Title: NASA Lunar Mining & Construction Activities and Plans

Gerald B. Sanders¹, William E. Larson², Kurt R. Sacksteder³,
¹NASA Johnson Space Center
²NASA Kennedy Space Center
³NASA Glenn Research Center

ABSTRACT

The Space Exploration Policy enacted by the US Congress in 2005 calls for the US National Aeronautics and Space Administration (NASA) to implement a sustained and affordable human and robotic program to explore the solar system and beyond; Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations; Develop the innovative technologies, knowledge, and infrastructures both to explore and to support decisions about the destinations for human exploration; and Promote international and commercial participation in exploration to further U.S. scientific, security, and economic interests. In 2006, NASA released the Lunar Architecture Study, which proposed establishing a lunar Outpost on the Moon with international participation to extend human presence beyond Earth’s orbit, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth’s economic sphere. The establishment of sustained human presence on the Moon for science and exploration combines the design, integration, and operation challenges experienced from both the short Apollo lunar missions and the build-up and sustained crew operations of the International Space Station (ISS). Apollo experience reminds developers and mission planners that hardware must operate under extremely harsh environmental and abrasive conditions and every kilogram of mass and payload must be critical to achieve the mission’s objectives due to the difficulty and cost of reaching the lunar surface. Experience from the ISS reminds developers and mission planners that integration of all hardware must be designed and planned from the start of the program, operations and evolution of capabilities on a continuous basis are important, and long-term life-cycle costs and logistical needs are equally or more important than minimizing early development and test costs. Overarching all of this is the need to implement efforts that are sustainable and affordable. One area NASA is developing that can significantly change how systems required for sustained human presence are designed and integrated, as well as potentially break our reliance on Earth supplied logistics, is In-Situ Resource Utilization (ISRU). ISRU, also known “living off the land”, involves the extraction and processing of local resources into useful products. In particular, the ability to make propellants, life support consumables, fuel cell reagents, and radiation shielding can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. Also, the ability to modify the lunar landscape for safer landing, transfer of payloads from the lander an outpost, dust generation mitigation, and infrastructure placement and buildup are also extremely important for long-term lunar operations. While extra-terrestrial excavation, material handling and processing, and site preparation and construction may be new to NASA and other space agencies, there is extensive terrestrial hardware and commercial experience that can be leveraged. This paper will provide an overview of current NASA activities in lunar ISRU mining and construction and how terrestrial experience in these areas are important to achieving the goal of affordable and sustainable human exploration.
Presentation Topics

- We’re Going to the Moon Again?
- What is Lunar Mining – In-Situ Resource Utilization?
- What Are The Challenges to Lunar Mining?
- What is NASA Currently Doing?
NASA Lunar Exploration Overview
A New Vision for NASA

NASA Authorization Act of 2005

The Administrator shall establish a program to develop a sustained human presence on the moon, including a robust precursor program to promote exploration, science, commerce and U.S. preeminence in space, and as a stepping stone to future exploration of Mars and other destinations.
Complete the International Space Station
Safely fly the space shuttle until 2010
Develop and fly the Orion crew exploration vehicle no later than 2015
Return to the moon no later than 2020 and robotic program
Implement a sustained and affordable human
Use the moon to prepare for future human and robotic missions to Mars and other destinations
Develop supporting innovative technologies, knowledge, and infrastructures
Promote international and commercial participation in exploration
COMPONENTS OF THE CONSTELLATION PROGRAM

Earth Departure Stage

Orion: Crew Exploration Vehicle

Ares V: Heavy Lift Launch Vehicle

Ares I: Crew Launch Vehicle

Lunar Lander
Launch Vehicle Comparisons

Space Shuttle
- Height: 56m
- Gross Liftoff Mass: 2040Mt
- 25Mt to LEO

Ares I
- Height: 98m
- Gross Liftoff Mass: 910Mt
- 22Mt to LEO

Ares V
- Height: 109m
- Gross Liftoff Mass: 3310Mt
- 53Mt to TLI
- 65Mt to TLI in Dual-Launch Mode with Ares I
- 131Mt to LEO

