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NATIONeL AIWISOEY COMMITTEE FOR ~ O ~ 7 J T I C S  

RESEARCH l4lDIORANZSTM 

f o r  the 

Bureau of Aeror~autics , b?avy lkpartmsnt 

1TAYI'iJG-TAIL FLYING-BOAT HULLS 

3y John M I Rizbe and Rodger L . Naeseth 

An investigation - i s  made i n  the Langley 300 MPH 7- by 10-f 00% 

tWeL t o  determine tke aerodynamic cha-racter-istics of three deepc 
stf?pped p lming- t a i l  flging-boat hu l l s  differing only i n  the anount 
of s tep f a i r ing .  me hills were derive& by increasing the W a i r e d  
etsp dsp%h of a planing-tail  hr.ll of a previous aerociyLamic investi-  
gation t o  a depth a%out 92 percent of the h u l l  beam. Tests wore 
a.'~so made on a transverss-step2ed hd-1 with an  extended aftei;body 
f o r  the purpose of comparison and iri  order t o  extend ar,d verify 
the r e su l t s  of a previous investigation. 

Ths Investigation indicated t h a t  the extended afterbody h u l l  
b.ad a mixiinurn drag coefficierit about the same as a conventional 
h;&l, 0,0066, arid an ang3e-of -attack range f o r  mininum drag of 3 O  

t o  5". Tae h u l l  with a iloep unfaired stex, had a minimum drag 
ccef f i c i e n t  of 0 "00 57 which w a s  14 percent l e s s  than the transverse 
s t e ~ p d  hll ~ d % h  ex-tended af telibocly; the hvJ.2.s with s tep  f a i r i n g  
had: up t.o k4 ;?ercent l a s s  minima drag coefficient than the transverse- 
stey2ed hu2.1, o r  s i igk t ly  xore drag than a streamlined body having 
approxima-bely the sane Lsagth vdume. 

Longltudinal. and lateral, i n s t a b i l i t y  varied l i t t l e  with s tep  
f a i r ing  and wac about the same a s  a conventionai h u l l .  

IMTRO DJCTION 

I n  view of the requirements f o r  increased range and speed i n  
f ly ing  boats, the Bureau of Aeronautics, Havy Department, has 
requestgd an investigation of the aerodynamic character is t ics  of 
flying-boat hu l l s  as affected by h u l l  dimensions and h u l l  shape. 
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The resu l t s  of one phase of the investig@tion, presanted i n  
refemace 1, have indicated tha t  substant ial  drag reductions 
can be obtained on g3-ming-taii flying-boat hu l l s  if proper 
s tep  f a i r ings  a re  inaor2orated on the h u l l .  It was believed 
tha t  furtl!.er drag rediL~c-Lios.s m i g h t  be o3tained cn t h i s  type of 
b u u  '33 deepening the step bscause of a reduction i n  akin ares.. . 

In  the praaent investigation e x ~ l o r a t o r y  tests were made t o  
provide fr?l"orwLtion e n  %&is respecto 

T,'r?p:%X~hnd data f r o s  t e s t s  i n  Lm&ey tank no. 2 have 
indica-ksl t ha t  $he 'cS3.r~~ deep-ste3ped hv3ls of the present 
fnvcstl$ation would h ~ v e  satisfactory h$-&roQnamic character- 
i s t i c s  . 

To ?stend m d  verify the r e su l t s  of a previous invest i -  
gatioz.., S,ests were made of a transverse ~ t e p p e d  hul l ,  Lmg2.e~ 
tank m.?d@l 203. Since th i s  h U  had aerodyoamic charact;eristics 
a%ou.t; t5.s same as a, conventiozLL hdl, it is used as a basis  of 
conpari aon i n  t h i s  report .  

A s  the proviaus aerodynamic i ~ v e s t i g a t i o n  of planing- 
tail h.ctL1.s ( ref erenca 1) a l l  h u l l  aero&manxic charac t e r i  b t i c s  
d a t e m n e d  includij the e f f ec t  of interference of the support 
w i n g  . 

