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1. INTRODUCTION

Steady increases in computing power have allowed
for numerical weather prediction models to be initial-
ized and run at high spatial resolution, permitting a
transition from larger scale parameterizations of the
effects of clouds and precipitation to the simulation
of specific microphysical processes and hydrometeor
size distributions. Although still relatively coarse in
comparison to true cloud resolving models, these high
resolution forecasts (on the order of 4 km or less) have
demonstrated value in the prediction of severe storm
mode and evolution (Kain et al. 2008) and are being
explored for use in winter weather events (Bernardet
et al. 2008). Several single-moment bulk water mi-
crophysics schemes are available within the latest re-
lease of the Weather Research and Forecast (WRF)
model suite, including the NASA Goddard Cumulus
Ensemble, which incorporate some assumptions in the
size distribution of a small number of hydrometeor
classes in order to predict their evolution, advection
and precipitation within the forecast domain. Although
many of these schemes produce similar forecasts of
events on the synoptic scale, there are often significant
details regarding precipitation and cloud cover, as well
as the distribution of water mass among the constituent
hydrometeor classes (Tao et al. submitted).

Unfortunately, validating data for cloud resolving
model simulations are sparse. Field campaigns require
in-cloud measurements of hydrometeors from aircraft
in coordination with extensive and coincident ground
based measurements. Radar remote sensing is utilized
to detect the spatial coverage and structure of pre-
cipitation. Here, two radar systems characterize the
structure of winter precipitation for comparison to
equivalent features within a forecast model: a 3 GHz,
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Weather Surveillance Radar-1988 Doppler (WSR-88D)
based in Omaha, Nebraska, and the 94 GHz NASA
CloudSat Cloud Profiling Radar (Stephens et al. 2002),
a spaceborne instrument and member of the after-
noon or “A-Train” of polar orbiting satellites tasked
with cataloguing global cloud characteristics (Fig. 1).
Each system provides a unique perspective. The WSR-
88D operates in a surveillance mode, sampling cloud
volumes of Rayleigh scatterers where reflectivity is
proportional to the sixth moment of the size distribution
of equivalent spheres. The CloudSat radar provides
enhanced sensitivity to smaller cloud ice crystals aloft,
as well as consistent vertical profiles along each orbit.
However, CloudSat reflectivity signatures are compli-
cated somewhat by resonant Mie scattering effects and
significant attenuation in the presence of cloud or rain
water. Here, both radar systems are applied to a case
of light to moderate snowfall within the warm frontal
zone of a cold season, synoptic scale storm. Radars
allow for an evaluation of the accuracy of a single-
moment scheme in replicating precipitation structures,
based on the bulk statistical properties of precipitation
as suggested by reflectivity signatures.

2. DATA AND METHODOLOGY

Throughout the day of February 13, 2007, a mature
midlatitude cyclone was traversing the Southern Plains,
generating intense convection across Mississippi and
Arkansas, as well as extensive snowfall from Nebraska
through Ohio. These extensive areas of precipitation are
common throughout the cold season months, pose a sig-
nificant forecast challenge in precipitation quantity and
type, and are of widespread economic impact. A portion
of this system was sampled by the NASA CloudSat
radar during a descending orbit across western Iowa
and eastern Nebraska, and was well sampled by the
WSR-88D in Omaha (Fig. 1). These radar systems
each provide a snapshot of precipitation structures
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Fig. 1. Domain of interest for the February 13, 2007 case
study, depicting the location of the CloudSat flight track (dashed
line), subset polygon of WRF model vertical profiles used in radar
analyses (parallelogram), the location of the WSR-88D at Omaha,
Nebraska (square) and radar range rings at 50 km intervals. Shading
depicts lowest model level WSR-88D reflectivity as simulated by
the SDSU for conditions in the default Goddard scheme, and
focuses on a region northwest of a surface low that was located
in central Arkansas. The forecast is valid at 0800 UTC, February
13, 2007.

active within the region and are compared to model
equivalents using 3 and 94 GHz radar returns simulated
with the Satellite Data Simulator Unit (SDSU hereafter,
Matsui et al. 2008). The SDSU provides an estimate of
vertical radar reflectivity profiles for terrestrial or space-
borne systems based on the characteristics of the active
sensor, hydrometeor quantities and their prescribed size
distributions.

