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Abstract 

 

This report presents a rapid Byzantine-fault-tolerant self-

stabilizing clock synchronization protocol that is independent of 

application-specific requirements.  It is focused on clock 

synchronization of a system in the presence of Byzantine faults 

after the cause of any transient faults has dissipated.   A model of 

this protocol is mechanically verified using the Symbolic Model 

Verifier (SMV) [SMV] where the entire state space is examined 

and proven to self-stabilize in the presence of one arbitrary faulty 

node.  Instances of the protocol are proven to tolerate bursts of 

transient failures and deterministically converge with a linear time 

with respect to the synchronization period.  This protocol does not 

rely on assumptions about the initial state of the system, other than 

the presence of sufficient number of good nodes.  All timing 

measures of variables are based on the node’s local clock, and no 

central clock or externally generated pulse is used.  The Byzantine 

faulty behavior modeled here is a node with arbitrarily malicious 

behavior that is allowed to influence other nodes at every clock 

tick.  The only constraint is that the interactions are restricted to 

defined interfaces. 



 

 ii 

Table of Contents 

 

1.  INTRODUCTION ..................................................................................................................................................1 

2.  SYSTEM OVERVIEW ..........................................................................................................................................2 

2.1.  GAMMA (γ )........................................................................................................................................................3 

3.  PROTOCOL DESCRIPTION...............................................................................................................................3 

3.2.  THE MONITOR....................................................................................................................................................4 
3.3.  THE STATE MACHINE.........................................................................................................................................4 
3.4.  PROTOCOL FUNCTIONS ......................................................................................................................................7 
3.5.  PROTOCOL ASSUMPTIONS ..................................................................................................................................8 
3.6.  THE SELF-STABILIZING CLOCK SYNCHRONIZATION PROBLEM ..........................................................................8 

4.  THE CLOCK SYNCHRONIZATION PROTOCOL .......................................................................................10 

5.  PROOF ..................................................................................................................................................................11 

5.1.  PROOF FOR F = 1..............................................................................................................................................22 
5.1.1.  In-Phase Case .........................................................................................................................................23 
5.1.2.  Out-of-Phase Case ..................................................................................................................................26 
5.1.3.  A Realizable System ................................................................................................................................27 

5.2.  PROOF FOR F = 0..............................................................................................................................................29 
5.3.  GENERALIZATION OF THE PROTOCOL, FOR F > 1 ............................................................................................31 

6.  PROTOCOL OVERHEAD .................................................................................................................................32 

7.  POSSIBLE APPLICATIONS..............................................................................................................................33 

8.  CONCLUSIONS...................................................................................................................................................33 

REFERENCES ..........................................................................................................................................................35 

APPENDIX A.  SYMBOLS ......................................................................................................................................36 

 



 

1 

1.  Introduction 

 

This report presents a clock synchronization protocol and the proof of its correctness for 

specific cases.  For an introduction to the clock synchronization and self-stabilization problems 

the reader is referred to the introductory sections in [Mal 2006A, 2006B, 2007, 2008]. 

 

A Byzantine-Fault-Tolerant Self-Stabilizing Protocol for Distributed Clock 

Synchronization Systems was reported in [Mal 2006A, 2006B, 2007, 2008].  Claims about the 

protocol were validated via mechanical verification of a system consisting of one Byzantine 

faulty node [Mal 2007, 2008].  Further analysis of the proofs revealed a potential simplification 

of this protocol.  Having mechanically verified the protocol, it is now possible to explore 

variations of the protocol.  What is presented here is a new protocol that is a direct result of this 

exploration and re-verification of the protocol reported in [Mal 2006A, 2006B, 2007, 2008]. 

 

The protocol in [Mal 2006A, 2006B, 2007] requires periodic transmission of Affirm 

messages to guarantee the presence and participation of all good nodes.  Assuming that the good 

nodes are actively participating in the self-stabilization process, periodic transmission of Affirm 

messages can be inferred and, thus, periodic arrival of Affirm messages can be assumed.  As a 

result, transmission of the Affirm messages can be eliminated.  Therefore, only one self-

stabilization message, Resync, suffices.  Nevertheless, it is worth noting that periodic 

transmission of the Affirm messages by the good nodes not only reduces the error detection time 

but also expedites the reintegration process.  In [Mal 2006A, 2006B, 2007, 2008] an accept event 

counter was introduced to account for the arrival and accumulation of Affirm messages.  

Assuming the presence of periodic Affirm messages, the corresponding behavior of the protocol 

is now compensated by keeping track of elapsed time. 

 

This report extends the results of the basic case [Mal 2007, 2008] to larger systems and 

examines synchronization of a system of K ≥ 3F + 1 nodes in the presence of multiple Byzantine 

faulty nodes.  Analysis of larger systems revealed that a direct generalization of the results of the 

basic case is not applicable to larger systems.  Although this protocol solves the basic case, it 

does not synchronize a system of K ≥ 3F + 1 nodes in the presence of F Byzantine faulty nodes 

when F > 1. 

 

The proof presented here applies to all instances and applications of this protocol and to 

those reported in [Mal 2006A, 2006B, 2007, 2008].  Although this proof parallels that of [Mal 

2006A, 2006B, 2007, 2008], the proof is redone and restructured to make it easier to follow, 

simpler to analyze, and, thus, easier to comprehend.  Elimination of the Affirm messages resulted 

in a reduction of the number of parameters and, hence, the initial state space.  The mechanical 

verification of the protocol presented in this report is now more manageable and can be 

conducted in shorter amount of time on computers with less memory.  Furthermore, if more 

memory and computing power were available, larger and more complex systems could be 

analyzed.  Also, in the absence of periodic transmission of Affirm messages, implementation of 

the implicit fault model [Mal 2007] of the faulty nodes in the mechanical verification models is 

now practical. 
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In this report, a rapid Byzantine self-stabilizing clock synchronization protocol is 

presented.  Specific cases of this protocol are demonstrated to self-stabilize from any state, 

tolerate bursts of transient failures, and deterministically converge within a linear time with 

respect to the synchronization period.  Upon stabilization, all good clocks proceed 

synchronously. 

