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Lunar Dust Chemical, Electrical, and Mechanical Reactivity:  
Simulation and Characterization 

 
Randy L. Vander Wal* 

The National Center for Space Exploration Research (NCSER) 
Glenn Research Center 
Cleveland, Ohio 44135 

 
Summary 

 
Lunar dust is recognized to be a highly reactive material in its native state. Many, if not all 

Constellation systems will be affected by its adhesion, abrasion, and reactivity. A critical requirement to 
develop successful strategies for dealing with lunar dust and designing tolerant systems will be to produce 
similar material for ground-based testing.  

Introduction 
During the Apollo program, lunar regolith, especially the fine fraction referred to as dust, plagued 

astronauts on the surface (refs. 1 and 2). Effects included vision obscuration, equipment clogs, dust 
coating and abrading, radiator performance degradation, seal failure, and dust inhalation. Under the 
Exploration Technology Development Program (ETDP), several programs are developing new 
technologies that will enable the National Aeronautics and Space Administration (NASA) to conduct 
future human exploration missions. One such project is dust management, which involves the 
implementation of lunar dust risk reduction activities across the Agency. Developing system requirements 
associated with dust exposure including characterizing dust exposure, understanding the effects of dust 
exposure to humans and equipment, and identifying technologies can help mitigate the effects of lunar 
dust on surface missions. An important aspect of this technology development will be to test the possible 
dust mitigation solutions in an accurately simulated lunar environment on Earth (ref. 3). This will require 
the development of a high-fidelity simulant, possessing physical and chemical properties analogous to 
those of actual lunar regolith. JSC1-a has been developed to simulate the physical properties. The 
simulation of chemical properties will require (chemical) activation of JSC1-a or any other simulant  
(ref. 4) This report addresses methods of activation and characterization. 

Background 

Lunar regolith is considered to be activated through the processes of solar wind implantation, 
gamma, x-ray, and ultraviolet radiation, and micrometeorite impact. Collectively, these processes are 
known as space weathering (ref. 5). 

Reactivity as a chemical concept has several disparate meanings. In this report, chemical reactivity is 
understood as the tendency for chemical bond formation upon exposure to common gases, solids, and 
liquids. As this reactivity may be expressed in many ways such as adhesion, abrasion, chemical reaction, 
and electrical conductivity, and coupled with the variety of methods by which it may be introduced—ball 
milling, plasma, and carbothermal reduction—chemical reactivity will be more generally referred to as 
activity.  

General challenges in lunar regolith simulant activation are method of activation, technique for 
characterization, and the implementation and/or compatibility of characterization method within the 
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activation environment. While the first two challenges may appear arbitrary, the choice is critical 
depending upon the desired properties of interest. The third represents logistical difficulties with handling 
and transfer operations of an active material from one unit, device, or chamber to another or with 
establishing suitable feedthrough connections with reliable material contact. 

Methods of Activation 

Three methods by which lunar simulant can be activated are 
 
 (1) Chemical activation—carbothermal reduction  
 (2) Electrical activation—plasma treatment 
 (3) Mechanical activation—ball milling  
 
Each of these approaches will be discussed, with advantages and potential limitations presented in each 
case. The degree of uniformity of activation (e.g., creation of a specific type of radical or atomic vacancy) 
will decrease with increasing material physical and chemical heterogeneity. Each method of activation 
has precedence in different fields. 

Ball milling is well known to increase material surface area and fracture crystalline materials (ref. 6). 
It is widely used to increase surface area, pulverize particles, and break up agglomerates. It is capable of 
producing solid-state solutions as powders at the near-molecular level. Such physical attrition will create 
surface vacancies and radical sites upon particle surfaces. If conducted within an inert environment, these 
sites will remain unterminated and present reaction sites.  

Carbothermal reduction is a well-known industrial process for nitride and carbide production (ref. 7). 
On a laboratory scale, the process is widely used in material synthesis processes. At elevated 
temperatures, the general reaction is represented by  
 
 ( ) 22O C O COx y x y naM b aM n−+ → +  (1) 

 
where C is carbon, M represents the metal, and O stands for oxygen. Elevated temperatures are required 
for initiation, given the high activation energies involved.  