Comparisons of simulated clouds to observations
require a reasonably accurate forecast that depicts the
correct placement of both synoptic and mesoscale fea-
tures. Given successes in forecasting the evolution of
severe weather events, the configuration of the NSSL
Spring Experiment (Kain et al. 2008) is replicated here,
with the exception being that the NASA Goddard six-
class single-moment bulk water microphysics scheme
is used as the control experiment. The NASA Goddard
scheme (Tao et al. submitted) provides a forecast of
six water classes: vapor, cloud water, cloud ice, rain,
snow and graupel, where the size distributions of pre-
cipitating hydrometeors are fit to an inverse-exponential
form, using a fixed intercept and density, with the slope
parameter calculated based upon water content.

An experimental forecast is generated that param-
eterizes the slope parameter of the snow crystal size

Fig. 2. Snow distribution parameterizations utilized within the ex-
perimental forecast based on references in text and C3VP campaign
spiral data. Slope parameter values are capped to maintain reason-
able values of snow density that are not less than observations, or
greater than pure ice. Crosshairs represent observed pairings of air
temperature and slope parameter used in the creation of the best fit
equation of the form of Ryan (2000).

distribution as a function of temperature, using an equa-
tion similar in form to Ryan (2000) but based instead
on snow crystal size distributions observed during an
aircraft spiral within a similar, synoptic scale snow-
fall event that occurred during the Canadian Cloud-
Sat/CALIPSO Verification Project (C3VP, Hudak et al.
(2006)). Heymsfield et al. (2002) advocate for improved
snow parameterizations that incorporate a variation in
density and Heymsfield et al. (2004) provide an exam-
ple of snow density parameterizations based upon the
distribution slope parameter. Snow density decreases
with decreases in slope, suggesting a transition to lower
density aggregates. In the experimental forecast, snow
density is parameterized with the slope parameter, again
based upon C3VP aircraft spiral data. Modifications
to the Goddard scheme are summarized in (Fig. 2),
otherwise, both forecasts are based upon equivalent
initializations and other physical parameterizations.

Although both forecasts provide a reasonable simula-
tion and depiction of observed conditions, some caution
must be applied when comparing the characteristics of
modeled and observed cloud structures. Model fore-
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casts provide results at a particular snapshot in time,
which do not coincide with either radar system, even if
the forecast is perfect in timing, spatial coverage and
intensity. Therefore, verification is performed by exam-
ining the characteristics of clouds in a statistical sense,
applying contoured frequency with altitude diagrams
(CFADs, Yuter and Houze 1995) to forecast model
profiles within 0.5 degrees of the CloudSat flight track.
The CloudSat radar system provides a much higher
spatial resolution (500 m vertical, 1.2 km horizontal)
than is available within the forecast model, with a
reported minimum detectable reflectivity of−28 dBZ.
A quality control mask retains radar returns that are
most likely cloud, with some signal lost in the lowest
1 km due to surface clutter. In this case, CloudSat
sampled light to moderate snowfall at 0840 UTC across
eastern Nebraska and western Iowa. All of the CloudSat
profiles are retained at full resolution but are combined
into a CFAD using the mean altitude ranges of the
34 forecast vertical levels and histogram bin sizes
2 dBZ in order to provide a depiction comparable
to the capabilities within the forecast model. In all
model forecast analyses, the eighth forecast hour (valid
at 0800 UTC on February 13) is used and deemed
representative of conditions observed by each radar
system.

Verification with the WSR-88D system is compli-
cated by variations in the radar scanning strategies and
degradation in minimum detectable signal with range.
In order to compensate, modeled reflectivity coverage
is reduced to conform to the sampling characteristics of
the KOAX radar, based on suggestions by Miller et al.
(1998). The KOAX radar was sampling in surveillance
mode, volume coverage pattern (VCP) 31, providing
only four radar tilts from 0.5 to 4.5 degrees. Volume
scans from 0730 to 0830 UTC are used to coincide
with the forecast model valid time of 0800 UTC.
Model profiles range from approximately 10 to 120 km
from the radar location, and in some cases, simulated
reflectivity occurs outside the potential scanning range
or return capabilities of the WSR-88D. Radar range
and model mass level altitude is used to estimate a
required KOAX tilt angle, and model points outside of
the 0.5 to 4.5 degree tilt range are neglected. In ad-
dition, the WSR-88D minimum detectable reflectivity
is calculated based upon Miller et al. (1998), and any
model reflectivity below the radar detectable signal is
removed (Fig. 3). Simulated radar data are reduced in
coverage to accomodate the sampling characteristics of
KOAX (Fig. 4). Finally, the CFAD technique is applied
to the simulated WSR-88D data using histogram bin
sizes of 2 dBZ on each model vertical level. Observed

Fig. 3. Minimum detectable radar reflectivity (dBZ, dashed)
expected from the WSR-88D in Omaha, Nebraska based on beam
tilt angles (degrees, solid) available in surveillance volume coverage
pattern 31 and calibration specifications cited by Miller etal. (1998).

