F-15 Intelligent Flight Control System and Aeronautics Research at NASA Dryden

Nelson Brown
NASA Dryden Flight Research Center
Presented to students at Cal Poly Pomona, 30 April 2009
Purpose

• Give you information that helps you choose your career
 – Advertise my research center
 – Engineering: research is different from development
 – Example Project: Intelligent Flight Control System
Personal Background

• B.A. Mathematics
 University of Missouri, Kansas City

• Six years in I/T

• M.S. Aerospace Engineering
 University of Kansas
 (Controls, UAV research)

• Two years at NASA Dryden
 (Flight controls research)
Dryden Flight Research Center
To Fly What Others Only Imagine

Control: 13 October 2004
Dryden as Seen from Space
Edwards Air Force Base
- Remote Location
- Varied Topography
- 350 Testable Days Per Year
- Extensive Range Airspace
- 29,000 Ft Concrete Runways
- 68 Miles of Lakebed Runways
- 301,000 Acres
- Supersonic Corridor

NASA Dryden Flight Research Center
Dryden Flight Research Center
Advancing Technology and Science Through Flight

Mission Elements
- Perform flight research and technology integration to revolutionize aviation and pioneer aerospace technology
- Validate space exploration concepts
- Conduct world-wide airborne science operations
- Support operations of the Space Shuttle and the ISS

... for NASA and the Nation
The NASA Dryden Flight Research Center was named after Dr. Hugh L. Dryden, the first Deputy Administrator of NASA. The following is his explanation as to why there is a need for flight research,

“... to separate the real from the imagined and to make known the overlooked and the unexpected. . .”
NASA Aeronautics

Autonomous Aerial Refueling Demonstration

X-48B Blended Wing Body

F-15B Quiet Spike

NF-15 Intelligent Flight Controls
Aeronautics Disciplines

• Dryden research engineering teams are multidisciplinary:
 Structures, Aerodynamics, Propulsion, Systems, Instrumentation, and Controls

• Many other branches support flight test:
 Operations, Simulation, Maintenance, etc.

For today’s example, the focus is on controls research…
F-15 IFCS PROJECT

Intelligent Flight Control System (IFCS)
Airplanes Get Damaged

• Collisions
• Bird Strikes
• Mechanical Failures
• Battle Damage

... and other causes

Think about hitting a 10 lb bird at 500 mph!

In some cases, heroic pilots have been able to land airplanes with major damage...
Israeli F-15 Mid-Air Collision

Amazing pilot skills!
F/A-18 Mid-Air Collision
F-15 IFCS Project Goals

• Adapt to damage
• Stabilize the damaged airplane
• Restore handling qualities

Hopefully the control system can help even average pilots save the day.
The Experiment

• Simulate a damaged airplane in flight:
 – Lock a control surface
 – Destabilize the airplane
• Turn on the IFCS, let it learn
• Give the pilot a task:
 – Fly in formation
 – Track a target
• Compare the results to flying without IFCS
The Laboratory

Extensively modified F-15:

- Quadraplex digital flight control system
- Research control law processor
- ARTS II computer for added computational capability (Neural Network algorithm)

Canards

- Thrust vectoring nozzles

NASA NF-15B Tail Number 837
Control Surface “Failure”

• Freeze the left stabilator
 – Reduces pitch authority
 – Causes cross-coupling
 (pitch input causes roll!)

Analogy:
 Turn your computer’s mouse sideways.
Longitudinally Destabilized Airplane

We can modify the stability by changing the multiplier.

[Diagram of airplane stability, showing stable, neutral, and unstable states.]
STABLE

UNSTABLE
Direct Adaptive Control Architecture

Model Following

Dynamic Inversion – Based Research Controller

Feedback Error

Control Allocation

Direct Adaptive Neural Network

Sensors

pilot inputs
Desired Adaptation Response to Failure

• Regain stable platform
• Re-establish good handling qualities
• Provide ability to safely land airplane
 – Stay within maneuver constraints
 – Respect structural limitations
Research Engineering Workflow

Design
- MATLAB / Simulink
- Marker Board

Sim
- Engineers’ Evaluations
- Pilots’ Evaluations

Flight
- Staff Mission Control Room
- Monitor Telemetry

Analysis
- MATLAB
- Write Reports
Nonlinear 6-DoF Simulation

- Fix-based engineering simulations
- Cockpit Interface Unit
- Simulation Electric Stick
- Used for pilot evaluations
- Operable by one person
- Interfacing with flight hardware is routine

[video]
Flight Test

• F-15
 – Test Pilot
 – Flight Test Engineer

• F-18 chase
 – Pilot
 – Videographer

• Mission Control Room
 – Flight Director
 – Engineers from all disciplines
 (controls, aero, propulsion, structures, systems, instrumentation)

• Maintenance & Support

[video]
IFCS Remarks

- The simulated failure challenged the adaptive system
- Adaptive algorithm generally followed simulation prediction
 - The adaptation moved in direction to correct for simulated failure
 - Real world disturbances and noise did not adversely affect learning
- Adaptation significantly improved performance
 - Re-established good stability margins
 - Aircraft began to respond similarly to the non-failure case
- Continued training demonstrated convergence issues
- Gained valuable real world experience that has already pushed technology to more acceptable level
Benefits of Full-Scale Flight Test

• Full scale flight test forces designers to address real-world issues
• Provides high-visibility demonstration
• Adds credibility that adaptation technology can be a viable design option

• Helps to “separate the real from the imagined”
Questions?