Saturn V
- Height: 111m
- Gross Liftoff Mass: 2950Mt
- 45Mt to TLI
- 119Mt to LEO

Upper Stage
- (1 J-2X)
- 127Mt LOx/LH₂

Earth Departure Stage (EDS)
- (1 J-2X)
- 226Mt lb LOx/LH₂

Core Stage
- (5 RS-68 Engines)
- 1410Mt LOx/LH₂

5-Segment 2 RSRB’s

Lunar Lander
- Height: 56m
- Gross Liftoff Mass: 2040Mt
- 25Mt to LEO

Crew Lander
- Height: 111m
- Gross Liftoff Mass: 2950Mt
- 45Mt to TLI
- 119Mt to LEO
NASA's Goals for Lunar Lander

- Transport 4 crewmembers to and from the surface
 - Visits start with 7 days on surface
 - Length of stays increases step-by-step
 - Builds up to 6 month lunar outpost crew rotations
- Global access capability
- Return to Earth anytime
- Deliver about 16 metric tons of dedicated cargo
- Provide airlock for surface activities
- Descent stage:
 - Liquid oxygen / liquid hydrogen propulsion
- Ascent stage:
 - Storable propellants
What Makes Constellation Different than Apollo?

We’re going there to stay!
Conceptual NASA Lunar Surface Architecture
The lunar South Pole is a likely candidate for an outpost site.

Several areas with greater than 80% sunlight and less extreme temperature swings.

Elevated quantities of hydrogen, possibly water ice in permanently shadowed craters.

Step-by-step outpost construction:
- Power system
- Communications/navigation
- Habitat
- Rovers
What is Lunar Mining – Space Resource Utilization?
Uses of Space Resources for Robotic & Human Exploration

Mission Consumable Production
- Propellants for Lander/Ascent Vehicles, Surface Hoppers, & Aerial Vehicles
- Fuel cell reagents for mobile (rovers, EVA) & stationary backup power
- Life support consumables (oxygen, water, buffer gases)
 - Gases for science equipment, drilling, and cleaning
 - Bio-support products (soil, fertilizers, etc.)
 - Feedstock for in-situ manufacturing & surface construction

Surface Construction
- Radiation shielding for habitat & nuclear reactors from in-situ resources or products (Berms, bricks, plates, water, hydrocarbons, etc.)
- Landing pad clearance, site preparation, roads, etc.
 - Shielding from micro-meteoroid and landing/ascent plume debris
 - Habitat and equipment protection

Manufacturing w/ Space Resources
- Spare parts manufacturing
 - Locally integrated systems & components (especially for increasing resource processing capabilities)
 - High-mass, simple items (chairs, tables, replaceable structure panels, wall units, wires, extruded pipes/structural members, etc.)

Space Utilities & Power
- Storage & distribution of mission consumables
- Thermal energy storage & use
- Solar energy (PV, concentrators, rectennas)
- Chemical energy (fuel cells, combustion, catalytic reactors, etc.)
Lunar Space Resource Utilization Operation Cycle

Global Resource Identification

Local Resource Exploration/Planning

Mining

Communication & Autonomy

Site Preparation

Maintenance & Repair

Processing

Crushing/Sizing/Beneficiation

Product & Utilization

Waste
Examples of Lunar Mining & ISRU

Landing Pads, Berm, and Road Construction

Excavation & Regolith Processing for O₂ Production

Carbothermal Processing with Altair Lander Assets

Consumable Depots for Crew & Power
What Are The Challenges?
What Do We Face?

Apollo Heritage
- Design and operation experience and lessons-learned are based on up to 3 days of lunar surface operation during lunar ‘day’ over 35 years ago
- Time needed to prepare hardware for launch did not allow lessons-learned from missions to change subsequent mission hardware
- Lunar simulants used in development were not adequate to prepare for actual operation conditions

ISS Heritage
- Multiple missions required in specific sequence to build up capability
- Highly documented and coordinated interfaces required between participants
- Maintenance, repair, and logistics are critical for long-term operation