Fig. 4. Demonstration of acceptable WRF simulated reflectivity
(dBZ) along a roughly east-west cross section through the WSR-
88D location, where color filled reflectivity would be retained
in CFAD analyses, in accordance with the actual radar volume
sampling coverage.

WSR-88D data are gridded to a Cartesian volume with
horizontal and vertical resolution of 1 and 0.5 km,
respectively, using a Cressman weighting scheme, and
only radar profiles within the 0.5 degree distance from
the CloudSat flight track are utilized in comparisons.
No additional editing was applied to the WSR-88D
reflectivity prior to gridding or CFAD analyses, and
only returns greater than−20 dBZ are considered.

3. RESULTS AND DISCUSSION

Despite significant changes to the formulation of
the microphysics scheme, the control and experimental
forecasts are similar, at least in a qualitative sense. Both
are able to produce broad areas of stratiform precipita-
tion to the northeast of the surface low in advance of
the surface warm front, as well as vigorous convection
into Arkansas and Mississippi (not shown). In order to
examine changes in the three-dimensional structure of
simulated clouds, WRF model profiles were extracted
within a half degree wide polygon along the CloudSat
flight track (Fig. 1). A forecast snapshot, valid at 0800
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UTC was chosen to be representative of conditions
observed by the CloudSat and WSR-88D systems. The
CFAD technique is applied to the hydrometeor contents
of these profiles, as well as simulated CloudSat and
WSR-88D reflectivity in order to understand potential
variability in the microphysical character of simulated
precipitation and their remotely sensed characteristics.

a. Hydrometeor Content

Although this simulation is performed with a six-
class scheme capable of producing graupel, no signif-
icant amounts of graupel were simulated within the
subset polygon. Therefore, analyses will focus on the
production of snow, cloud ice, and cloud water. The
CFAD technique is applied to hydrometeor contents
on each of the available model levels, at bin sizes
of 0.05 gm−3 for precipitating and 0.025gm−3 for
nonprecipitating classes. Snow content exhibits a bi-
modal character below 5 km, likely a result of variable
intensity among precipitation within the frontal zone.
Similar variability was noted in the radar reflectivity
from KOAX during the period. Cloud water content
displays a single mode with two peaked levels near
2 and 4 km, while cloud ice is concentrated above
5 km, then scoured out as snow crystals continue to
form through accretion processes. By comparison, the
experimental forecast suggests a minor increase in snow
content, in both the modal value and extremes at the
tails of the probability distributions. The maximum
values of cloud water are also increased at levels where
peaks were already present. Finally, although there is
not much change above 5 km, cloud ice is slightly
increased below this level.

Although it is difficult to determine the precise cause
of these changes, idealized calculations were performed
for selected microphysical source and sink terms (Fig.
6). These estimations assume the case of sea level pres-
sure (1013.25 hPa), saturation with respect to water, and
varying amounts of snow that interact with 0.5gkg−1 of
the accreted cloud species. These calculations suggest
that the depositional growth of snow may increase in
many cases, while accretion of cloud ice and cloud
water could stay the same or be reduced. Reductions
in the accretion of cloud ice and water would allow
for their retention within the vertical profile, while
increases in vapor deposition could explain a slight
increase in snow content. However, due to the com-
plex interactions within the iterative forecast model,
it is unclear if dynamic processes (subtle changes in
updrafts, for example) may also play a role. Increases
in cloud water are substantial, however, retention of

cloud water within the mixed phase region could be
mitigated through other parameterization tunings while
still aspiring for an improved representation of snow
crystal characteristics.

b. Radar Characteristics

Radar reflectivity is dependent upon the sizes of
targets distributed within sampled volumes and the
backward scattered component of the active microwave
signal. Here, CloudSat reflectivity is simulated by as-
suming that the true crystal habit is represented by
equivalent diameter spheres of uniform density, referred
to as “soft spheres” by Liu (2004). The soft sphere
formulation tends to overestimate forward scattering
in comparison to higher order simulations using a
discrete dipole approximation (Liu 2004), therefore,
some underestimate of radar reflectivity is expected.
Furthermore, Battaglia et al. (2008) have noted that
multiple scattering effects allow for a greater 94 GHz
reflectivity in areas of moderate to heavy precipita-
tion, despite expectations of significant attenuation.
The SDSU utilizes single scattering, therefore, some
additional underestimate of CloudSat reflectivity is ex-
pected.

