REDOX INTERACTIONS BETWEEN IRON AND CARBON IN PLANETARY MANTLES: IMPLICATIONS FOR DEGASSING AND MELTING PROCESSES. A. Martin and K. Righter, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, USA

Introduction: Carbon stability in planetary mantles has been studied by numerous authors because it is thought to be the source of C-bearing atmospheres and of C-rich lavas observed at the planetary surface. In the Earth, carbonaceous peridotites and eclogites compositions have been experimentally studied at mantle conditions [1] [2] [3]. [4] showed that the \(f_{O_2} \) variations observed in martian meteorites can be explained by polybaric graphite-CO-CO\(_2\) equilibria in the Martian mantle. Based on thermodynamic calculations [4] and [5] inferred that the stable form of carbon in the source regions of the Martian basalts should be graphite (and/or diamond), and equilibrium with melts would be a source of CO\(_2\) for the martian atmosphere. Considering the high content of iron in the Martian mantle (~18.0 wt% FeO; [6]), compared to Earth’s mantle (8.0 wt% FeO; [7]) Fe/C redox interactions should be studied in more detail.

Experiments: Here we report new experimental results at 2 GPa (piston-cylinder) in a system containing CaO-MgO-SiO\(_2\)-CO\(_2\) with various FeO content and oxidation conditions. By analyzing Fe in liquid and solid phases, we have determined Fe repartition and constrained Fe/C redox interactions during late differentiation processes in terrestrial planets.

Results and discussion: In the Fe-free system from 1100 to 1300°C, CO\(_2\)-rich melt forms in equilibrium with forsterite, clinopyroxene and CO\(_2\). In the presence of Fe, forsterite disappears and Fe-opx is produced. Fe oxide (magnetite) is also found and part of the carbon is reduced to graphite (Fig.1).

Thus, a reaction occurs between iron- and carbon-bearing phases:

\[
\text{Fe}^{2+} \text{(in silicate,carbonate,melt)} + \text{CO}_3^{2-} \text{(in carbonate,melt)} = \text{Fe}^{3+} \text{(in oxide,silicate,melt)} + C_{\text{graphite}}.
\]

Such supersolidus redox process will have an influence on the melting and degassing mechanisms. Especially, it may lower the contribution of late mantle degassing processes to CO\(_2\) introduction into planetary atmospheres.