Issues Facing all Systems for Robotic & Human Lunar Exploration
- Lunar Sortie & Outpost hardware needs to:
 - Survive months or years with minimum/no maintenance
 - Operate anywhere on the lunar surface and survive/operate during lunar ‘night’ conditions
 - Operate autonomously/tele-robotically when crew is not present
- Lunar surface elements from different developers will need to be integrated over time
- Science or resource prospecting missions into permanently shadowed craters must operate at <100 K for extended periods of time
- Flight certification testing approach for Shuttle and ISS may not be appropriate
- Limited or no robotic precursor missions available to gain design and operation experience before deployment
- No/Limited lunar environment simulation facilities exist today that can handle lunar simulant and all expected environments
Design & Operation Challenges

- **Mass & Power:**
 - Cost of transportation to lunar surface means everything needs to be as low of mass and power as possible

- **Environment:**
 - Lunar conditions: vacuum, 1/6 gravity, solar radiation
 - Extreme temperatures (), Permanently shadowed craters down to 40 K

- **Regolith:**
 - Extremely abrasive; Extremely dense/packed;
 - Granular material doesn’t flow like on Earth

- **Maintenance:**
 - Must operate for years to be cost effective
 - Astronaut maintenance difficult in vacuum with gloves
 - Minimum spare parts available (logistics)

- **Operation:**
 - Autonomous and tele-operation primarily; 2 second round-trip communication delay with Earth; May not have continuous communication

- **Integration:**
 - Hardware and systems from multiple countries must be compatible with each other to achieve desired capabilities and operations
Lunar Mare Soil

Agglutinate: Pieces of minerals, rocklets, and glass welded together by shock-melt glass

Impact-Glass Bead

Volcanic Glass Bead

Rock Chips

Plagioclase

Lunar Soil Formation

Micrometeorites

Solar Wind

Condensation

Vaporization

Comminution, Agglutination, & Vapor Deposition

Regolith: broken up rock material

Soil: <1 cm portion of the Regolith

Dust: <50 μm portion of the Soil

➢ The bulk of lunar soil is <1 mm in size

G. Sanders/JSC, gerald.b.sanders@nasa.gov

Courtesy Dr. Larry Taylor, Univ. of Tennessee
Lunar Soil Characteristics

The bulk of lunar soil is <1 mm in size

Particle Size Distribution

Particle Weight Distribution

<table>
<thead>
<tr>
<th>Size Fraction</th>
<th>Mean Size, M_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil >1 cm</td>
<td></td>
</tr>
<tr>
<td>4-10 mm</td>
<td></td>
</tr>
<tr>
<td>2-4 mm</td>
<td></td>
</tr>
<tr>
<td>1-2 mm</td>
<td></td>
</tr>
<tr>
<td><1 mm</td>
<td></td>
</tr>
<tr>
<td>(weights in grams)</td>
<td>(mm)</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>14163</td>
<td>196.5</td>
</tr>
<tr>
<td>0.0</td>
<td>197.1</td>
</tr>
<tr>
<td>197.1</td>
<td>288.7</td>
</tr>
<tr>
<td>4444.0</td>
<td>76</td>
</tr>
<tr>
<td>56</td>
<td></td>
</tr>
<tr>
<td>15220</td>
<td>7.0</td>
</tr>
<tr>
<td>0.0</td>
<td>5.8</td>
</tr>
<tr>
<td>2.4</td>
<td>290.0</td>
</tr>
<tr>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td>68500</td>
<td>17.3</td>
</tr>
<tr>
<td>1.3</td>
<td>25.1</td>
</tr>
<tr>
<td>37.8</td>
<td>521.1</td>
</tr>
<tr>
<td>106</td>
<td>68</td>
</tr>
<tr>
<td>72140</td>
<td>2.7</td>
</tr>
<tr>
<td>1.3</td>
<td>1.9</td>
</tr>
<tr>
<td>5.3</td>
<td>225.9</td>
</tr>
<tr>
<td>57</td>
<td>50</td>
</tr>
<tr>
<td>72500</td>
<td>8.0</td>
</tr>
<tr>
<td>3.1</td>
<td>12.9</td>
</tr>
<tr>
<td>24.1</td>
<td>687.2</td>
</tr>
<tr>
<td>67</td>
<td>57</td>
</tr>
<tr>
<td>73240</td>
<td>22.3</td>
</tr>
<tr>
<td>1.6</td>
<td>14.4</td>
</tr>
<tr>
<td>14.9</td>
<td>192.7</td>
</tr>
<tr>
<td>127</td>
<td>51</td>
</tr>
<tr>
<td>74220*</td>
<td>0.98</td>
</tr>
<tr>
<td>0.0</td>
<td>0.17</td>
</tr>
<tr>
<td>0.68</td>
<td>7.77</td>
</tr>
<tr>
<td>-</td>
<td>41</td>
</tr>
<tr>
<td>78220</td>
<td>1.5</td>
</tr>
<tr>
<td>0.0</td>
<td>2.7</td>
</tr>
<tr>
<td>5.2</td>
<td>227.1</td>
</tr>
<tr>
<td>50</td>
<td>45</td>
</tr>
</tbody>
</table>