CloudSat observations suggest a reflectivity mode
around 10 dBZ within the lowest 4 km, followed by
a uniform lapse rate to cloud top. Isolated bands of
enhanced reflectivity along the flight track produce
limited occurrences of reflectivity as high as 15 dBZ
(Fig. 7). In the control forecast, the reflectivity mode
is generally too low (5 dBZ) and extends too far aloft,
reaching to about 6 km. Continuing to cloud top, the
reflectivity lapse rate is less than observed. Note that
the decrease in the reflectivity mode from 6 km to the
surface, not seen in observations, may be due to single
scattering and soft sphere assumptions that would com-
bine to reduce radar backscatter. Some improvement in
the lower levels is noted in the experimental forecast,
where the reflectivity below 4 km is generally increased
by a few dB, although structural errors in the height
of the low level mode and lapse rate to cloud top
remain. Within the experimental forecast, snow crystal
characteristics in the lowest levels are expected to
include size distributions where the crystals are larger
but reduced in number concentration and have densities
consistent with the ice-air mixtures of large aggregates
(Fig. 6).

At 94 GHz, Mie resonance effects complicate in-
ferences based on reflectivity, as oscillations in radar
backscatter develop despite continued increases in the
target diameter. The WSR-88D system is a conve-
nient supplement, as the 10-cm wavelength allows for
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Fig. 5. Contoured frequency with altitude diagrams of modelhydrometeor content (gm−3) for the Goddard control case (top) and experimental
temperature-based microphysics schemes (bottom), based on profiles extracted from the parallelogram of Fig. 1. Snow, cloud water and cloud
ice are displayed from left to right across each row. Note that the bin size magnitudes vary between the snow and nonprecipitating classes.

[A] [B] [C] [D]

Fig. 6. Percentage change in the magnitude of snow source terms, size distribution characteristics and variations in density due to the
inclusion of a temperature-based parameterization, takenas experimental over control. [a] Process of accretion of cloud ice or water byt snow.
[b] Vapor deposition to snow crystals. [c] Mask value representing a change to a distribution with larger mean crystal size and decreased
number concentration, in the portion of the graphed domain below the labeled contour. [d] Change in snow crystal density.

Rayleigh scattering principles and a steady increase in
backscatter that depends upon the sixth moment of the
size distribution. In the control forecast, the reflectivity
mode present at 94 GHz is apparent once more, with
simulated WSR-88D reflectivity of approximately 30
dBZ (Fig. 8). This magnitude of radar return is nearly
double the observations, and additionally, simulated
reflectivity exhibits a broader range from 20 to 40
dB (varying by level) than the general 20 dB range
observed. At a WSR-88D wavelength, the reflectivity
lapse rate above 4 km is greater than observed. The
incorporation of a temperature based distribution re-
duces the low level reflectivity mode by approximately
5 dB, although the forecast modal values far exceed
observations throughout most of the cloud layer.

When analyses from both systems are considered
together, the temperature based distribution seems to
improve the reflectivity characteristics at low levels.
The control simulation generates too low (high) of a
reflectivity at 94 GHz (3 GHz) in the lowest 4 km, with
these errors offset partially by the switch to a tempera-
ture based distribution. However, errors in the structure
of simulated precipitation are evident, notably in the
development of a low level mode beyond 4 km. One
issue with a temperature based parameterization is the
development of isothermal or inversion layers, which
then fix the distribution to a uniform value throughout
that layer (in the isothermal case, Fig. 9) or awkwardly
transition crystal sizes in a manner that is not physically
based (in the inversion case). High resolution forecasts
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Fig. 7. Contoured frequency with altitude diagrams of CloudSat 94 GHz Cloud Profiling Radar reflectivity, obtained from simulations of
model profiles in the original Goddard scheme forecast (left), actual observations of light to moderate snowfall (middle) and model profiles
with an experimental temperature dependent density and size distribution (right). Color filled contours are at increments of 1, 2.5, and every
5% thereafter. The median profile is represented as a solid blue line.
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Fig. 8. Contoured frequency with altitude diagrams of WSR-88D, 3 GHz reflectivity, obtained from simulations of model profiles in the
original Goddard scheme forecast (left), a half hour of volume scans by the KOAX radar with coverage in the polygon of Fig.1 (middle)
and model profiles with a temperature-dependent density andsize distribution (right). Color filled contours are at increments of 1, 2.5, and
every 5% thereafter. The median profile is represented as a solid blue line.

