the classical lifetime with the quantum mechanical lifetime.

IV. ACTION INTEGRAL FOR THE TRAJECTORY

A key step in quantizing a classical model to make it a semiclassical model of a quantum

system is computation of the action integral. In the present model, that is done as follows.

The expression for the integral of action associated with a potential function U acting on a

particle, in the relativistic case, is given by Lanczos ([16], p. 321):

A = −
∫ t2

t1
U

ds

c
(13)

where ds = c dt/γ. Considering the integrated action of the potential energy field in a

VQAP, we compute the field action integrated over tvq:

A = −2
∫ tvq/2

0

(

−4αsh̄c

3γR

)

dt

γ
=

8αsh̄

3

∫ Rmax/2

0

dr

γ2R
√

1 − ζ
(14)

A =
4αsh̄

3

∫ 1

0

dζ

ζ−1ζ
√

1 − ζ
=

4αsh̄

3

∫ 1

0

dζ√
1 − ζ

=
8αs

3
h̄ (15)
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For the charm VQAP, αs(2mcc
2) = 0.228 and therefore A = 0.61 h̄. This action integral is

only 22% larger than the exact VQAP quantum fluctuation action in Eq. (2), 1
2
h̄.

In the case of the bottom quark, the action integral for the model of the VQAP is found

by substituting αs(2mbc
2) = 0.167 into Eq. (15), and we find A = 0.45 h̄. This is 10% lower

than the quantum mechanical action for a VQAP.

This means that the model’s representation of the bottom VQAP inherently is approxi-

mately quantized – a remarkable agreement between a quantum-mechanical characteristic of

a dynamical system and the classical description of it. In comparison, semiclassical models

for mesons, which achieve excellent agreement with measurements of meson masses [17], [18]

need to be formulated with additional quantization conditions that introduce the factor h̄.

We have not imposed any quantization conditions upon the trajectory in this dynamical

model. The model herein achieves approximate quantization at αs(2mbc
2) based upon only

the measured value of αs(MZ0), the QCD theoretical energy dependence of αs(Q
2), and

relativistic dynamical theory (Eqs. (1) and (7)).

The discrepancy between tvq and ∆t in the case of the charm quark may be accounted for

in part, as the author will show elsewhere [9]: for the charm quark and top quark, spin-spin

interactions which have been ignored here become important and increase tvq and A in such

a way as to bring into closer agreement the classical and quantum results.

V. CONCLUSIONS

This good agreement between the classical trajectory lifetime and the quantum uncer-

tainty lifetime at the key mass-energy of the bottom quark is surprising, but it may have

a simple physical explanation: if the vacuum creates these particles in motion at v ≈ c,

then their de Broglie wavelengths λ = h/p should be small, so that the quarks are pointlike.

Dynamics of point masses would then be applicable. It is interesting that the length scale

of any VAP is usually characterized in standard literature by assuming that v ≈ c [7].

The salient logic in this paper’s result is the following. The measurement of αs(MZ0)

and the one-loop Λ obtained from the so-called ‘modified minimal subtraction scheme’ of

renormalization theory predict αs(2mbc
2) [8]. From this we may use the classical trajectory

lifetime of the VQAP to compute the tvq and action A, obtaining A ≈ 1
2
h̄ in approximate

agreement with quantum mechanics.
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Since h̄ is a more universal and fundamental parameter than αs, h̄ intuitively would seem

to be the governing parameter in Eq. (15).

If αs(2mbc
2) equalled 3/16 then A would exactly equal 1

2
h̄. Setting Eq. (4) equal to 3/16,

Q2 equal to (2mbc
2)2, and solving for Λ yields Λ = 0.106 GeV instead of the standard 0.093

GeV. With this value of Λ, Eq. (4) gives αs(91.2 GeV ≡ MZ0) = 0.121. This is only 2%

different from the measured value upon which the accuracy of QCD depends, and is within

the statistical uncertainty in αs(MZ0) quoted in Ref. [8].

We now have a logical link between the measured αs(MZ0) and the action integral from

the Uncertainty Principle, 1
2
h̄. It is reasonable to reverse this logical sequence and infer that

the action integral 1
2
h̄ is what governs the value of αs(MZ0). This reverse argument from A

= 1
2
h̄ through Eqs. (15), (12), and (4) to αs(MZ0) is the derivation mentioned in this paper’s

title. In this way ’t Hooft’s vision of an underlying deterministic Law (classical relativistic

dynamics) enables QCD and renormalization theory to account for the magnitude of αs, not

just the variation of αs(Q
2) with energy scale.
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