Distribution of particle sizes in separate splits of Apollo 17 soil 78221,8,

Weight distribution in size fractions of scooped surface soils.

Courtesy Dr. Larry Taylor, Univ. of Tennessee
Lunar Soil Properties

Specific Gravity: Range from 2.3 to >3.2; recommend 3.1 for Engineering use.

Bulk Density:
- top 15 cm = 1.45-1.55 g/cm³; avg = 1.50 ±0.05 g/cm³
- 0-30 cm = 1.53-1.63 g/cm³; avg = 1.58 ±0.05 g/cm³
- 30-60 cm = 1.69-1.79 g/cm³; avg = 1.74 ±0.05 g/cm³
- 0-60 cm = 1.61-1.71 ±0.05 g/cm³; avg = 1.66 ±0.05 g/cm³
- values up to 1.9 g/cm³ estimated at depth of cores to 2.98 m

Slope Stability

Calculated stability of artificial slopes constructed in lunar surface material. Data are presented for 3 situations:

1. an excavation in lunar soil
2. a compacted pile of excavated lunar soil
3. a dumped pile of lunar soil

A vertical cut can safely be made in lunar soil to a depth of about 3 m; an excavated slope of 60° can be maintained to a depth of about 10 m.

Soil Porosity

<table>
<thead>
<tr>
<th>Depth Range (cm)</th>
<th>Average Porosity n, (%)</th>
<th>Average Void Ratio, e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>52 ± 2</td>
<td>1.07 ± 0.07</td>
</tr>
<tr>
<td>0-30</td>
<td>49 ± 2</td>
<td>0.96 ± 0.07</td>
</tr>
<tr>
<td>30-60</td>
<td>44 ± 2</td>
<td>0.78 ± 0.07</td>
</tr>
<tr>
<td>0-60</td>
<td>46 ± 2</td>
<td>0.87 ± 0.07</td>
</tr>
</tbody>
</table>

Lunar soil, in-situ, is very dense, more than that which could be produced with mechanical compaction equipment – the lunar soil has experienced slow shaking over eons of time.
Examples of Hardware and Operation Challenges

- Low-energy/low-wear regolith movement from hopper to top of reactor
- Zero-leakage valving for regolith inlet/outlet feed
- Gas contaminant removal/clean-up (H₂S, HCl, HF, etc.)
- Internal regolith mixing, heating, and sintering prevention
- Regolith heat recovery from spent regolith to new incoming regolith
- Autonomous control of operations
- Level area clearing hardware
- Post-leveling surface stabilization/hardening
What is NASA Doing?
Lunar Space Resource Utilization Operation Cycle

Global Resource Identification

Local Resource Exploration/Planning

Mining

Communication & Autonomy

Site Preparation

Maintenance & Repair

Product & Utilization

Processing

Waste

Crushing/Sizing/Beneficiation

Developing all steps in the Cycle
Resource Assessment Approach

Utilize Orbital Assets to Map Lunar Surface Terrain and Resources
- Lunar Reconnaissance Orbiter & LCROSS