 

2.  System Overview 

  

The underlying topology considered here is a network of K ≥ 3F + 1 nodes that exchange 

messages through a set of communication channels.  A maximum of F Byzantine faulty nodes 

are assumed to be present in the system, where F ≥ 0.  The communication channels are assumed 

to connect a set of source nodes to a set of destination nodes such that the source of a given 

message is uniquely identifiable from other sources of messages.  The minimum number of good 

nodes in the system, G, is defined by G = K-F nodes.  The nodes communicate with each other 

by exchanging broadcast messages.  Broadcast of a message to all other nodes is realized by 

transmitting the message to all other nodes at the same time.  The communication network does 

not guarantee any relative order of arrival of a broadcast message at the receiving nodes, and a 

consistent delivery order of a set of messages does not necessarily reflect the temporal or causal 

order of the message transmissions [Kop 1997]. 

 

Each node is driven by an independent local physical oscillator with one oscillation 

representing a local clock tick.   The oscillators of good nodes have a known bounded drift rate, 

0 ≤ ρ << 1, with respect to real time. 

 

Each node has two primary logical time clocks, StateTimer and LocalTimer, which 

locally keep track of the passage of time as indicated by the local clock tick.  There is neither a 

central system clock nor an externally generated global pulse. 

 

The faulty communication channels and nodes can behave arbitrarily provided that 

eventually the system adheres to the protocol assumptions (see Section 3.5). 

 

The communication latency between the nodes is expressed in terms of the minimum 

event-response delay, D, and network imprecision, d.  These parameters are described with the 

help of Figure 1.  As depicted, a message transmitted at real time t0 is expected to arrive at all 

destination good nodes, be processed, and subsequent messages generated within the time 

interval of [t0 + D, t0 + D + d].  Communication between independently clocked nodes is 

inherently imprecise.  The network imprecision, d, is the maximum time difference among all 

good receivers, Nj, of a message from good node Ni with respect to real time.  The imprecision is 

due to the drift of the clocks with respect to real time, jitter, discretization error, temperature 

effects and differences in the lengths of the physical communication media.  These two 

parameters are assumed to be bounded such that D ≥ 1 and d ≥ 0 and both have values with units 

of nominal clock tick. 
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D d

t0+D t0+D+dt0

 
Figure 1. Event-response delay, D, and network imprecision, d. 

 

2.1.  Gamma (γγγγ ) 
 

The timeline of activities of a node is partitioned into a sequence of equal duration 

intervals from the time the node transitioned to a new state.  The duration of these intervals, 

denoted γ, is expressed in terms of D and d, constrained such that γ  ≥ (D + d), and measured by 

the local oscillator.  Unless stated otherwise, all time-dependent parameters of this protocol are 

measured locally and expressed as functions of γ.  The time-driven activities of a node take place 

at equal intervals measured by the local oscillator since the node entered a new state.  In contrast, 

event-driven activities are independent of γ  and, thus, take place immediately. 

3.  Protocol Description 

 

The system is in the steady state when it is stabilized.  In order to achieve stabilization, 

the nodes communicate by exchanging a Sync message.  A Sync message is transmitted either as 

a result of a resynchronization timeout, or when a node determines that sufficient number of 

other nodes have engaged in the resynchronization process. 

 

Three fundamental parameters characterize the self-stabilization protocol presented 

here, namely K, D, and d.  The maximum number of faulty nodes, F, the minimum number of 

good nodes, G, the γ intervals, and the remaining parameters that are subsequently presented are 

derived parameters based on the fundamental parameters.   

 

3.1. Message Validity 
 

Only one message is required for the operation of the protocol.  Receiving a Sync 

message is indicative of its validity in the value domain.  The protocol performs  as intended 

when the timing requirements of the received messages from all good nodes at all other good 

nodes are satisfied.  The time interval between any two consecutive Sync messages from a node 

is denoted ∆SS, and the shortest such interval for a good node is denoted ∆SS,min.  The following 

definitions apply at the receiving nodes. 

 

• A Sync message from a given source is valid if it arrives at or after ∆SS,min of an 

immediately preceding Sync message that is valid in the value domain. 

• While in the Maintain state, a Sync message from a given source remains valid for the 

duration of that state. 

• While in the Restore state, a Sync message from a given source remains valid for the 

duration of one γ. 
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3.2.  The Monitor 
 

The messages to be delivered to the destination nodes are deposited on communication 

channels.  A node consists of a state machine and a set of monitors.  To assess the behavior of 

other nodes, a node employs (K-1) monitors, with one monitor for each source of incoming 

messages, as shown in Figure 2.  A node neither uses nor monitors its own messages.  The 

distributed observation of other nodes localizes error detection of incoming messages to their 

corresponding monitors, and allows for modularization and distribution of the self-stabilization 

protocol process within a node.  A monitor keeps track of the activities of its corresponding 

source node.  Specifically, a monitor reads, evaluates, time-stamps, validates, and stores the last 

message it receives from that node.  A monitor maintains a logical timer, MessageTimer, by 

incrementing it once per local clock tick.  This timer is reset upon receiving a Sync message.  A 

monitor also disposes retained valid messages as indicated by the protocol (Sections 4). 

 
 Node i 

State 

Machine

From Nk

From Ni+1

From N1

To other nodes

Mi+1

Mk

From Ni-1
Mi-1

M1

 
 

Figure 2.  The i
th

 node, Ni, with its monitors and state machine. 

 

 

3.3.  The State Machine 
 

The assessment results of the monitored nodes are utilized by the node in the self-

stabilization process.  The state machine has two states, Restore (R) and Maintain (M), that 

reflect the current state of the node in the system as shown in Figure 3.  The state machine 

triggers a Sync message broadcast when it transitions from the Restore state to the Maintain 

state.  The state machine describes the behavior of the node, Ni, utilizing assessment results from 

its monitors, M1 .. Mi-1, Mi+1 .. MK as shown in Figure 2, where Mj is the monitor for the 

corresponding node Nj.  In addition to the behavior of its corresponding source node, a monitor’s 

internal status is influenced by the current state of the node’s state machine.  When the state 

machine transitions to the Restore state, the monitors update their internal status as appropriate 

(Section 3.4). 
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Maintain
Sync

Restore

 
 

Figure 3.  The node state machine. 

 

The transitory conditions enable the node to migrate from the Restore state to the 

Maintain state.  Although during the self-stabilization process a node may transition from the 

Restore state to the Maintain state upon a timeout, during steady state such a timeout is 

indicative of an abnormal situation.  The transitory conditions are defined with respect to the 

steady state where such timeouts do not occur.  The transitory delay is the length of time a node 

stays in the Restore state.  The minimum required duration for the transitory delay is denoted by 

TDmin, and the maximum duration by TDmax.  TDmin is a derived parameter and a function of F.  

