hour incubations and 75 percent for 3-hour incubations. Interestingly, samples incubated for less time (2 hours vs 3 hours) produced an increased percentage of antigen detection. Further testing at incubation times such as 1 hour or lower could potentially increase positive predictability based on the study’s results. Also encouraging were negative control experiments with nontoxic antigens, beta galactosidase and thymoglobulin, which showed results of 100 percent accuracy, with no false positive detection.

This work was done by Maximilian C. Scardelletti and Vanessa Varaljey of Glenn Research Center. Further information is contained in a TSP (see page 1).

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Innovative Partnerships Office, Attn: Steve Fedor, Mail Stop 4–8, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-18387-1.

Isolation of Precursor Cells From Waste Solid Fat Tissue

Lyndon B. Johnson Space Center, Houston, Texas

A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (“tummy tucks”) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue-specific progenitor cells.

The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.

This work was done by Diane Byerly of Johnson Space Center and Marguerite A. Sognier of Universities Space Research Association. Further information is contained in a TSP (see page 1). MSC-23775-1

Identification of Bacteria and Determination of Biological Indicators

Identifying mechanisms of micro-organisms can prevent forward contamination in space missions and can help in developing new antibiotics and amino acids.

NASA’s Jet Propulsion Laboratory, Pasadena, California

The ultimate goal of planetary protection research is to develop superior strategies for inactivating resistance-bearing micro-organisms like Rummelibacillus stabekisii. By first identifying the particular physiologic pathway and/or structural component of the cell/spore that affords it such elevated tolerance, eradication regimes can then be designed to target these resistance-conferring moieties without jeopardizing the structural integrity of spacecraft hardware. Furthermore, hospitals and government agencies frequently use biological indicators to ensure the efficacy of a wide range of sterilization processes. The spores of Rummelibacillus stabekisii, which are far more resistant to many of such perturbations, could likely serve as a more significant biological indicator for potential survival than those being used currently.

Numerous surveys of the contaminant microbial diversity housed within spacecraft assembly facilities over the past six years have resulted in the recurrent isolation of spore-forming bacteria belonging to the Bacillus genus. As Bacillus species are capable of existing as metabolically inactive, extremely hardy spores, many lineages exhibit remarkable resilience to varying modes of bioreduction/sterilization aimed at their eradication (UV and gamma radiation, oxidizing disinfectants, etc.). The microorganism Rummelibacillus stabekisii sp. nov. was isolated from the surfaces of the cleanroom facility in which the Mars Exploration Rovers (MER) underwent assembly. This bacterium has not been previously reported, and shows no close relation to any previously described species (as is assessed via 16S rRNA gene sequence comparison). This unique isolate, and the Bacillus species most genetically similar to it, were subjected to a multitude of biochemical tests in order to thoroughly characterize its taxonomic position based on physiological and phylogenetic evidence. The results clearly show that this bacterium is significantly different from its nearest relatives.

The microbial colonization of spacecraft and cleanroom assembly facility surfaces is of major concern to NASA and others commissioning modern-day space exploration. The search for life elsewhere in the solar system will rely heavily on validated cleaning and sterility methods. It would be devastating to the integrity of a mission directed at pristine environments such as the Europa’s subsurface ocean or the Martian polar caps to be compromised as a result of terrestrial microbial contamination. To this end, planetary protection policies are in place to ensure the cleanliness and sterility of mission-critical spacecraft components in order to prevent forward or backward contamination.

Spores of Bacillus subtilis, a model spore-forming laboratory strain that demonstrates higher susceptibility to ultraviolet and gamma radiation than