Utilize Instruments on Rovers and Landers - Tie to Science Objectives
- Mineral distribution, especially iron-bearing, within 500 m of Outpost
- Physical characterization: size & shape, rock, glass, and agglutinate content, bulk density, thermal capacity and conductivity, force required to penetrate/dig
- Solar wind volatiles: type, amount, energy required to release
- Permanently shadowed crater resources, esp. hydrogen-bearing, and physical characteristics
- Contaminants released during oxygen extraction processing

RESOLVE incorporates five subsystems from three NASA institutions
- Drill and sample handling from Northern Centre for Advanced Technology (NORCAT)
- Significant university and Lunar science expertise

G. Sanders/JSC, gerald.b.sanders@nasa.gov
Mobile Resource Characterization & Oxygen Production Demonstration Hardware

- TriDAR Navigation & Drill Site Selection Sensor (Neptec)
- Advanced Stirling Radioisotope Generator Simulator (GRC)
- Scarab Rover (CMU – HRS)
- RESOLVE Drill & Sample Transfer (NORCAT)
- RESOLVE Processing Module
 - Gas Chromatograph
 - Water Capacitance Beds
- Combined Sample Metering & Crusher Unit
- Hydrogen Tank
- Neon Tank
- Reactor & Valving

G. Sanders/JSC, gerald.b.sanders@nasa.gov
Lunar Mining & Site Preparation Needs

- **Excavation for Oxygen Production**
 - Only need to excavate top loosely consolidated regolith (<8 cm deep)
 - For 2 Mt/yr O₂ production with least efficient H₂ Reduction Process
 > 4% of Chariot time required or
 > 30% of 2 mini-rovers (250 kg each)
 - Options include dedicated vehicle vs part-time usage and integrated excavation-hauler vs separate excavation and hauler vehicles

- **Site Preparation for Outpost: Landing pads, berms, roads**
 - Operations can involve area leveling, rock removal, berm building, road/path clearing, and surface hardening (via sintering or binder)
 - Largest excavation and regolith movement requirement over life of Outpost
 - If landers are not moved, a new pad needs to be prepared every 6 months

- **Operations for Outpost Habitat and Reactor Emplacement**
 - Multiple options for Habitat protection if regolith shielding for radiation or thermal is desired
 > Excavate ramp and flat area and drive habitat below surface
 > Cover inflatable bridge/structure with regolith before inflation
 - For nuclear reactor, process depends on excavation vehicle size and method of reactor transport and placement
 - Large vehicle stays outside of hole and uses backhoe
 - Small vehicle excavates ramp/hole and reactor is driven into hole
Examples of Lunar Mining Activities Underway

Excavation for O₂ Extraction

Site Preparation-Area Clearing

Crushing & Beneficiation

Surface Sintering/Hardening

Lunar Simulant Development

OB1 Highland Simulant (NORCAT/UNB)
Lunar Highland (LHT) Simulant (MSFC-USGS)
JSC1a (ORBITEC)

Credit: Dr. Paul Hintze, KSC

G. Sanders/JSC, gerald.b.sanders@nasa.gov
Lunar Processing Consumable Production Needs

- **Oxygen (O\(_2\)) Production from Regolith**
 - 1 mT/yr production rate for ECLSS/EVA closure
 - 0.9 mT/yr to make water for ECLSS/EVA closure with lander propellant scavenging
 - 9 to 10 mT/yr production rate during Outpost operation would also support refueling 2 ascent vehicles per year to further increase payload delivery capability
 - Options include: Hydrogen reduction (1 to 5% kg O\(_2\)/kg bulk regolith), Methane Carbothermal reduction (10 to 28%), and Molten electrolysis (up to 40%)

- **In-Situ Water Production**
 - 0.9 MT/yr water needed for life support/EVA closure
 - ~3 MT water needed habitat radiation shielding (3 habitats of 1000 kg each)
 - ~225 kg water needed for each Small Pressurized Rover thermal/radiation system (2 minimum)
 - **Note:** Recent architecture evaluations require more water than stated above
 - Options include:
 - **Double amount of water produced from propellant scavenging** by adding in-situ oxygen (40 to 60 kg of H\(_2\) remains after all residual O\(_2\) is consumed to make water)
 - Post-ECLSS crew waste/plastic trash processing to complete extraction of water
 - Polar water/ice extraction and processing only needed if large scale in-situ propellant production is used incorporated into the architecture

