ATLAST:
Advanced Technology
Large-Aperture
Space Telescope

A NASA Astrophysics
Strategic Mission
Concept Study of the
Science Cases &
Technology
Developments needed to
build an AFFORDABLE
8m - 16m UV/Optical
Filled-Aperture Space
Telescope

Advanced Technology Large-Aperture Space Telescope (ATLAST)
Concept Study Team

Ball Aerospace:
- Vic Argabright
- Paul Atcheson
- Morley Blouke
- Dennis Ebbets

JPL:
- Peter Eisenhardt
- Greg Hickey
- Bob Korechoff
- John Krist
- Jeff Booth

Goddard Space Flight Center:
- David Aronstein
- Lisa Callahan
- Mark Clampin
- Qian Gong
- Ted Gull
- Tupper Hyde
- Dave Leckrone

Teri Hanson
Leela Hill
Steve Kilston

JPL:
- Dave Redding
- Karl Stapelfeldt
- Wes Traub
- Steve Unwin
- Michael Werner

Johnson Space Flight Center:
- John Grunsfeld

Marshall Space Flight Center:
- Bill Arnold
- Randall Hopkins
- John Hrabak

STScI:
- Tom Brown
- Rodger Doxsey
- Andrew Fruchter
- lan Jordan
- Anton Koekemoer
- Peter McCullough
- Matt Mountain

University of Colorado:
- Webster Cash
- Mike Shull
- Jim Green

University of Massachusetts:
- Daniela Calzetti
- Mauro Giavalisco

Northrop Grumman:
- Dean Dailey
- Cecelia Penera
- Rolf Danner
- David Spergel

Princeton University:
- Jeremy Kasdin
- Robert Vanderbei

https://ntrs.nasa.gov/search.jsp?R=20090020532
2019-06-03T19:37:49+00:00Z
The Imperative for a larger UV/Optical Space Telescope

How did the present Universe come into existence and what is it made of?
- How do galaxies assemble their stars?
- How are baryons distributed in intergalactic space?
- How does the mass of galactic structures increase with time?

What are the fundamental components that govern the formation of today's galaxies?
- How do super massive black holes evolve?
- Why is their mass correlated with that of their host galaxies?

How does the Solar System work?
- What are the connections between the Solar System's Interplanetary Medium and the Local Interstellar Medium?
- What are the physical processes driving the weather on the outer gas giant planets in the Solar System?

How are baryons distributed in intergalactic space?
- UV/optical spectra of very faint objects.
- Requires velocity and brightness measurements of very faint objects. Requires UV/optical spectra of faint sources in crowded fields.

What are the conditions for planet formation and the emergence of life?
- What fraction of circumstellar disks form planets?
- Are there detectable biosignatures on exoplanets in the Habitable Zones of their host stars?
- Requires UV/optical spectra in central 200 pc of galactic nuclei. Needs high angular resolution & sensitivity.

How does the mass of galactic structures increase with time?
- Requires UV spectroscopy of faint sources in crowded fields.
- Needs high angular resolution UV/optical/NIR narrow band imaging.

What are the connections between the Solar System's Interplanetary Medium and the Local Interstellar Medium?
- Requires high-contrast optical and NIR imaging and spectroscopy of very faint point sources.

Is There Life Elsewhere in the Galaxy?

Need to multiply these values by $n_{\text{Earth}} \times f_B$ to get the number of potentially life-bearing planets detected by a space telescope.

- n_{Earth} = fraction of stars with Earth-mass planets in HZ
- f_B = fraction of the Earth-mass planets that have detectable biosignatures

<table>
<thead>
<tr>
<th>Earth-mass planets within those HZ will be near</th>
<th>Number of FGK stars for which SNR=10, R=70 spectrum of Earth-twin could be obtained in <500 ksec</th>
</tr>
</thead>
<tbody>
<tr>
<td>If: $n_{\text{Earth}} \times f_B \sim 1$ then $D_{\text{Tel}} \sim 4m$</td>
<td>$\eta_{\text{Earth}} \times f_B < 1$ then $D_{\text{Tel}} \sim 8m$</td>
</tr>
<tr>
<td>$\eta_{\text{Earth}} \times f_B << 1$ then $D_{\text{Tel}} \sim 16m$</td>
<td></td>
</tr>
</tbody>
</table>

Number of nearby stars capable of hosting potentially habitable planets in our local galactic neighborhood requires a space telescope with an aperture of at least 8-meters.