simulate the vertical profile of temperature with enough
detail that subtle variations from a mean lapse rate
may also incorporate artificial and sudden changes in
distribution characteristics. Therefore, future work will
investigate alternative parameterizations that incorpo-
rate temperature or altitude but seek to avoid problems
resulting from isothermal or inversion conditions.

4. SUMMARY

Winter storms pose a significant challenge to the
operational forecasting community due to uncertainties
in precipitation quantity, duration, and type. As high
resolution forecast models are increasingly capable of
cloud and precipitation permitting simulations rather
than coarser parameterizations, verification of cloud
structures provide a check for model performance. Two
simulations of a winter cyclone were produced using

the WRF model: one utilizing the default NASA God-
dard single-moment, bulk water microphysics scheme
and a second forecast that incorporated snow crystal
size distrbution characteristics and bulk density that
vary with temperature. Radar remote sensing was uti-
lized to compare observed and simulated precipitation
structures, based on reflectivity from the 94 GHz,
NASA CloudSat Cloud Profiling Radar and the 3 GHz,
WSR-88D located at Omaha, Nebraska.

The inclusion of temperature dependent snow char-
acteristics modifies several parameterized, physical pro-
cesses that act in various ways to increase the amount of
snow, cloud ice, and cloud water throughout the cloud
layer, although little change in surface precipitation was
noted. The ranges in and extremes of reflectivity values
are more appropriately represented in the lowest model
levels when temperature dependent characteristics are
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Fig. 9. Mean profile of temperature and dew point among model
profiles represented by the polygon of Fig. 1 and used in reflectivity
CFAD analyses.

included. Several problems remain, and are related to
difficulties in the vicinity of isothermal layers and
inversions, where functions of temperature are limited
to fixed values and nonphysical transitions to larger or
smaller mean crystal sizes. Future work will investi-
gate alternatives, likely based upon a combination of
temperature and altitude.
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IntroductionIntroduction

• Single moment, bulk water microphysics schemes are available to a 
b d d itbroadened community.

Implementation in WRF, used by operational centers and WFOs.
• SPoRT program emphasis: 

A l i NASA d t d h t i i l f t i thApplying NASA data and research to improve regional forecasts in the 
0‐48h time frame.

• Cold season, midlatitude cyclones are a forecast challenge.
Precipitation type onset duration and intensity are provided withinPrecipitation type, onset, duration and intensity are provided within 
NWP using prescribed hydrometeor characteristics.
These characteristics are rarely measured directly.

• Goals:
Evaluate model performance using radar as a proxy.
Pursue parameterizations that may improve hydrometeor 
representation as assessed by radar characteristics.

transitioning unique NASA data and research technologies



MethodologyMethodology

• Simulate an event within an 
operational framework:

• NASA GSFC microphysics with graupel

• WRF model on a 4km CONUS domain

• Given a good forecast extract model

CloudSat

Given a good forecast, extract model 
profiles representative of radar 
observations:

• CloudSat 94 GHz Cloud Profiling Radar

• NEXRAD 3 GHz WSR‐88Ds

• Radar simulators produce reflectivity 
from model profiles for comparison.

• SDSU (T. Matsui et al., NASA GSFC)SDSU (T. Matsui et al., NASA GSFC)

• QuickBeam (Haynes et al. 2007)

• Concept similar to Lang et al. (2007)

• Contoured frequency with altitude 
diagrams (CFADs, Yuter and Houze 1995)

/ /

selected 
profiles

diagrams (CFADs, Yuter and Houze 1995)

transitioning unique NASA data and research technologies

Forecast at 08 UTC on 2007/02/13



Experimental ForecastExperimental Forecast
Goal is to implement increased variability in 
snow characteristics based uponsnow characteristics, based upon 
observations.
Original formulation:

N(D) = noe –λsD, ρs=100.0 kgm‐3

max at 917 kgm‐3

No is fixed, 1.6x107m‐4

Modifications:
Based on a single C3VP aircraft spiral during a 
synoptic scale storm (22 January 2007).
λs(T) of form a10bTc similar to Ryan (2007).
ρs(λ) of form aλb similar to Heymsfield (2004).
λs(T) ranges [11, 245 cm‐1] based on 
observations and cap on ice density.