For the fully connected topology considered here, the transitory conditions are defined as 

follows. 

 

1. The node has remained in the Restore state for at least TDmin, where 

TDmin = 2, for F = 0, or 

TDmin = 2F, for F > 0, and  

2. One γ  has passed since the arrival of the last valid Sync message. 

 

The maximum duration of the transitory delay, denoted TDmax, after meeting the TDmin 

requirement depends on the number of additional valid Sync messages received and the drift rate 

ρ.  The upper bound for TDmax during steady state will be determined later in this report. 

 

In the Restore state, the node will either meet the transitory conditions and transition to 

the Maintain state, or remain in the Restore state for a predetermined maximum duration until it 

times out and then transitions to the Maintain state.  In the Maintain state, a node will either 

transition to the Restore state when at least TR other nodes have transitioned out of the Maintain 

state as indicated by the reception of at least TR valid Sync messages, or remain in the Maintain 

state for a predetermined maximum duration until it times out and transitions to the Restore state.  

The derived parameter TR is defined as TR = F + 1 and is used as a threshold in conjunction with 

the Sync messages. 

 

In Figure 4 the transitions of a good node to the Restore state and from the Restore state 

to the Maintain state (during steady state) are depicted along a timeline of node activities.  A 

Sync message is transmitted as the node transitions from the Maintain state to the Restore state.  

Activities of the StateTimer and LocalTimer of the node as it transitions between different states 

are also depicted in this figure. 
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∆Precision/γ

time

γ γ < γ

Maintain

Restore

LocalTimer

StateTimer

Outgoing

Message

Sync Sync

 
 

Figure 4.  Activities of a good node during steady state. 

 

The clocks need to be periodically synchronized due to their inherent drift with respect to 

each other.  The periodic synchronization during steady state is referred to as the 

resynchronization process, whereby all good nodes transition to the Restore state and then 

synchronously to the Maintain state.  The resynchronization process begins when the first good 

node transitions to the Restore state and ends after the last good node transitions to the Maintain 

state.  An upper bound on the duration of the resynchronization process will be determined later 

in this report. 

 

The synchronization period during steady state, denoted P, is defined as the largest time 

interval between two consecutive resets of the LocalTimer by a good node.  The synchronization 

period depends on the maximum duration of both states of the state machine.  The maximum 

duration for the Restore state is denoted by PR, and the maximum duration for the Maintain state 

is denoted by PM, where PR and PM are expressed in terms of γ.  The length of time that a good 

node stays in the Restore state is denoted by LR.  During steady state LR is always less than PR.  

The length of time a good node stays in the Maintain state is denoted by LM.  The 

synchronization period, P, is defined by P = PR + PM and is expressed in terms of γ.  The actual 

synchronization period, PActual, is the time interval (during steady state) between the last two 

consecutive resets of the LocalTimer of a good node, where PActual = LR + LM  < P. 

 

A node keeps track of time by incrementing its logical time clock StateTimer once every 

γ.  After the StateTimer reaches PR or PM, depending on the current state of the node, the node 

times out, resets the StateTimer, and transitions to the other state.  If the node was in the 

Maintain state, it transmits a new Sync message.  The current value of this timer reflects the 

duration of the current state of the node. 
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This protocol is expected to be used as the fundamental mechanism to bring and maintain 

a system within a known synchronization precision bound.  Therefore, the protocol has to 

properly filter out inherent oscillations in the StateTimer during the resynchronization process as 

depicted in Figure 4.  This is resolved by using the LocalTimer in the protocol.  The LocalTimer 

is intended to be used by higher level protocols and must be managed properly to provide the 

desired monotonically increasing value between adjustments.  The logical time clock LocalTimer 

is incremented once every local clock tick and is reset either when it reaches its maximum 

allowed value or when the node has transitioned to the Maintain state and remained in that state 

for ResetLocalTimerAt local clock ticks, where ResetLocalTimerAt is constrained by the 

following inequality: 

 

∆Precision /γ ≤ ResetLocalTimerAt ≤ PM - ∆Precision /γ    (1) 

 

The synchronization precision, denoted ∆∆∆∆Precision, is the guaranteed upper bound on the maximum 

separation between the LocalTimers of any two good nodes.  The ResetLocalTimerAt can be 

given any value in the range specified in inequality (1).   However, the value must be the same at 

all good nodes.  In this equality, the lower bound indicates when all good nodes have transitioned 

to the Maintain state and the upper bound indicates when the first node might transition out of 

the Maintain state.  We choose the earliest such value, ResetLocalTimerAt = ∆Precision /γ, to reset 

the LocalTimer of all good nodes.  Any value greater than ∆Precision /γ will prolong the 

convergence time. 

 

The LocalTimer is also used in assessing the state of the system in the resynchronization 

process and is bounded by P·γ.  During steady state, the value of LocalTimer is always less than 

P·γ. 

 

3.4.  Protocol Functions  
 

The functions used in the protocol are described in this section. 

 

The function InvalidSync() is used by the monitors.  This function determines whether a 

received Sync message is invalid.  When this function returns a true value, it indicates that an 

unexpected behavior by the corresponding source node has been detected. 

 

The function ConsumeMessage() is used by the monitors.  When the host node is in the 

Restore state, the monitor invalidates the stored Sync message after it has been kept for one γ. 

 

The Retry() function determines if at least TR other nodes have transitioned out of the 

Maintain state, where TR = F +1. When at least TR valid Sync messages from as many nodes have 

been received, this function returns a true value indicating that at least one good node has 

transitioned to the Restore state.  This function is used to transition from the Maintain state to the 

Restore state. 

 

The TransitoryConditionsMet() function determines proper timing of the transition from 

the Restore state to the Maintain state.  This function keeps track of the passage of time by 
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monitoring the StateTimer and determines if the node has been in the Restore state for at least 

TDmin.  It returns a true value when the transitory conditions are met. 

 

The TimeOutRestore() function asserts a timeout condition when the value of the 

StateTimer has reached PR in the Restore state.  Such timeout triggers the node to transition to 

the Maintain state. 

 

The TimeOutMaintain() function asserts a timeout condition when the value of the 

StateTimer has reached PM in the Maintain state.  Such timeout triggers the node to reengage in 

another round of the resynchronization process. 

