
116 Command, Control, and Monitoring Technologies

Generating Safety-Critical PLC Code From a High-Level Application
Software Specification

The benefits of automatic-application code generation are widely accepted within
the software engineering community. These benefits include raised abstraction level
of application programming, shorter product development time, lower maintenance
costs, and increased code quality and consistency. Surprisingly, code generation

concepts have not yet found wide acceptance and use in the field of programmable logic control-
ler (PLC) software development. Software engineers at Kennedy Space Center recognized the need
for PLC code generation while developing the new ground checkout and launch processing system,
called the Launch Control System (LCS). Engineers developed a process and a prototype software
tool that automatically translates a high-level representation or specification of application software
into ladder logic that executes on a PLC.

All the computer hardware in the LCS is planned to be commercial off the shelf (COTS), including
industrial controllers or PLCs that are connected to the sensors and end items out in the field. Most
of the software in LCS is also planned to be COTS, with only small adapter software modules that
must be developed in order to interface between the various COTS software products.

A domain-specific language (DSL) is a programming language designed to perform tasks and to solve
problems in a particular domain, such as ground processing of launch vehicles. The LCS engineers
created a DSL for developing test sequences of ground checkout and launch operations of future
launch vehicle and spacecraft elements, and they are developing a tabular specification format that
uses the DSL keywords and functions familiar to the ground and flight system users. The tabular
specification format, or tabular spec, allows most ground and flight system users to document how
the application software is intended to function and requires little or no software programming
knowledge or experience. A small sample from a prototype tabular spec application is shown in
Figure 1.

The LCS developers needed a mechanism or tool to translate application software from tabular spec
format into PLC code to execute on the PLC platforms out in the field. The functionality of some
representative samples of tabular spec was manually coded into PLC ladder logic and tested with a
field item simulator to verify the proper operation of the manually coded ladder logic. This manual
process of conversion or translation from tabular spec representation to PLC ladder logic demon-
strated that translation points or patterns existed between portions of the tabular spec and portions of
the PLC ladder logic.

With the aid of these translation points, a few representative samples of the manually coded PLC
ladder logic were exported from the PLC coding Integrated Development Environment (IDE) as
plain text. This exported text was then converted by hand into plain-text PLC code “libraries” with
the intent that a future automatic utility to translate tabular spec to ladder logic would use these PLC
code libraries. After some representative samples were translated from tabular spec to PLC ladder

Figure 1. Sample of tabular spec formatted application.

Seamless Command and
Control Coordination

117KSC Technology Development and Application 2006-2007

logic and after a PLC code library was manually cre-
ated for each of the translation points contained in the
samples, a prototype automatic translation utility was
developed and demonstrated. The translation capabilities
of the utility will be expanded upon as more and more
translation points are identified, translated manually, and
then turned into additional PLC code libraries.

Figure 2 shows the simplified process flow for translat-
ing a single “send_command” line from tabular spec to
PLC code. The spreadsheet that contains the application
software in tabular spec format is exported to plain text
and is used as input to the translation utility, along with
the PLC code library. The translation utility processes
these input files, using program transformation steps.
This creates an output file that can be imported by the
PLC coding IDE.

This work successfully demonstrated that a process and
a software tool can generate executable PLC code from
a high-level specification representation of a safety-criti-
cal control system. This process includes some manual
work to find translation points and to create PLC code
libraries, but that up-front and one-time manual effort is
overshadowed in the end by the automatic generation of
repetitious and tedious functionality that would be diffi-
cult and error-prone to perform manually. Such a process

Figure 2. Transition process flow.

and tool increase the quality, reliability, maintainability,
and verification/validation pedigree of the PLC code over
code that is generated manually. It also provides a high
level of PLC code consistency and could even reduce
operations and maintenance costs for the control system
after it is deployed.

Follow-on phases of development of the automatic
translation utility should include most, if not all, of the
following tasks:

• represent as much LCS application software
in the tabular spec format as possible without
overcomplicating the tabular spec format,

• manually implement the remaining translation
points and any newly discovered translation points,
along with the matching PLC code libraries,

• add code to the translation utility to recognize and
handle the new translation points, along with the
new PLC code libraries, and

• test and certify the translation utility for automatic
generation of safety-critical PLC control logic in the
LCS at KSC.

Contacts: Kurt W. Leucht <Kurt.W.Leucht@nasa.gov>,
NASA-KSC, (321) 861-7594; and Glenn S. Semmel
<Glenn.S.Semmel@nasa.gov>, NASA-KSC, (321) 861-2267