Plasmas are well known for altering surface chemistries (ref. 8). For example, corona plasmas are 
presently used in treating plastics to impart hydrophilic properties. In such processes the energetic species 
(metastable electronically excited species, radicals, single atoms, and ultraviolet (UV) photons) rupture 
C–C and C–H bonds, creating radical sites by atom removal and dangling bonds by bond scission. These 
sites will react with water vapor to form hydroxyl groups. More generally there are many plasma types, 
depending upon input energy, alternating current (AC) or direct current (DC) operation, frequency of 
input power, electrode geometry, and gas environment of operation. Well-known plasma types include 
arc, glow discharge, microwave, dielectric barrier, and corona (refs. 9 and 10). These types are not 
mutually exclusive, and many varieties exist for each category.  

Activation Methods and Characterization: Detailed Approaches 
Electrical Activation—Plasma Processing 

In a corona or glow plasma within an inert gas environment (Ar or He), metastable atoms, energetic 
electrons, and ultraviolet (UV) photons will impact lunar simulant (ref. 11). The simulant, as a thin layer, 
will be supported upon an interdigitated electrode (comb) pattern to facilitate electrical resistance 
measurements. A corona plasma, configured as a point-to-plane will create the energetic species. These 
species are anticipated to create atomic vacancies, remove surface adsorbates, and create dangling bonds. 
The combined effect will be an increase in electrical conductivity as will be measured across the 
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interdigitated electrodes. Comparison of the conductivity before and after plasma treatment will provide a 
quantified measure of activation.  

The basis for this approach is the concept of the resistance change of metal oxide semiconductors 
upon chemisorption of oxidizing or reducing gases. Here, the plasma is used instead to create a net 
change in the conductivity. This change will be quantified per unit mass of simulant as deposited across 
the measurement unit. Plasma-processing parameters include time, energy, and electrode surface area and 
geometry. For the initial corona configuration, polarity also is a variable. 

Logical advancements include other plasmas (e.g., hollow cathode or dielectric barrier), using a 
heated electrode platform, and finally a field-effect transistor (FET) configuration. A hollow cathode 
could be fabricated to work as a microflowing discharge. Such a plasma would provide spatial uniformity 
to ensure dust activation across the entire electrode assembly, irrespective of electrode pattern. If a more 
energetic plasma were desired, a dielectric barrier discharge (DEB) would be appropriate. In its traditional 
form, this plasma produces a myriad of short-lived miniature arcs between a dielectric and opposing metal 
electrode. Recent advances have demonstrated the potential to create a glow plasma in a DEB 
configuration (refs. 9 and 10). As for the corona plasma, operating parameters would require definition 
based on the degree and type of activation created. To measure activation, a heated electrode 
configuration would facilitate the electrical conductivity measurement. Wide-bandgap semiconductors, 
such as TiO2, exhibit a large change in conductivity with temperature. Higher temperatures aid charge 
carrier mobility and hence bring the resistance to a reasonable level for measurement. Finally, an FET 
configuration would permit resolution of the increase in conductivity because of either an increase in 
charge carrier mobility or a net increase in charge carrier concentration because overall conductivity σ is 
expressed by  

 
 σ = enu (2) 

 
where e is the unit of elementary charge; n, the number of charge carries; and u, their mobility.  

A particular advantage of the plasma approach presented here is the optical accessibility. Raman 
spectroscopy is a well-practiced method for assessing the crystallinity of material. Fluorescence is well-
practiced for characterizing electronic states that may arise from interstitials, vacancies, or deep-level 
traps. Related, a near monolayer of dye could be deposited upon the activated material, and changes in 
fluorescence could be used to characterize interactions.  

Chemical Activation—Carbothermal Reduction 

Carbothermal reduction is a thermally activated process for reducing oxides to extract elemental 
metal (refs. 12 and 13). If the amount of carbon used is less than the stoichiometric quantity, the result 
will be a partially reduced oxide.  