Tks r e su l t s  of the t e s t s  a re  presented a s  standard MACA coef- 
f i c i e n t s  of foroes m.d mom3nts. Rolling-, yawing-, and pitching- 
nomeat cceff i s i e a t s  @,re g i~rea  about the Location (wing 30-percent 
chord 9o.illt) shown in f igc re  I. Except where noted, the wing area, 
man asro&imanis chord, a3d s p m  asad in  dotermining the coef - 
f icier,?;s R83aolds nui~5s:-s a r e  those of a hypothstical f ly ing  boat 
describ~d. i n  raference 2 .  Ta4 data are referred t o  the  s t a b i l i t y  
mss,  %i?iich ar-e a system of axes having t h e i r  or igin a t  the center 
02 I ~ O ~ Y L I ~ S  shxm i n  f igure 1 a*Ylfl In  'which the Z-a,xla is  i n  the 
plms of s)?.im-i;ry m d  peqendicstf.ar t o  the relative wind, the 
X-axis is i n  the plane of s r m e t a -  and perpendicular .to the 
Z-axis, and the Y-= i s  is perper~dicular to  t;he plane of symmetry. 
The 2osi.tive directions of the s t a b i l i t y  axes a r e  shown i n  f igure  3, 

The coafficionts and s,vmbols m e  defined as Pollom: 

l i f t  coefficient ~ . ( ~ i f t / ~ ~ )  

+drag coefficient ( ~ r a g / q ~ )  I I 
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C~ l a t e ra l - f  orce coefficient (Y/~s) 

C 2  rolli~g-moment coeff ic ient  (L/c;~b) 

C n  p i t c ~ i n g - ~ o i i a t  coefficient (M/~sc) 

Cn yawing-mment coef f i c i e a t  ( ~ / q ~ b )  

L i f t  = -Z 

Drag = -Ti when $ = 0 

force along axes, pounds 

moments about axes, foot-pounds 

free-stream dynamic pressure, potmds per square 

f 00% 

wing area of a. L - ~ c a l e  model of a hypothetical f ly ing  
LO 

boat (18.264 sq f t )  

1 wing mean aerodynamic chord (M .A .C .) of a ~ i i - s c a l e  model 

of a hypothetical f ly ing  boat (1.377 f t )  

1 wing s2an of a ;---scale J.Q modrsl of a hypothetical f ly ing  

boat (13.971 f t ) 

air velocity, f e e t  per second 

WES density of a i r ,  slugs per cubic foo t  

a g e  of a t tack of h u l l  base line, degrees 

angle of yaw, degrees 

Reynolds numbqr, based on wing &an aeYo&namic chord 
3- of a E-scale model of a h n o t h e t i c a l  f ly ing  boat 

. . 



C% r a t e  of coefficient w i t h  angle 

of attack 

r a t e  of ch.ag3 of yawing-moment coefficient with m e  of 

3YLTJ 

C4 of la.teral-force coeff ic ient  w i t h  angle of 

MODEZ AND APPARATUS 

91s deep-stepped hu l l  Lines were dram by the Langley Hydro- 
dpanfca Dlvision by increasing the s tep of hu l l  2!29." of reference 1 
f r o 2  a ?-8pth which vas 23 percent of the IlulL beam t o  a depth 
92 psrceat of ths  h a l l  boax w h i l e  maintaining the sarce height a t  
ti?$ sternpost.  La~lgley tank model 203 ~ 4 t h  extended af terbody was 
tks  SE,EF: configuration reported. i n  reference 3 .  Dimensions of the 
hu3.-ts e r e  given i n  f igures  1 and 2 and tables I to  IV; photographs 
of the deep-s"sp fa i r ings  a r e  given i n  f igure  4. The t e s t  model 
wae the same one used i n  the investigation of reference 1; t rans-  
formation from one hull t o  anotner was f a c i l i t a t e d  by cut t ing the 
~ ~ d e r p o r t i o n  of the model m d  replacing interchangeable blocks 
corresponding t o  each s tep f a i r i n g  condition,, The h u l l  and in t e r -  
changsa'b2.e blocks were constructsd of laminated &hogany and were 
finisilod with pigmented varnish. 