The above calculation is a very rough estimate. The number of potential life-bearing planets that can be detected is expected to be even smaller. Sample size $\propto D^3$.
Exoplanet Characterization: Are there life-bearing worlds?

- For Direct Spectroscopy and Photometry: need high angular resolution to resolve the HZ in nearby star systems
 - Angular resolution scales as \(\lambda/D \). Furthermore, technical limitations suggest you will want most of the HZ to lie outside of \(-3 \lambda/D\)
 - 1 AU at 10 pc is 100 mas. Solar system HZ: \(-0.7 \) - 1.5 AU.

- Earth at 10 pc: \(-29.1\) AB mag (8.3 nJy)
- Earth at 20 pc: \(-30.6\) AB mag (2.1 nJy)
- Sensitivity scales with aperture as \(D^2 \) to \(D^4 \) depending on exo-zodi level and on method used to suppress starlight.
- Need telescope with nJy sensitivity to:
 - Obtain S/N=10 low resolution \((R\sim100)\) spectroscopy to identify key habitability and bio-signatures in the range 0.3 - 2.5 microns in \(<10^6\) seconds.
 - Obtain S/N=20 broadband photometry on timescales less than one planetary rotation period (to enable studies of temporal variation on diurnal timescales)

<table>
<thead>
<tr>
<th>Feature</th>
<th>(\lambda) (nm)</th>
<th>(\Delta \lambda) (nm)</th>
<th>SNR</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane spectrum</td>
<td>(\equiv)</td>
<td>(\equiv)</td>
<td>11</td>
<td>Habitability signatures</td>
</tr>
<tr>
<td>Ethylene</td>
<td>1.62</td>
<td>0.05</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Ethane</td>
<td>3.32</td>
<td>0.05</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>3.60</td>
<td>0.05</td>
<td>11</td>
<td>Habitability signatures</td>
</tr>
<tr>
<td>Benzene</td>
<td>3.85</td>
<td>0.05</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>4.93</td>
<td>0.05</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>5.95</td>
<td>0.05</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Ethane</td>
<td>5.95</td>
<td>0.05</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Ethylene</td>
<td>6.02</td>
<td>0.05</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

A S/N=10 spectrum \((R=70)\) of Earth-like planet orbiting a solar luminosity star at a distance of 20 pc \((V=30.6\) AB mag). The required exposure time is \(-150\) hours with an 8-m space telescope; \(-20\) hours with a 16-m space telescope. Habitability and bio-signatures are shown.
Detecting Weather and Surface Features

Ford et al. 2003: Model of broadband photometric temporal variability of Earth

Require $S/N \sim 20$ (5% photometry) to detect Earth-like temporal variations in reflectivity. We would need to achieve a single observation at this S/N in <0.25 day of exposure time in order to enable measurements the variability consisting of at least 4 independent observations per rotation period.

Re-tracing the Star Formation History of Galaxies in High Definition

Resolved Stellar Populations: An 8-m to 16-m space telescope will bring about a major revolution in the study of stars, enabling observations of solar-luminosity stars outside the Local Group of galaxies. Observations of solar-luminosity stars on the main sequence are essential to reconstructing the star formation history over the entire lifetime of a galaxy.