With the products being CO2 and possibly CO, oxygen surface vacancies are clearly created. 
Corresponding to the change in stoichiometry, the metal oxidation state will concurrently change. The 
activated material will seek to renew these sites by chemisorption of oxygen. Both the weight loss and 
reactive uptake can be quantified gravimetrically. The specific procedure for performing this operation is 
as follows: 
 
 (1) Mix M1300 (Cabot Corporation) or arc soot with simulant using mortar and pestle 
 (2) Use 0.5, then 1.0 and 5.0 wt% of carbon to oxide simulant 
 (3) Use whatever appears a convenient amount of simulant (e.g., 1 g) 
 (4) Perform thermogravimetric analysis (TGA), purge well 
 (5) Heat to ~1000 °C using temperature ramp, under inert atmosphere 
 (6) Cool to room temperature, under inert atmosphere 
 (7) Switch to air and measure the weight change as a function of a moderate to slow temperature 

ramp (e.g., <20 °C/min, perhaps 10 °C) 
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(8) Ramp temperature up to a maximum 500 °C, as any residual carbon will oxidize significantly and 
invalidate weight changes 
The reduction step is analogous to a temperature-programmed reduction (TPR) as often employed in 

catalyst characterization for oxygen storage capacity (ref. 14). For a mixed oxide intimately mixed with 
carbon, different oxygen sites in different materials will possess different activation energies for reaction 
with carbon and hence, require different temperatures. The difference in the process here is that the 
reducing agent is not H2 within an inert carrier but rather, solid carbon. The second difference is that 
reduction is not performed to completion, but only partially, to impart reactivity to the material while 
largely retaining its physical and chemical composition. Also, the weight loss is convolved with the 
carbon mass loss. Therein, the reduction step here is used as a means for activation rather than as a 
quantified measure of imparted reactivity. 

The oxidation step corresponding to step 7 above is analogous to temperature-programmed oxidation 
(TPO), also used to characterize catalysts for active metal content (ref. 14). Differences here are 
characterization of the oxide rather than metal catalyst particles. The sample weight gain through 
oxidation and the corresponding temperatures for incremental increases are anticipated to provide 
quantified measures of simulant reactivity and reactive site heterogeneity as revealed by reactive uptake at 
different temperatures.  

Although different sites are likely to require different temperatures for the prior carbothermal 
reduction, oxygen vacancies once created are likely to be sufficiently reactive that all O2 chemisorption 
occurs at ambient temperature. Further resolution of the particular compounds responsible for the 
observed reactivity may be achieved by using pure components of the specific minerals, such as ilmenite.  

Fundamental to achieving an accurate oxygen uptake during TPO is for the prior reduction process to 
have fully consumed the carbon, a limiting reagent. Residual carbon will oxidize at temperatures as low 
as ~500 °C and counter the measured sample weight gain as it gasifies. Full reduction will be aided by 
intimate mixing between the oxide and carbon, utilizing a carbon with high reactivity (low onset 
temperature of oxidation) and performing the reduction to temperatures of ~1000 °C to ensure 
consumption of carbon by lattice oxygen atoms. Weight loss during reduction should be proportional to 
carbon loss, as should weight gain. Apart from providing different degrees of partial reduction (or 
activation), different initial amounts of carbon will provide a further check of proportional weight losses 
and gains. To be reemphasized, intimate mixing of the carbon and oxide simulant is required for success.  

Given these issues, clearly H2 is a more straightforward reducing agent, for characterization purposes 
and lab-scale production. (To be noted, at concentrations of <4 percent, H2-air mixtures are not 
flammable.) With carbon as reductant, residual carbon can complicate the subsequent measure of 
activation, particularly if oxide formation requires temperatures of ~400 to 600 °C. With H2, the material 
may straightforwardly be reduced in stages. Incremental measures of activation may then be quantified by 
reactive uptake of O2 measured gravimetrically. Activation and loss may be tied to different simulant 
additives and/or particular mineral phases. Differentiation of a single-step Arrhenius expression may be 
used to determine an activation energy. A key requirement is that the TGA balance be gas-tight, to 
provide accurate determination of activation, either measured by sample weight loss or gain. 
Operationally, it is important that reduction ramps in temperature be modest, so as to not succumb to 
mass transport limitations within the powder sample in the sample pan.  