 

In addition to the above functions, the state machine utilizes the TimeOutGammaTimer() 

function, which is used to regulate node activities at the γ boundaries.  It maintains a 

GammaTimer by incrementing it once per local clock tick.  Once the value of the GammaTimer 

reaches γ, it is reset and the function returns a true value. 

 

3.5.  Protocol Assumptions 
 

The protocol assumptions are as follows. 

1. The cause of transient faults has dissipated. 

2. At most F of the nodes remain faulty. 

3. All good nodes correctly execute the protocol. 

4. The source of a message is uniquely identifiable by the receivers. 

5. A message sent by a good node will be received and processed by all other good nodes 

within γ, where γ  ≥ (D + d). 

6. The initial values of the variables of a node can be set to arbitrary values within their 

corresponding range.  (In an implementation, it is expected that some local mechanism 

exists to enforce type consistency for all variables.) 

 

3.6.  The Self-Stabilizing Clock Synchronization Problem 
 

To simplify the presentation of this protocol, it is assumed that all time references are 

with respect to an initial real time t0, where t0 = 0 when the protocol assumptions are satisfied, 

and for all t > t0 the system operates within the protocol assumptions. 

 

We define the following symbols:  

• C denotes a bound on the maximum convergence time,  

• ∆LocalTimer(t), for real time t, is the maximum difference of values of the LocalTimers of 

any two good nodes, and  

• ∆Precision, the synchronization precision, is the guaranteed upper bound on ∆LocalTimer(t). 

 

The maximum difference in the value of LocalTimer for all pairs of good nodes at time t, 

∆LocalTimer(t), is determined by the following equation while accounting for the variations in the 

values of the LocalTimeri across all good nodes. 

∆LocalTimer(t) = min ((LocalTimermax(t) - LocalTimermin(t)),  

(LocalTimermax(t - r) - LocalTimermin(t -r))), 
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where, 

 r = ∆Precision /γ,  
LocalTimermin(x) = min (LocalTimeri(x)),  

LocalTimermax(x) = max (LocalTimeri(x)). 

 

There exist C and ∆Precision such that the following self-stabilization properties hold. 

1. Convergence:  ∆LocalTimer(C) ≤ ∆Precision  

2. Closure:  ∀ t ≥ C, ∆LocalTimer(t) ≤ ∆Precision 

3. Congruence: ∀ good nodes Ni and Nj, ∀ t ≥ C, LocalTimeri(t) = 0 �  

 Ni and Nj are in the Maintain state. 

 

The values of ∆SS,min, C, ∆Precision, and the maximum value for LocalTimer, P, are determined to 

be: 

∆SS,min = (TDmin·γ  + 1), 

C = (2PR + PM)·γ, 

∆Precision = (3F - 1)·γ  - D + ∆Drift, 

P = PR + PM,  

PM >> PR, 

 

where the amount of drift from the initial precision is given by 

∆Drift = ((1+ρ) - 1/(1+ρ)) P · γ. 

 

Note that since P > ½PR and the LocalTimer is reset after reaching P (worst case wraparound), a 

trivial solution is not possible. 
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4.  The Clock Synchronization Protocol 

 

The protocol presented in Figure 5 consists of a state machine and a set of monitors 

which execute once every local oscillator tick. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  The self-stabilization protocol. 

 

† In [Mal 2006A, 2006B, 2007, 2008], upon TimeOutRestore(), the node transmitted a Sync 

message and remained in the Restore state.  The modification introduced here simplifies the 

proof argument and does not change the properties of the protocol. 

Monitor: 

case (incoming message from the corresponding node) 

{Resync: 
if InvalidSync() then 

Invalidate the message 

else 

Validate and store the message. 

 

 Other:   
Do nothing. 

} // case 

 

ConsumeMessage() 

 

Node: 

case (state of the node) 

{Restore:  
if TimeOutRestore() then  

Reset StateTimer, 

Go to Maintain state, 
†
 

 

else  

if TransitoryConditionsMet() then 

Reset StateTimer, 

Go to Maintain state, 

 

else 

Stay in Restore state. 

 

 

 

 

Maintain:  
if TimeOutMaintain() or Retry() then 

Transmit Sync message, 

Reset StateTimer, 

Go to Restore state,  

 

elseif TimeOutGammaTimer() then 

if (StateTimer = ∆Precision /γ) 
Reset LocalTimer., 

Stay in Maintain state,  

 

else 

Stay in Maintain state. 

} // case  
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Semantics of the pseudo-code 

• Indentation is used to show a block of sequential statements. 

• ‘,’ is used to separate sequential statements. 

• ‘.’ is used to end a statement. 

• ‘.,’ is used to mark the end of a statement and at the same time to separate it from other 

sequential statements. 

 

5.  Proof 

 

The lemmas and theorems are presented in this section.  The proof approach is to show 

that a system of K ≥ 3F + 1 nodes asynchronously converges from any (un-stabilized) condition 

to a condition where all good nodes are in the Restore state and then synchronously transition to 

the Maintain state within a guaranteed initial precision (stabilized).  The system is then shown to 

remain within the timing bounds of the synchronization precision ∆Precision.  This idea is depicted 

in Figure 6. 

 

Any

State

Restore

State

Maintain

State

 
 

Figure 6.  The proof idea. 

 

To achieve this goal, first, a good node is shown to transition from the Restore state to the 

Maintain state and visa versa infinitely often.  Second, the analysis consists of three possible 

scenarios where none, some, or all good nodes are in the Maintain state.  Third, the good nodes 

are shown to transition to the Restore state after the elapse of some time and then synchronously 

to the Maintain state.  Finally, the system is shown to transition between these two states 

infinitely often while preserving the synchronization precision. 

 

Since the oscillator drift rate, ρ, does not play a significant role in the convergence 

process, it is omitted from the expressions regarding parameters, constants, equations, and the 

proofs of convergence.  However, ρ does affect the closure property and is included in 

expressions regarding ∆Precision.  Omission of ρ does not change the behavior of the protocol or 

the validity of the proofs.  The effect of ρ is later visited to show that its omission in the 

convergence process as well as the resynchronization process is justified. 

 

Throughout the proofs, the protocol assumptions apply and unless stated otherwise, all 

references to the Sync messages are with respect to valid Sync messages. 

 

A node behaves properly if it correctly executes the protocol. 
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Lemma MaintainWithinPR –  A good node in the Restore state transitions to the Maintain state 

within at most PR. 