The volunies, surface areas, niaximum cross-sectional areas, and 
side armsi f o r  the hv.1l.s axe compared i n  the following t ab le i  

r-- - --r 

Eli11 ~oiblum Surface area M a x i m  Side 

/ ( in  .3) (in .2) sectional area 
( in  .2) 

area 
(in .2) 

203 ext>airJ-~d 
2 ?:.:!$ 
221 G 
222' 

1@+5 
1512 
1568 
1.636 

182 
. 182 

182 

13,338 
30,354 
Lo ,904 

The h u l l  was  attached t o  a wing which was mounted borizontallly 
i n  the tunnel a s  shown i n  f igure  5 .  The wing was a l so  the same 
one used in the investigation of reference 1 and was not a scale  
model of the hrnothetical wing. It was s e t  at  an incidence of 
4' on the model, had a 20-inch chord, and was of the NP-CA 4321 
sect ion,  

182 

4057 
4.164 
4 2 7  

i 1 
11,502 4314 
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TESTS 

Test Conditions 

The tes ts  wera miie i n  the Langley 300 WE 7- by 10-f oot tunnel. 
a t  Qnmlc gxessures of approximtaly g, 100,md 170 pounds per 
sqiare foot  corresponding to  airspeeds of 100, 203, and 274 miles 
2er hour. Zeyaolds nunibers f o r  these airspeeds, %aged on the mean 
aerodymniic chord of the hypothetical firing boat, were appro~imataly 
1.30 x 1 0 6 ~  2 .!jO x 106, and 3 A0 x 106 mspectively . Corresponding 
~ a c h  numbers were 0.13, 0 .  and 0 .3~8. 

Corxections 

Blocking corrections have been applied to the wing arid wing- 
plus-hub1 data.. The h a l l  drag has been corrected fo r  horizontal 
buog-ancy effects  caused by a tunnel static-pressure graciient. 
W e s  of attack have been corrected fo r  structural deflections 
caused bg aerodynamic forces. 

Test Proced-ure 

'Slhe aerodynamic characteristics of the hulls with intexference 
of the mounting win$ were determined by testing the wing alone and 
the wing-andehull combinations m&er i&entical conditions. The 

aerodynamic coefficients were thus determined by subtraction 
of wing-done coefficients from wing and hul l  coefficients. 

Tests were mde a t  three Repolds nunibere. Because of 
s t m c t u r d  limitations of the mounting wing, it was necessary 
t o  limit the data a t  the higher Reynolds numbers t o  the +%-of- 
attack range shown. 

To mlnimize possible errors resulting from transition sh i f t  
on the w h g ,  the wing transition was fixed a t  the leading edge by 
mans of roughness s t r ips  of carborwldum part icles of approximately 
0.008-inch diam t e r  . The part icles were applied fo r  a length of 
8-percent airfoil. chord measured along the a i r f o i l  contour from 
the leading edge on both upper and lower surfaces. 

Hull transitton f o r  a l l  t e s t s  were fixed by a s t r i p  of 0.008-inch 
diameter carborndurn particles l-inch wide and located approximatsly 

2 
5 percent of the hull  length aft of the bow. A l l  t e s t s  were made 
with the nounting setup shown in figure 5 .  
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RESULTS AND DISCUSSION 

The aeroQmamic characteristics of the deep-stepped p3aning- 
tail huUs i n  $%ch are presented i n  f i gme  6; aarodynamic charac- 
ter id t ics  i n  :raw are gives i n  figaxe T 9  The asrodparrclc charac- 
t e r i s t i c s  of Lm&ey tax model 203 with extended afteybody i n  
pitch a d  yav are prceerited i n  figures 8 and 9, respective3.y. 

bn,$le;y tank model 203 *I& extenaed af terbody had a min3-mrn 
drag coefficient of 0.9066, as i n  refereme 3, which is a%out the 
sams as  a coraventiona3 hu l l  of tiio same over-all lmgtb-beam ratio, 
reference 2; the a.@e-of-attack range f o r  minimum drag extended 
from to  