Mechanical Activation—Ball Milling 

There are many types of ball milling that may be classified either by method or process (ref. 15). 
Low-energy ball milling is capable of achieving similar results as nominal high-energy milling, dependent 
upon the container, balls, and so forth. The appendix further summarizes the different types of milling.  

So-called “mixing bowls” are available that permit milling under an inert atmosphere. What in 
essence are tire pressure valves are used for gas introduction and venting. Additionally, these bowls are 
sealed by a flat gasket. Coupling to such a system along with dead-volumes and such is seen to preclude 
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accurate measurement of O2 uptake subsequent to milling. Separate ports for gas introduction and 
measurement would be added.  

The basic physical action of milling will break or fracture particles, thereby increasing surface area 
and creating numerous dangling bonds or radical sites and atomic vacancies (ref. 16). Seeking to 
complete unfilled bonding configurations, such sites are highly reactive and are responsible for the 
material’s chemical reactivity. For the materials TiO2, SiO2, and Al2O3, active sites will react with water 
to create surface hydroxyl groups. To measure such groups, the surface uptake will be measured by 
changes in the gas-phase water concentration. Introduction of a reactant gas, maintaining near-constant 
pressure in the bowl, and minimizing dead volumes in associated plumbing are obstacles to in situ 
measurement of the milled material. However, in this in situ approach, the advantage of minimizing 
sample handling post-milling avoids other complications. 

After completion of milling, a measured amount of gas containing a controlled level of humidity will 
be introduced into the mixing bowl that still contains the milled simulant. After equilibration, a gas 
sample will be withdrawn and its contents analyzed by gas chromatography. The O2 concentration 
changes will be quantified by reference to the change expected from dilution (into the nominal bowl 
volume) and by subtraction of O2 possibly evolved during milling. This concentration would be measured 
by gas sampling of the head space immediately after milling. Gas introduction and extraction will be 
through a septum held within added ports. Presently, a calibration gas sampling connector is anticipated 
to serve as the septum holder, as designed. This procedure also necessitates the use of a stainless steel or 
carbide mixing bowl to minimize reactive O2 uptake by the bowl’s inside surface.   

The present plan minimizes sample handling prior to measurement. Other characterization methods 
including electrical and optical testing will likely require removal of the activated material. Such transfer 
operations can be performed within a very high quality glovebox. Ideally, O2 and H2O concentrations 
would be on the order of 1 ppm. If such a system were available, reactive uptake measured 
gravimetrically could be performed using a commercial gas adsorption instrument.  

Apart from process variables such as milling time, method, and the milling material, possible other 
considerations include the use of other reactive gases, such as hydrocarbons. Variations of the reactant 
can provide different probes by which surface sites of varying reactivity can be identified and quantified.  

A final consideration is that additives, such as nanophase Fe, can be added to simulants prior to 
milling. Ball milling is a well-practiced method for creating intimately mixed materials of varied 
composition not readily produced by standard chemical approaches. Ball milling could be exploited not 
only for simulant production and concurrent activation of the same. 

Scalability 
Scalability is a critical issue for realistic testing of future lunar systems. With recognition that 

different systems will be affected by disparate aspects of lunar dust activity, each method must be 
assessed for its volumetric material capacity.  

Ball milling is performed commercially (ref. 17). Utilizing industrial machines, hundreds of kilogram 
quantities may be obtained. Obviously, the transfer and dispersal of such material to a testing facility will 
require detailed logistical planning. An alternative is a jet mill using an inert gas. The smaller units are 
capable of fracturing materials with subsequent collection within a bag filter. Without the bag filter, such 
a unit could concurrently disperse activated material within an enclosure. After the dust had settled, 
pump-down could be used for vacuum operation. With suitable selection, plasma processing can also be 
scaled. In the absence of known commercial operation, a unit would need to be designed and built. 
Nevertheless, the dielectric barrier approach is used commercially for treating gaseous pollutants (ref. 18). 
A similar design for treating lunar simulant on a conveyor belt would be envisioned. Alternatively, dust 
could be dispersed and distributed within a test facility and then treated to a flowing afterglow as 
produced by a hollow cathode plasma operating as a gas jet (ref. 19). Carbothermal reduction is 
performed commercially (refs. 20 and 21). With a known recipe for the weight percent of carbon and 
temperature program, in-house kilogram scales could be easily realized using commercial furnaces. If a 
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large tube is used, a holder is compatible with the majority of moderate scale furnaces, coupling to a test 
chamber would be straightforward. Large quantities would require design and modification of industrial 
systems to maintain the material under an inert environment.  