- **In-Situ Methane Production**
 - ~2100 kg/yr supports refueling 2 ascent vehicles per year.
 - Capability can be used to initially supports LSAM Ascent ‘top-off’ in case of leakage, power loss, or increased payload to orbit before completely refueling ascent vehicle
 - Options include:
 - Utilize methane produced by habitat life support system (400-500 kg/yr for crew of 4)
 - Process plastic trash and crew waste with in-situ oxygen to make methane
Lunar Processing – Oxygen & Metal Extraction

Hydrogen Reduction of Regolith

1. Heat Regolith to >900°C
2. React with Hydrogen to Make Water
3. Crack Water to Make O₂

FeO + H₂ → Fe + H₂O; 2H₂O → 2H₂ + O₂

Carbothermal Reduction of Regolith

1. Melt Regolith to >1600°C
2. React with Methane to CO
3. Convert CO to Methane & Water
4. Crack Water to Make O₂

SiO₄ + CH₄ → CO + 2H₂ + Si; CO + 3H₂ → CH₄ + H₂O; 2H₂O → 2H₂ + O₂

Molten Electrolysis of Regolith

1. Melt Regolith to >1600°C
2. Apply Voltage to Electrodes To Release Oxygen

G. Sanders/JSC, gerald.b.sanders@nasa.gov
1st Generation of Lunar Mining & Processing Equipment Built and Tested

JSC “ROxygen” System

ISRU Systems Field Tested in Hawaii, Nov. 2008
3 Major Systems Tested for First Time

RESOLVE: Resource Prospector and O₂ Demonstration System

Lockheed Martin O₂ System: PILOT
Advanced Lunar ISRU Cycle Hardware & Operations

Next System Field Test in Planning

Site & Resource Exploration
- NORCAT/CSA Platform
- GPR & RESOLVE Drill for subsurface validation
- Hand-held and rover mounted CSA & NASA MMAMA Instruments

Solar Energy
- Upgraded GRC Solar Array Cart
 (Power Project Involvement)

Mining & Processing
- NORCAT/CSA Platform
- Tele-operated & Autonomous Excavation and Delivery
- Carbothermal Reduction Reactor
- Upgraded JSC ROxygen Water Electrolysis

Site Preparation & Excavation
- Autonomous and Tele-operation Area
- Clearing/Excavation Implement Testing
- NORCAT/CSA Platforms
- Surface Sintering

Product & Utilization
- O₂ Liquefaction and Storage
 (CFM Project Involvement)
- CSA Fuel Cell – Hydride Tank Resupply
- H₂ Storage & Transfer

Solar Energy
- Solar Concentrator
- Electricity

Manufacturing & Processing
- H₂O
- H₂
- O₂
Long-Term Plans to Link Lunar Surface Elements Together

Moses Lake, WA – 6/08
Crew & Tele-operation Non-articulating Area Clearing/Berm Building

Blackpoint Lava, AZ – 9/09
Crew & Tele-operation Articulating Area Clearing/Berm Building on SPR

Payload w GO2/GH2 Storage, Transfer, & Resupply

Desert RATS – 9/10
Fuel Cell w LO2/GH2 Storage, Transfer, & Resupply

Mauna Kea, HI – 11/08
Local Tele-operation Excavation for O2 Production

Mauna Kea, HI – 1/10
Remote Tele-operation and Autonomous Site Excavation for O2 Production – Surface Stabilization for Rocket Engine Firing

GSA-NASA Local and Remote Tele-operation and Autonomous Site Preparation & Excavation

Solar Surface Sintering

H2 Transfer and Resupply of CSA Fuel Cell

2nd Gen H2 Reduction – Integrated Water Electrolysis – Liquid O2 Storage, Transfer, and Propulsion

1st Gen H2 Reduction – Separate Water Electrolysis – Gaseous O2 Storage – Gas Generator Power

= Regolith Handling (Excavation & Site Prep)
= Surface Consumable Storage & Transfer
= Regolith Processing/ O2 Extraction

G. Sanders/JSC, gerald.b.sanders@nasa.gov