 

Proof – It follows from the protocol that a node in the Restore state will transition to the 

Maintain state either after meeting the transitory conditions as expressed in function 

TransitoryConditionsMet(), or because of a resynchronization timeout, as expressed in function 

TimeOutRestore().  Therefore, a node transitions to the Maintain state within at most PR.         ♦ 

 

Lemma RestoreWithinPM –  A good node in the Maintain state transitions to the Restore state 

within at most PM. 

 

Proof –  It follows from the protocol that a node in the Maintain state will transition to the 

Restore state either because of a resynchronization timeout, as expressed in function 

TimeOutMaintain(), or when at least TR other nodes have transitioned out of the Maintain state, 

as expressed in function Retry().  Since the longest such time interval is bounded by the timeout, 

the node transitions to the Restore state and transmits a Sync message in at most PM.         ♦ 

 

Lemma ShortestRestore –  The minimum duration of the Restore state is TDmin·γ. 

 

Proof –  From the definition of the transitory conditions, a node has to remain in the Restore state 

for at least TDmin·γ.  It also follows that if no valid Sync messages arrive during last γ, the node 

will transition to the Maintain state at the end of this time interval.  Hence, the minimum 

duration of the Restore state is TDmin·γ.               ♦ 

 

Lemma DeltaSSmin – The minimum time interval between any two consecutive Sync messages 

from a good node is ∆SS,min = TDmin·γ  + 1 clock ticks. 

 

Proof – A node transmits a Sync message when it enters the Restore state.  The amount of time 

the node stays in the Maintain state is defined as ∆MR and depicted in Figure 7.  From Lemma 

ShortestRestore the minimum duration of the Restore state is TDmin·γ.  The time separation 

between any two consecutive Sync messages from a good node is given by ∆SS ≥ TDmin·γ  + ∆MR 

clock ticks.  Since the message processing time is non-zero, ∆MR ≥ 1 clock tick, and therefore, 

∆SS,min = TDmin·γ  + 1 clock ticks.               ♦ 

 

time

γ

Maintain

Restore

∆MR  
Figure 7.  Shortest Maintain state. 

 

All good nodes validate a Sync message from a good node if the time interval between 

consecutive messages, i.e., ∆SS,min, is not violated. By Lemma DeltaSSmin, consecutive Sync 

messages from a good node are always more than TDmin apart.  Therefore, a message transmitted 

by a good node after ∆SS,min clock ticks from a random start is guaranteed to be valid.  If a node is 

in the Restore state, from lemma MaintainWithinPR, it will transition to the Maintain state within 
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PR.  For now, let PR > 6F.  We will determine the minimum value for PR later in this report.  

Since PR is larger than ∆SS,min, after PR from a random start, all Sync messages from a good node 

are at least ∆SS,min apart and meet the timing requirements at the receiving good nodes.  

Therefore, the pre-convergence conditions are defined as: 

 

1. Time has elapsed for at least PR from a random start, i.e., t ≥ t0 +PR. 

2. All Sync messages from the good nodes are valid at the receiving good nodes (Lemma 

DeltaSSmin). 

 

Thus, for the following lemmas and theorems, the state of the system is considered after 

the pre-convergence conditions are met.  At this point, the system is in one of the following three 

states. 

 

1. None of the good nodes are in the Maintain state 

2. All good nodes are in the Maintain state 

3. Some of the good nodes are in the Maintain state 

 

The approach for the proof is depicted in Figure 8.  The system is shown to converge 

from any state and upon convergence maintain the closure property.  The figure is partitioned via 

two dashed lines into three regions.  The left region depicts the pre-convergence conditions and 

in conjunction with the middle region they depict the state of the system in the convergence 

process.  The right region depicts the system operating in steady state and maintaining the 

synchronization precision.  In this figure, the states All, Some, and None represent the three 

possible cases from a random start when the pre-convergence conditions are met.  The 

propositions associated with each edge indicate that a transition from one state to another may 

eventually take place. 

 

 
 

ClosureAllMaintain,

LocalTimerWithinPrecision

Converge

None

Maintain

ConvergeSomeMaintain

ConvergeAllMaintain

ClosureConvergence

PR PM + PR PActual

Pre-Convergence

Some

All

NoneAny

State

∆Precision

 
 

Figure 8.  Approach for proof. 
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Theorem ConvergeNoneMaintain –  A system of K ≥ 3F + 1 nodes satisfying the pre-

convergence conditions, where none of the good nodes are in the Maintain state and for all good 

nodes, StateTimer(t) < PR - 3F - 1, will always converge to within an initial precision. 

 

Proof – Since none of the good nodes are in the Maintain state, they are in the Restore state 

because they have not met the transitory conditions.  We consider the system at the point of 

transmission of a Sync message by the last good node in the Maintain state.  After the last good 

node transitions to the Restore state, transitioning of the good nodes back to the Maintain state 

can further be delayed only upon receiving valid Sync messages from the faulty nodes.  Since 

there are up to F faulty nodes in the system and if their valid Sync messages are γ  apart from 

each other (worst case due to transitory condition 2), all good nodes will transition to the 

Maintain state within at most TDmin + F = 3F (assuming F > 0) of the last good node’s Sync 

message.  Since all good nodes are in the Restore state, after receiving F valid Sync messages 

from as many faulty nodes, any subsequent Sync messages from the faulty nodes will arrive 

within TDmin and, thus, will be deemed invalid.  As a result, for all good nodes, StateTimer(t) < 

PR - 1 and they will transition to the Maintain state within the next γ without timing out. 

 
 

NLM

NEM

Maintain

Restore

Maintain
Restore

D

LM

EM

γ

γ γ γ

γ

γ γ

γ

tEM

tLM

 
 

Figure 9.  EM and LM for all F ≥ 0. 

 

The earliest a good node transitions to the Maintain state (EM) is at tEM after it has 

remained in the Restore state for the minimum duration of the transitory delay (transitory 

condition 1) and one γ  after receiving the last Sync message from the last good node that 

transitioned to the Restore state (transitory condition 2).  Since ∆SS > TDmin·γ, consecutive valid 

Sync messages from a faulty node are more than TDmin apart.  Therefore, locally there will 

always be a gap of one γ  interval without a valid Sync message.  As a result, a good node will 

meet the transitory conditions and transition to the Maintain state. 