The hu l l  with the W a i r e d  &eep step, model 22I.E) had a 
minimu~li drag coeff icient  of 0.0057 whish was 14 percent leas  thap 
the  hull. with atended afterbody or a conventioiaal hull..  Conparison 
of tb drag results  of modnl 22U with tbt of model 2 2 B  of 
reference 1, in&ics,tes that  increaoiag t;he step from a depth 
23 percent of the  huU. bemu to 92 2arcen.t of the hul l  beam resulted 
in  a dxag coerc'ficiel~t raduction of 3.2 percent. The hul l  with the 
bafrixe whose olaxmts appraachet.d strattg$%t B'Bzase, 2'232, had a minimum 
drag coefficient of O.O@37 -wh$ch kTas aLiEjhtly larger than the drag 
coe f f i c f~n t  of a streamlined body having approxfmte3-y the same 
length and volme. The importance of proper stop-fairing design 
5x1 reducing aoro&mami c &rag on deep -a tegped planing- t 4 i l  hulls  
is  sbo.rm, by *he larger vaZ.u.e of drag coefficient, 0.0045, f o r  the 
h&U krith the concave step fairing,, mo3el 221G,. The drag coef - 
f lcierlt f o r  +&is h.a.U confignratioq was about 32 percent l ess  than 
the h a  wifih extended afterboQ-, whereas the h u l l  wi%h the fu l l e r  
fairing, 2p3, was about k4 percent leas  . 

Tuft studies o f  the step portion of the hulla (fig. 
indicaCUe that  tba lower drag fo r  the hulls wit.h step fa i r ing 
resal ts  Tram, the elimination of separation which occurs on the 
sicks of tke ?&aired deep-skepged h f i ,  

2J3 M i n i m  drag coeff iciemts based on (valume) . ( c ~ ~ ~ )  end 
front& area ( c D ~ ~ ]  and skin area ( 3  are presented in 
table V a3~ng  with d ~ a g  coeffidients based on Qyothetical wing 
area I Theoe d a b  indlc8,te that  model 222.3' had the l ea s t  drag' f o r  

. a unit  volume end f o r  un.i t surface area . 
As Mth the planing-tail hulls of a previous investigation 

( r s f a m ~ e ~ )  the 9gJ.e-of-attack ran& for lninirmun drag occurred 
from about 3O to'rjO. , /  . . 



Longitudinal and l a t e r a l  i n s t ab i l i t y  a s  shorn by the 
parameters &,/a& and ac@$, t ab le  Y, varied l i t t l e  with 

s t ep  fagring an& was ~~3ou-t the sane as a conventional h u l l  o r  
a h u l l  with extended afterbody* 

113. order t o  conpare the resu l t s  of these t e s t s  with investi- 
gations m d e  of other P.ul.3~ azd fuselages, the parameters Xf, 
ac, i/a$l, and a$,/bpl ,.- as given i n  references 4, 5,  and 6, 
respectively, a re  a l so  included i n  ta3l.e V, The parameter Kf 
i s  a fuselage moment factor,  i n  the f o m  of aw'aae based on 
h u l l  bean!. and length where at is i n  radians ,, The yawingaomnt 
coefficient,  Cnf B s  i n  ac, '/a$ i s  based on volme and is given 

about a reference axis 0-3  of hu l l  length from the nose, The 
parameter &,/& Is based on h u l l  s ide area a ~ d  length where the 

yaving aouent is a lso  given a3out a reference axis 0-3 of hull 
length f'rorrr the :lose an& p is given i n  radianso Ins t ab i l i t y  as 
given by the parameter aclnpj3 agreed closely with values given 
i n  references 5 -a 6, 

The resu l t s  of t e s t s  i n  the Lagley  300 MPH 7- by 10-foot 
tunnel t o  deteraine the aerodynaxilc character is t ics  of three 
deep-step2ed planing-tail f ly ing  $oat Imlls, d i f fe r ing  only i n  
the mourlt of s tep fair ing,  indicated the folloving conclusions, 