We require $S/N = 5$ photometry of ~thousands of 33 - 35 m_V stars. We also require high-resolution spectroscopic capabilities in the near UV - optical to study the distribution of stellar masses in nearby galaxies.
"Modern" Galaxy Evolution

HST Ultra Deep Field

Faint Galaxy:
25.1 AB mag (330 nJy) in I-band
0.75 arc-seconds across
2 "peaks" in light distribution
Morphology unknown

Many astrophysical investigations require the capabilities of a large UVOIR space telescope

Direct detection & verification of the hierarchical assembly of structure & the processes that govern the interactions between the IGM and galaxies
UV / optical R=1000-2000 absorption spectroscopy of faint galaxies (>26 mag) and QSO's (>22 mag).

Direct measurement of the proper motions of galaxies in the Local Group: direct constraints on the kinematics and distribution of Dark Matter
Very stable and well-calibrated imaging (PSF, distortion, pixel scale) on time scales of up to 5 years.

If we want to pursue the compelling scientific issues we imagine today (and the many we cannot imagine), we will need a large UV/optical space telescope as part of our astronomical tool kit. Making it affordable is the strong motivation for a focused technology development program for the coming decade.
Pathways to a Large UVOIR Space Telescope

If Ares V is built by 2019 ...

- 8-m monolithic mirror Telescope and/or 16-m segmented mirror Telescope in ~2025

If Ares V is not built ...

- 9.2-m segmented mirror Telescope in ~2028 or Elliptical (light-weight) monolithic mirror Telescope in ~2028

Ares V payload to L2 = 65 mT, Delta IV HLV payload to L2 = 16 mT

Studying two architectures: 8-m monolithic and (9.2-m, 16.8-m) segmented telescope

- **Monolithic Primary**
 - On and off-axis secondary mirror concepts being investigated.
 - Off-axis concept optimal for exoplanet observations with internal coronagraph. But adds complexity to construction and WFS&C.
 - Uses existing ground-based mirror materials. This is enabled by large lift capacity of Ares V cargo launch vehicle (~65 mT to L2).
 - Massive mirror (~20 mT) has ~7 nm rms surface. Total observatory ~50 mT.

- **Segmented Primary**
 - Only studying designs with an on-axis secondary.
 - Requires use of lightweight mirror materials & fabrication
 - 9-m observatory has total mass ~16mT; 16-m observatory has total mass ~35 mT. Both are within capacity of Ares V.
 - 9-m observatory can fly in advanced ELV. Does not require Ares V.
 - Both 9-m and 16-m require active WFS&C systems.
ATLAST Concepts

<table>
<thead>
<tr>
<th>8-m Monolithic Primary</th>
<th>9.2-m Segmented Telescope</th>
</tr>
</thead>
<tbody>
<tr>
<td>(shown with on-axis SM configuration)</td>
<td>36 1.3-m hexagonal mirror segments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16.8-m Segmented Telescope</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 2.4-m hexagonal mirror segments</td>
</tr>
</tbody>
</table>

Common Features for all Designs

- Diffraction limited @ 500 nm
- Designed for SE-L2 environment
- Non-cryogenic OTA at ~290° K
- Heaters stabilize PM temperature to ± 0.1° K
- OTA provides two simultaneously available foci - narrow FOV Cassegrain (2 bounce) for Exoplanet & UV instruments and wide FOV TMA channel for Gigapixel imager and MOS
- Designed to permit (but not require) on-orbit instrument replacement and propellant replenishment
Technology Development Needed in Coming Decade Relevant to “Life Detection”

• 8m Monolithic Telescope
 - High-contrast (10^{-10}) starlight suppression:
 • Internal Coronagraph
 • External Occulter
 - Active observatory wavefront control system
 - Ultra-low or zero noise photon counting detectors
 - Ares V Cargo Launch Vehicle (enabling technology for full circular aperture and cost control => less complexity)

• 10m to 16m Segmented Aperture Telescope
 - High-contrast (10^{-10}) starlight suppression:
 • Vis. Nulling Coronagraph
 • External Occulter
 - Light-weight mirror materials and manufacturing ($<15 \text{ kg/m}^2$)
 - Active observatory wavefront control system
 - Ultra-low or zero noise photon counting detectors
 - Ares V Cargo Launch Vehicle (for 16m).