 

As depicted in Figure 9, since the earliest the last Sync message can arrive at NEM node is 

D ticks after the transmission of the last valid Sync message, therefore, EM  = D + γ.  The latest a 

good node transitions to the Maintain state (LM) is at tLM after remaining in the Restore state for 

TDmin + F, i.e., after receiving valid Sync messages from all faulty nodes.  In this case, the tEM 

happens at the time the last good node transmits the Sync message, i.e., at tLM since its transition 

to the Restore state.  So, LM = (TDmin + F) ·γ  = 3F·γ.  Thus, the time difference between the NLM 

and NEM is given by: 

StateTimerLM(t) - StateTimerEM(t) = ∆LMEM. 

∆LMEM = LM - EM = 3F·γ  - (D + γ) = (3F - 1)·γ  - D. 
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Therefore, such a system always converges to within the initial precision of ∆LMEM.         ♦ 

 

The synchronization precision ∆Precision is the maximum time difference between the 

LocalTimer of any two good nodes when the system is synchronized.  It is the guaranteed 

precision of the protocol.  From theorem ConvergeNoneMaintain, the initial guaranteed 

precision after the resynchronization is the maximum value of ∆LMEM.  After the initial synchrony 

the LocalTimers of the good nodes will deviate from the initial precision due to the drift rate of 

the oscillators.  This phenomenon is depicted in Figure 10. 

 

 

∆LMEM ∆Precision

0     P

0         P

Fast

Slow

 
 

Figure 10.  The synchronization precision. 

 

The guaranteed synchronization precision ∆Precision after an elapsed time of P is bounded 

by, 

∆Precision = ∆LMEM + ∆Drift,  

 

where, the amount of drift from the initial precision is given by 

∆Drift = ((1+ρ) - 1/(1+ρ)) P · γ,  

 

where, P = PR + PM.  The factors (1+ρ) and 1/(1+ρ) are bounds for the drift of the slowest and 

fastest nodes in the system, respectively.  Therefore, 

∆Precision = (3F - 1)·γ  - D  + ∆Drift. 

 

Theorem ConvergeAllMaintain – A system of K ≥ 3F + 1 nodes satisfying the pre-convergence 

conditions, where all good nodes are in the Maintain state, will always converge. 

 

Proof – Since no assumptions are made about the initial relative timing of the good nodes, 

∆LocalTimer(t) > ∆Precision is possible.  It follows from the protocol and lemma RestoreWithinPM that 

a good node will transition to the Restore state and transmit a Sync message within PM.  A good 

node in the Maintain state keeps track of other nodes that have transitioned to the Restore state.  

We consider the system after (TR - 1) good nodes have transitioned to the Restore state.  There 

are two possible scenarios.  In the first scenario, the first (TR - 1) good nodes that transitioned to 

the Restore state remain in the Restore state until the TR
th

 good node transitions to the Restore 

state.  In the second scenario, some (or all) of the first (TR - 1) good nodes that had transitioned 

to the Restore state remain in the Restore state while others (or all) transition back to the 

Maintain state before the TR
th

 good node transitions to the Restore state.  In either case, after the 

TR
th

 good node transitions to the Restore state, the remaining good nodes in the Maintain state, at 

least F, receive TR valid Sync messages from as many good nodes, and transmit Sync messages 

as they transition to the Restore state within the next γ. 
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At this point, for the first (TR - 1) good nodes that remained in the Restore state, 

StateTimer(t) ≤ (TDmin - 1) + F + TR = 4F < PR - F - 1.  The longest duration is 4F > TDmin, thus, 

such a node has met the first of the transitory conditions.  Those good nodes of the first (TR - 1) 

good nodes that had transitioned to the Restore state and then back to the Maintain state will now 

receive at least (TR + 1) Sync messages within 2γ  from as many good nodes, will transmit Sync 

messages, and transition to the Restore state within the next γ.  These nodes are within 2γ  of the 

recently transitioned good nodes, in particular the TR
th

 good node, with StateTimer(t) ≤ 2 < PR - 

3F - 1, and none of them has met the transitory conditions.  Therefore, the system consists of all 

good nodes in the Restore state with various values for their StateTimers.  At one end of the 

spectrum, some good nodes have not met the transitory conditions with StateTimer(t) < PR - 3F - 

1.  In a similar argument as in theorem ConvergeNoneMaintain, since there are up to F faulty 

nodes in the system and if the valid Sync messages are γ  apart from each other (worst case due 

to transitory condition 2), these good nodes will transition to the Maintain state within at most 

TDmin + F = 3F of the last good node’s Sync message without timing out.  Therefore, LM = 

(TDmin + F) ·γ  = 3F·γ. 

 

At the other end of the spectrum, some good nodes have met the first of the transitory 

conditions with StateTimer(t) < PR - F - 1.  Since there are up to F faulty nodes in the system and 

if the valid Sync messages are γ  apart from each other, these good nodes will transition to the 

Maintain state within the next F of the last good node’s Sync message without timing out. 

 

In a similar argument as in theorem ConvergeNoneMaintain, EM = D + γ, and the time 

difference between the NLM and NEM is given by 

StateTimerLM(t) - StateTimerEM(t) = ∆LMEM. 

∆LMEM = LM - EM = 3F·γ  - (D + γ) = (3F - 1)·γ  - D. 

 

Therefore, such a system always converges to within the initial precision of ∆LMEM.         ♦ 

 

The theorem ConvergeSomeMaintain does not make any assumptions about the initial 

values of the StateTimers of the good nodes.  Therefore, its proof encompasses the proof of 

theorem ConvergeNoneMaintain.  The proof is more complex and we postpone it until 

subsequent sections where we first address the special cases of F = 1 and F = 0, and then discuss 

the general case of F > 1.  In the meantime, we continue the proof with lemmas and theorems 

that apply to the general case of F > 0, 0 ≤ ρ << 1, and d ≥ 0. 

 

Lemma PrecisionLargerThanTDmin –  For F > 1, ∆Precision > TDmin·γ. 

 

Proof –   

∆Precision > TDmin·γ  

(3F - 1)·γ  - D + ∆Drift > 2F·γ  

(F - 1)·γ  + ∆Drift > D. 

 

Since γ  > D, even if ∆Drift = 0, the above inequality reduces to 

(F - 1)·γ  > D. 
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Thus, ∆Precision > TDmin·γ.                ♦ 

 

Corollary PrecisionTDminF1 –  For F = 1, ∆Precision > TDmin·γ  if ∆Drift > D. 