1.. The planing-tail h u l l  with a deep unfaired step, 221E, 
had a aixxlmm drag coefficielzt of 0,0057, about 14 percent l e s s  
than a c o n ~ ~ e n t i o m l  h~llg the hul ls  with s tep fa!,ring had up t o  
44 percent l e s s  miniam CrZg coeff icient  than a conventional 
h u l l  o r  s l igh t ly  more drag t3m a streamlined body having approxi- 
mately the s m e  le-wh a d  volmec 

2, The angle--of-attack range f o r  minim1m drag was generally 
i n  the 3O t o  5 O  raDge for a11 pl&a.1ng-tail hul ls  tes ted,  



3. Longitudinal and lateral ineWility was the same for 
planing-tail hulls and was about the same as a conventional hull. 
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TABLEI 

OFPQETS FOR LA- TIMP; MOIEL 2pE 

' [All. dimanmione are in  incheq 

RRTIolOAL AIRISORY 
C O ~ ~  FOR AEROHAUTICS 

COWIrnIAL 

Bottom of h u l l  Angle Height Line of Lower := &y 
Lower 

, i n e , t i n .  

Upper 

a b ~  

Radiue 
. in .  '2;: 

cove station iz 
geel 

ma.w 
$in. 

(aeI3) 

5 
0 
0 

3 4, 

10.30 
8.30 
6.71 
4 -39 
3.24 
2.36 
1.81 

1.40 

beam 

0 
2.30 
3.06 
3 -86 
4.32 
4.61 
4.79 

1.514.89 
4.92 

Butt 

7.49 
5.30 
2.96 
1.64 

.92 
-55 
.40 
.36 
-36 
.36 
036 

. in .  

Butt 

6.48 
4.52 
2.40 
1.a 

.59 
-29 
.19 
-18 
el8 

11.00 
14.29 
15.72 
17.36 
18.41 
19.12 
19.60 
19.88 
19.99 

10.30 
5 -49 
3 -76 
1.83 
.@ 
.27 
-04 

0 
0 

beam 

0 
2.30 
3.06 
3.86 
4.32 
4.61 
4.79 
4 
4.92 

F.P. 
1 
P 
1 
2 
3 
4 
5 
6 

$in. 3 i n .  

ll.00 
11-96 
12.66 
13 -50 
14.08 
14.52 
14.0l 
14.99 
15.07 

1.40 
1.39 
1.12 
.26 

o 

4.925 
4.50 
3.14 

.73 
o 

B.P. 

0 
2.15 

4.25 
8.50 

12-73 
17.00 
2l.q 
25-50 
29.75 

Butt 

8.14 
6.09 
3.53 
2.06 
1.25 
.& 
.59 
.55 
a55 10.B 

10.47 
10.66 
10.85 
10.81 
10.81 
l l .01 
ll .19 
ll .36 
11.51 
u .65  
11.77 
u.86 
u .94 
11.99 
12.03 
12.04 
12.06 
12.08 
12 .lo 
12.12 
12.12 
12.12 

3$-. 

10 29 
lo .32 
10.01 
9.33 
9.08 

9.08 

4.91 
4 .% 
4.75 
4 . a  
4.43 
4 -17 
3 .%I 
3 -50 
3.08 
2 .6l 
2 .15 
1.69 
1 .n 

a76 
-31 
cM 

0 
o 
0 
o 
o 

9.08 

9.25 
9.40 
9.59 
9.78 
9 9 7  

10.16 
10.34 
10 -53 
lo .7e 
10 -91 
U.09 
U.28 
u.47 
u.66 
U.85 
12.02 
12.12 

78 
9 

10 
u 
ui r 

lli A 
12 
13 
14. 
15 
16 
17 
18 
19 
zo 
2l 
22 
Q 
24 

2 
27 
A 9  

Butt 

8.32 
6.56 
4.01 
3.49 
1.98 
1.04 

.78 

.73 
-73 
-73 
-73 

b i n .  