J ifi i
min near 60 kgm‐3

Justification:
λ(T) could represent aggregation effects 
lacking in a single moment scheme.
ρs is widely reported to vary with crystal 
h bi d hhabit and growth.

transitioning unique NASA data and research technologies



Radar Characteristics
CloudSat Cloud Profiling Radar Reflectivity (94 GHz)

OBSFORECAST EXPOBSFORECAST EXP

80%

Some changes are noted, but problems remain:
General increase in dBZ values toward observations, still underestimated.
Lapse rate of dBZ remains steeper and earlier onset than forecast

transitioning unique NASA data and research technologies

Lapse rate of dBZ remains steeper and earlier onset than forecast.



Outstanding IssuesOutstanding Issues
PIA courtesy J. Haynes, thresholds of Battaglia et al. (2008)

Simulating CloudSat:
Assumption of single scattering may not always be reliable.
Scattering by “soft spheres” likely underestimates actual backscatterScattering by  soft spheres  likely underestimates actual backscatter.

transitioning unique NASA data and research technologies



Simulating WSR‐88D ReflectivitySimulating WSR 88D Reflectivity
Dilemma:

Operational radar sampling is 
limited by the volume coverage 
pattern (VCP) and minimum 
detectable signal, which varies 
with beam tilt and range.VCP 31

Solution:

Limit analysis to model grid cells y g
and simulated dBZ that could be 
reasonably sampled, given 
limitations of the WSR‐88D 
location (Miller et al 1998)not considered location (Miller et al. 1998).not considered



Radar Characteristics
NEXRAD Weather Service Radar Reflectivity (3 GHz)

FORECAST OBS EXPFORECAST OBS EXP

Some changes are noted, but problems remain:
Reduction of dBZ generally, and occurrence of excessively high reflectivity above 4 km.
Retention of a low level reflectivity mode (to 4 km) absent from observations

transitioning unique NASA data and research technologies

Retention of a low level reflectivity mode (to 4 km) absent from observations.



Physical Processesy
DENSITYDEPOSITION

Ratios of modified formulation 
(EXP) against original (FCST):
100%*(EXP/FCST)( )

Assumptions: 
P = 1013.25 hPa
Q = 0 5 g/kg

ACCRETION
Qi & Qc

SIZE/NUMBER
Qi,c = 0.5 g/kg
100% RH over water.

Shading: smaller & greater

Modified processes would be 
decreased versus the original 
formulation.

larger & fewer



Hydrometeor Profilesy
SNOW CLOUD 

WATER
CLOUD 

ICE

FCST

slight increase extreme values 
are increased

EXP

low level cloud 
ice remains



Precipitation Forecastsp

FORECAST Warm Frontal Zone
EXP

C id i i it ti f

FORECAST

Considering precipitation from 
vertical profiles entirely below freezing 
that produce snow at the surface.

Changes in radar signatures do not 
manifest dramatically at the surface.

Only minor changes in precipitation

EXP

Only minor changes in precipitation 
accumulated over first eight hours.



Outstanding IssuesOutstanding Issues
Model Mean Profile

?

dΘ/dZ weak
Θ T

?

dΘ/dZ weak
λ ~ const.

~ isothermal
λ ~ const.

Z σ

Temperature Based Parameterization of λ:
Model profiles of temperature may not fully represent desired PSD evolution.
Alternatives may include: Potential temperature altitude sigma levels ?Alternatives may include: Potential temperature, altitude, sigma levels …?
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SummarySummary

• Two forecasts were performed for a winter cyclone:
Default NASA Goddard scheme with fixed intercept.
Modified version to include a temperature‐based 
parameterization.

• Results:
Minor changes in the microphysical character of the sampled 
clouds, and little change noted in surface precipitation.
Some improvement in the reflectivity signatures when 
compared to CloudSat and WSR‐88D data, however, problems 
remain.
Temperature based parameterizations may struggle in regionsTemperature‐based parameterizations may struggle in regions 
of inversions, isothermal layers, or high resolution soundings 
with great variability.

transitioning unique NASA data and research technologies
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