 

Proof –  

∆Precision > TDmin·γ  

(3F - 1)·γ  - D + ∆Drift > 2F·γ  

(F - 1)·γ  + ∆Drift > D 

∆Drift > D.                  ♦ 

 

It follows from Lemma PrecisionLargerThanTDmin and Corollary PrecisionTDminF1 

that depending on the amount of drift ∆Drift, ∆Precision can potentially exceed TDmin, i.e., ∆Precision > 

TDmin·γ, and this in turn can result in a disruption in the normal operation of the system.  In 

particular and as depicted in Figure 10, in a synchronized system of K ≥ 3F + 1 nodes with an 

initial precision of ∆LMEM, after elapse of some time, the nodes can drift apart such that ∆Precision > 

∆LMEM.  Two such cases are depicted in Figures 11 and 12, where the corresponding activities of 

the StateTimer and LocalTimer of NFast are also depicted during the resynchronization process.  

In Figure 11, the fast nodes, NFast, and the slow nodes, NSlow, are less than ∆Precision apart, i.e., 

∆LocalTimer(t) < ∆Precision.  In Figure 12, NFast and NSlow are ∆Precision apart from each other, i.e., 

∆LocalTimer(t) = ∆Precision.   

 

If NFast consists of at least TR good nodes, then as these nodes transition to the Restore 

state, the remaining good nodes, NSlow, will follow before timing out as depicted in Figure 11.  

On the other hand, as depicted in Figure 12, if NFast consists of up to (TR - 1) good nodes, as they 

transition to the Restore state, the remaining good nodes, NSlow, might not follow.  In the 

meantime, assuming ∆Precision > TDmin·γ   and in the absence of faulty messages, the NFast nodes 

will meet the transitory conditions and transition to the Maintain state.  As the NSlow nodes 

transition to the Restore state, the NFast nodes will follow and once again transition to the Restore 

state.  It follows from theorem ConvergeNoneMaintain that such a system always converges.  

Since a minority of good nodes temporarily diverge but then converge with the rest of the good 

nodes, this phenomenon is referred to as momentary-divergence. 

 

During steady state and resynchronization process, in the absence of a momentary-

divergence, the StateTimer oscillates twice as depicted in Figure 11.  However, in the presence of 

a momentary-divergence, the StateTimer oscillates 4 times as depicted in Figure 12.  Proper 

resetting of the LocalTimer during steady state should guarantee that the LocalTimer remains 

immune to the StateTimer oscillations. 
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Figure 11.  Activities of NFast during the resynchronization process, ∆LocalTimer(t) < ∆Precision. 
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Figure 12.  Activities of NFast during the resynchronization process, ∆LocalTimer(t) = ∆Precision. 
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Theorem ClosureAllMaintain –  A system of K ≥ 3F + 1 nodes, where all good nodes have 

converged such that ∆LocalTimer(t) ≤ ∆Precision and all are in the Maintain state, shall remain within 

the synchronization precision ∆Precision. 

 

Proof – It follows from the protocol and lemma RestoreWithinPM that a good node will transition 

to the Restore state within PM.  Since all good nodes are in the Maintain state, as they transmit 

Sync messages, their transitions to the Restore state are recorded by other good nodes.  Since the 

system is synchronized, the good nodes will transition to the Restore state within ∆Precision of each 

other.  The proof proceeds in the following two parts. 

 

If ∆Precision < TDmin·γ, all good nodes will transition to the Restore state before any of them 

transitions back to the Maintain state.  In this case, for all good nodes, StateTimer(t) < PR - 3F - 

1, and none of them has met the transitory conditions.  It follows from theorem 

ConvergeNoneMaintain that such a system always converges to within the initial precision of 

∆LMEM. 

 

On the other hand, if ∆Precision ≥ TDmin·γ, it follows from Lemma 

PrecisionLargerThanTDmin that some good nodes can potentially transition to the Restore state 

and then to the Maintain state before all good nodes transition to the Restore state.  In other 

words, the system can experience a momentary-divergence.  Similar to the proof of theorem 

ConvergeAllMaintain, we consider the system after (TR - 1) good nodes have transitioned to the 

Restore state.  There are two possible scenarios.  In the first scenario, the first (TR - 1) good 

nodes that transitioned to the Restore state remain in the Restore state until the TR
th

 good node 

transitions to the Restore state.  In the second scenario, some (or all) of the first (TR - 1) good 

nodes that had transitioned to the Restore state remain in the Restore state while others (or all) 

transition back to the Maintain state before the TR
th

 good node transitions to the Restore state.  In 

either case, after the TR
th

 good node transitions to the Restore state, the remaining good nodes in 

the Maintain state, at least F, receive TR valid Sync messages from as many good nodes, and 

transmit Sync messages as they transition to the Restore state within the next γ. 

 

At this point, for the first (TR - 1) good nodes that remained in the Restore state, 

StateTimer(t) ≤ (TDmin - 1) + F + TR = 4F < PR - F - 1.  The longest duration is 4F > TDmin, thus, 

such a node has met the first of the transitory conditions.  Those good nodes of the first (TR - 1) 

good nodes that had transitioned to the Restore state and then back to the Maintain state will now 

receive at least (TR + 1) Sync messages within 2γ  from as many good nodes, will transmit Sync 

messages, and transition to the Restore state within the next γ.  These nodes are within 2γ  of the 

recently transitioned good nodes, in particular the TR
th

 good node, with StateTimer(t) ≤ 2 < PR - 

3F - 1, and none of them has met the transitory conditions.  Therefore, the system consists of all 

good nodes in the Restore state with various values for their StateTimers.  At one end of the 

spectrum, some good nodes have not met the transitory conditions with StateTimer(t) < PR - 3F - 

1.  In a similar argument as in theorem ConvergeNoneMaintain, since there are up to F faulty 

nodes in the system and if the valid Sync messages are γ  apart from each other (worst case due 

to transitory condition 2), these good nodes will transition to the Maintain state within at most 

TDmin + F = 3F of the last good node’s Sync message without timing out.  Therefore, LM = 

(TDmin + F) ·γ  = 3F·γ. 
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At the other end of the spectrum, some good nodes have met the first of the transitory 

conditions with StateTimer(t) < PR - F - 1.  Since there are up to F faulty nodes in the system and 

if the valid Sync messages are γ  apart from each other, these good nodes will transition to the 

Maintain state within the next F of the last good node’s Sync message without timing out. 