34.00 
38.25 
42.50 
46.75 
47.90 

47.90 
51-00 
55.25 
59.50 
63 -75 
68.00 
72.25 
76.50 
e0 -75 
85.00 
69-25 
93.50 
97.75 

102.00 
106.29 
110.73 
ll4.75 
U.6.65 

Butt 

6.77 
4.38 
2.85 
1.89 
1.30 

.98 
-92 
a92 

Butt 

6.72 
4.60 
3.lo 
2.14 
1.52 
1.18 
1.09 
1.09 
1.09 
1 .W 

+ i n .  

v 

15 -09 
15 -14 
15 -25 
15.39 
15 3 7  
15 .83 
16.13 
16 .go 
16.92 
17.39 
17 .& 
18.31 
18 -78 
19.24 
19 
19 .% 

Butt 

4.64 
3.25 
2.33 
1.70 
1.33 
1.23 
1.23 

Butt 

3.28 
2.42 
1.82 
1.46 
1.33 
1.33 
1-33 

Butt 

2.38 
1 .Bg 
1.52 
1.40 
1.40 



cOm1mIAL 

TABLE I1 

O ~ S E ? S O F ~ ~ W I E L 2 2 l G  

[ k ~  dbumsiane are in inches 3 

Line 
Of 

ccm- 

above 
E 

u.00 
U . 9 8  

Upper 
chine 
above 
E 

Sta- 
tion 

rs. - 1, 

Angle 
of 

ohins 

(deg) 

10 

Keel 
above 

10.30 
5.49 

Mstence 
to 

o 
+ 2.13 

Cove 
above 

3t 

Lower 
chine 
above 
E 

10 -30 
8.30 

Bottca of hull - Heights and half breadthe 
Radius 

and 
half ,,, 
mum 
beam 

o 
2.30 

chine 
half 
beam 

o 
2.30 

Of 
hull 
at 
(i 

u . 0 0  
14.29 

W.L. ~ u t t  

7.49 

Butt Butt 

8 3 2  

f l a r e 1 i n . 2 i n 3 i a . 4 i n . 1 i n . 2 i n . 3 i n . 4 i n . 5 i n . 6 i n . 7 i n . 8 h . 9 i a . u ) i n . ~ i n .  

W.L. Butt W.L. W.L. W.L W&. W.L. W.L. W.L. W.L. W.L. 



TABLE 111 



c o N F 1 m w  

!wBm?.v 

OFFSETS FOR NACA HULL WIXL 203 MTE EXTENSD AFTeZiBOW 

b1 dlnmmione sra In inche4 



TABLE V 

IXAG COEFFICIENTS AND STABILITY PAflAE4ETWS FOR MQEY TANK 

MOJELS 22D, 22U, 221F, AI'?D 203 WITH EXTENIED AFTWBOI)lI 

[The drag ooefficients are given far a Reynolds number 
of about 2.50 x lo6] 
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f igure 1. - Lme5 of Lamp ley tank models 221 E, 221 6, 221 F. 
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Fig. 3 
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Figure 3.- System of stability axes. Positive values of forces, 
moments, and angles are indicated by arrows. 



NACA RM NO. L7C18 CONFIDENTIAL Fig. 4 

Figure 4.- Langley tank models 221E, 221G, and 221F tested in the 
Langley 330 MPH 7- by 10-foot tunnel. 
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NACA RM No. L7C18 Fig. 6a 
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(a) R - L 5 &  /06 

f iqure  6 . -  Aerodynamic characz'er/stics in pitch of Lonp/ey 

tank madel. 22/E, Z2/4 and 22IF. 
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NACA RM No. L7C1 Fig. 6b 
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' NACA RM No. L7C18 Fig. 7 

-4. 0 4 8 /Z  /6 20 
Anq/e o f  yaw, y, deg 

f iqure 7.-Aerodynamic character/d/'cs in yaw of Lanqley 

tank models Z l E ,  Z / G ,  and 2 8 6  a=2",~-13 x / 0 6 .  
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NACA RM No. L7C18 Fig. 9 
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(a) L ~ l e  J tank model a l E ,  o = 2'. 

(b) Lw1ep tank mode1 221G, a = 2'. 

Fig. 10 

L w ~ ~ Y  model 221F, 0 = 4'. 

Figure 10, - Tuft studies of E w l e y  taaJlk models 221E, 221G, and 221F, 
Tests were made with models mounted on single strut support, 
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