Technology Development Needed for ATLAST

<table>
<thead>
<tr>
<th>Technology Development for:</th>
<th>8-m</th>
<th>9.2-m</th>
<th>16.8-m</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Starlight Suppression Systems:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hi-contrast Coronograph-or-</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>External Occulter</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>• Gigapixel Detector Arrays</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photon-counting Detectors</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>High Efficiency Dichroics</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>High Efficiency UV coatings</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>• Optical Telescope Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced WF Sensing & Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fully Active Optics</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Lightweight Mirror Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lightweight Mirror Fabrication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milli-arcsecond pointing control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight qualif. of monolithic mirror</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requires engineering, but no new tech.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Systems Modeling & Verification</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>• Autonomous Rendezvous & Docking</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

○ TRL6 or higher ○ TRL4 or higher ○ TRL3 or lower
Characterizing terrestrial-like exoplanets ($<10 \, M_{\text{earth}}$) is a prime ATLAST scientific objective.

Challenge: how do we enable a compelling terrestrial exoplanet characterization program without:

a) making the optical performance requirements technically unachievable for a viable cost (learn from TPF-C) and

b) seriously compromising other key scientific capabilities (e.g., UV throughput).

Starlight Suppression Options: External Occulter (Starshade)

Credit: Web Cash 2008

1.5m 2.4m 4m 10m

Above: a simulation of our solar system at a distance of 10 pc observed with an external occulter and a telescope with the indicated aperture size. The two planets are Earth and Venus. The challenges of deploying the starshade, and maneuvering it into position, also increase with increasing telescope aperture.

<table>
<thead>
<tr>
<th>Starshade Parameters</th>
<th>8-10m telescope: 80m shade @ ~165,000 km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16m telescope: 90m shade @ ~185,000 km</td>
</tr>
</tbody>
</table>

Characterizing Exoplanets: Via the use of an external occulter, one can suppress the light of the central star, enabling the detection of any orbiting exoplanets. Detecting and characterizing these, however, becomes progressively easier with increasing telescope aperture.
Starlight Suppression Options: Internal Coronagraphs

- JPL’s High-Contrast Imaging (HCl) Test-Bed has demonstrated sustained contrast levels of $< 10^{-9}$ using internal, actively corrected coronagraph.

- Segmented optics introduce additional diffracted light. Visible Nulling Coronagraph (VNC) can, in principle, work with segmented telescope to achieve 10^{-10} contrast. VNC chosen as starlight suppression method for TMT Planet finding imager as well as for EPIC and DAVINCI mission concepts.

Lightweight Mirror Technology

- There are at least two potentially viable lightweight mirror technologies:
 - Nanolaminate Actuated Hybrid Mirror (AHM)
 - Corrugated Glass Mirror

- Both materials already demonstrated to achieve 8 - 12 kg/m2 areal densities; lower values possible.

- 0.6 - 1.2m class mirror segments exist. Overall TRL ~ 4.

- Need to develop 1.3 - 2.4 meter class, space-qualified segment production for ATLAST

Nanolaminate materials are multi-layer metallic foils grown by sputter deposition with atomic-scale control. Current material systems have low thermal expansion and low residual thermal stress to match AHM SiC substrates thermal expansion. Final figure achieved by depositing onto inversely shaped mandrel.

Corrugated mirror made by pressing thin glass sheets into cores, then fused together. Front sheet reinforced every 5mm (no quilting). High stiffness; Slumped to near final figure.
Large UVOIR telescopes are required for a broad range of astrophysical research

- Star formation & evolution; resolved stellar populations
- Galaxy formation & evolution; supermassive black hole evolution
- Formation of structure in the universe; dark matter kinematics
- Origin and nature of objects in the outer solar system
- Characterization of Terrestrial-sized Exoplanets in HZ of solar type stars.