Future Directions and Efforts 
Future efforts under the ETDP program should focus upon cross comparison between measures of 

reactivity with an activation method. Oxygen uptake will be compared for all three methods of activation 
but may require minor hardware modifications in the activation technique. Specifically, the electrical 
activation will require scaling and use of a small chamber to realize an O2 concentration change. 
Electrical activity will be measured for ball-milled material. Given uncertainties associated with electrical 
contact within a ball-milling canister, transfer of the ball-milled material within a glovebox will be 
required. Carbothermal (chemical) activation is perhaps the most straightforward to measure by O2 uptake 
and conductivity change.  

Another area of activity not addressed by the present methods is magnetic activity. Such activity will 
have impact upon adhesion to metal surfaces, electromagnetic radiation penetration for possible regolith 
processing, or electromagnetic shielding that may impact communications. While such effects may be 
rather small, based on the mass percentage of elemental iron, the presence of iron as nanoparticles may 
impart superparamagnetic properties.  

If lunar dust has high electrical charge, then beyond electrical activity, high charge density coupled 
with mobility of the charge carriers will dramatically increase the dielectric properties of the material. In 
short, lunar dust may possess characteristics of a conductor rather than an insulator.  

In the next phase of this project, efforts would be directed towards combining activation methods. 
This is a necessity given the concurrence of weathering processes as described in the Introduction. The 
combined effects of activation methods are unlikely to cancel each other; they may be expected to 
enhance chemical, electrical, and mechanical activities.  

Originally, a quartz crystal monitor was anticipated to characterize the reactive uptake of gaseous O2 
or H2O by activated material. While possessing high sensitivity, the process of transferring activated 
material as produced by plasma or carbothermal processing requires further definition. In each of these 
processes, the material is held upon some surface. Mechanical manipulation could be arranged to deposit 
activated material to the surface of the crystal monitor. The key issue is that deposition could lead to 
biasing of particle size or composition depending upon what material may stick to the original surface 
versus bouncing off the quartz substrate of the thickness monitor in the deposition process. A secondary 
issue is that quantification of reactive uptake per unit surface area will require an a priori measurement of 
surface area and the assumption that the chosen activation method does not appreciably change this value. 
In its favor, reactive uptake per unit mass of simulant is straightforward, providing that the density of the 
material in powder form is known.  
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Appendix 
In order to provide the reader with an introduction to the apparatuses required for different activation 

methods, photographs of representative hardware are provided. Figure 1 shows a chamber, gas lines, 
pressure gauges, and associated electrical instrumentation for characterizing the dust activation. Figure 2 
shows a thermogravimetric analyzer. Mass loss upon temperature programmed reduction and mass gain 
during temperature programmed oxidation can be measured in this instrument. However, electrical 
characterization of the degree of activation is not possible. Our plans are to perform thermal and chemical 
activation processing in a furnace with high-temperature electrical leads for conductivity characterization. 
Still, such temperature-programmed reduction and temperature-programmed oxidation tests can provide a 
quantitative measure of the reducible component of the simulant. Figure 3 shows a planetary ball mill. 
The “mixing” bowl containing balls and simulant are inserted inside the apparatus. Rotation rate (and 
hence impact energy) and milling time are programmable. As indicated in the text, modifications were 
made to the milling bowl for quantification of oxygen uptake by activated material.  
 
 
 
 

 
 

Figure 1.—Chamber for plasma activation. Shown are chamber, electrical feedthroughs, 
inert gas supplies, plasma power supply, and pressure gauge. 
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Figure 2.—The thermogravimetric analysis instrument for quantification of the simulant 
weight loss during carbothermal reduction and subsequent temperature-programmed 
oxidation. 

 

 
 

Figure 3.—The Fritsch high-energy ball mill with representative milling bowl. 
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