 

Once again, in a similar argument as in theorem ConvergeNoneMaintain, EM = D + γ, 

and the time difference between the NLM and NEM is given by 

StateTimerLM(t) - StateTimerEM(t) = ∆LMEM. 

∆LMEM = LM - EM = 3F·γ  - (D + γ) = (3F - 1)·γ  - D. 

 

Therefore, such a system always converges to within the initial precision of ∆LMEM.         ♦ 

 

Lemma StateTimerLessThanPrecision – During the resynchronization process, in steady state, 

the maximum value of the StateTimer is always less than the synchronization precision ∆Precision. 

 

Proof – From the protocol, the StateTimer is reset when the node transitions to either the Restore 

state or the Maintain state.  It follows from the proof of theorem ClosureAllMaintain that during 

momentary-divergence some good nodes transition to the Restore state and then back to the 

Maintain state before others transition to the Restore state.  At time t when the last good node 

has transitioned to the Restore state, the value of the StateTimer of earlier nodes that are in the 

Maintain state does not exceed ∆Precision.  For these good nodes, StateTimer(t)·γ  = ∆Precision - 

TDmin·γ  + (D + d). 

 

Since γ  ≥ D + d,  

StateTimer(t)·γ  ≤ ∆Precision - TDmin·γ  + γ, 

StateTimer(t)·γ  ≤ ∆Precision - (2F - 1)·γ, 

 

and for F > 0,  

StateTimer(t)·γ  < ∆Precision.                ♦ 

 

Theorem Congruence –  For all good nodes Ni and Nj and for t ≥ C, LocalTimeri(t) = 0 implies 

that Ni and Nj are in the Maintain state. 

 

Proof – From theorem ConvergeNoneMaintain it follows that at the point of convergence when 

all good nodes have just transitioned to the Maintain state, the initial precision is ∆LMEM.  It 

follows from Lemma StateTimerLessThanPrecision that, during the resynchronization process, 

in steady state, even when the system experiences a momentary-divergence, StateTimer(t)·γ  < 

∆Precision for all good nodes.  Therefore, in steady state, StateTimer can reach ∆Precision /γ only 

when the node has transitioned and remained in the Maintain state.  Thus, when StateTimerEM(t) 

= ∆Precision /γ, i.e., when NEM resets its LocalTimer, NLM, and hence, all good nodes are in the 

Maintain state.                  ♦ 

 

Lemma MaxTransitoryDelay – During steady state, the maximum time a good node stays in the 

Restore state is given by TDmax = ∆Precision + (F + 2)·γ. 
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Proof – Let a good node, N1, be the first to transition to the Restore state.  Let N1 remain in that 

state until all other good nodes transition to the Restore state.  In a synchronized system, the 

maximum duration of this time is ∆Precision.  After the last good node transitions to the Restore 

state, N1 receives another valid Sync message and is forced to remain in the Restore state at the 

next γ, according to the transitory conditions.  At this point, let this node remain in the Restore 

state due to receiving additional valid Sync messages from all faulty nodes, one per γ.  At the 

next γ, following the last valid Sync message from the last faulty node, no valid Sync messages 

will be received, there will be a gap of one γ  interval without a valid Sync message, and the node 

will transition to the Maintain state.  Therefore, during steady state, the maximum duration of the 

transitory delay, TDmax, is given by TDmax = ∆Precision + γ  + F·γ  + γ  = ∆Precision + (F + 2)·γ.        ♦ 

 

This protocol is intended to be used as the fundamental mechanism in bringing and 

maintaining a system within a known time synchronization precision.  In particular, the 

LocalTimer is intended to be used by higher level mechanisms.  Therefore, proper management 

of the LocalTimer is one of the guaranteed services provided by the protocol.  The logical time 

clock LocalTimer is incremented once every local clock tick and is reset either when it reaches 

its maximum allowed value or when the node has transitioned to the Maintain state and remained 

in that state for ResetLocalTimerAt local clock ticks, where ResetLocalTimerAt is constrained by 

inequality (1) as described in Section 3.3.  Therefore, PM and PR have to be sufficiently large to 

allow time to reset the LocalTimer after the node transitions to the Maintain state.  Specifically, 

it follows from Figure 12 and Lemma MaxTransitoryDelay that PR > (TDmax  + ∆Precision ) /γ. 
 

PR > (TDmax  + ∆Precision ) /γ 
PR > 2 ∆Precision /γ + (F + 2) 

PR > 2 (3F - 1) + 2 (∆Drift - D) /γ + (F + 2) 

PR > 7F + 1 + 2 (∆Drift - D) /γ .        (2) 

 

If 0 ≤ ∆Drift < D,  

PR > 7F - 1. 

 

If ∆Drift = D,  

PR > 7F + 1. 

 

If 2D > ∆Drift > D,  

PR > 7F + 3. 

 

In general, for all F > 0 and K ≥ 3F + 1, and to prevent early timeout, PR is constrained 

by (2).  The maximum duration for the Maintain state, PM, is typically much larger than PR.  

Thus, PM is constrained by PM ≥ PR. 

 

Lemma MaxResyncDuration – During steady state, the maximum resynchronization duration, 

MRD, is given by MRD = 6F·γ  + ∆Drift - D. 

 

Proof – It follows from the first part of theorem ClosureAllMaintain that the time interval from 

when the first good node transitions to the Restore state until all good nodes transition to the 



 

22 

Maintain state is given by resynchronization duration (RD), RD = ∆Precision + transmission delay 

of last message + LM, where LM = 3F·γ.  So, 

 

∆Precision + D + LM  ≤ RD ≤ ∆Precision + γ  + LM  

((3F - 1)·γ  - D + ∆Drift) + D + 3F·γ  ≤ RD ≤ ((3F - 1)·γ  - D + ∆Drift) + γ  + 3F·γ  

(6F - 1)·γ  + ∆Drift ≤ RD ≤ 6F·γ  + ∆Drift - D. 

 

Therefore, the maximum value is  

MRD = 6F·γ  + ∆Drift - D.                ♦ 

 

If the duration of the resynchronization process is small relative to the P, the oscillator 

drift rate, ρ, does not play a significant role in the resynchronization process.  It follows from 

Lemma MaxResyncDuration that MRD < PR for all F ≥ 0 and ρ ≥ 0.  Since typically PM >> PR 

and MRD << P, ρ’s omission from the expressions regarding parameters, constants, and 

equations in the proof of the resynchronization process is justified. 

 

Theorem LocalTimerWithinPrecision – During steady state, in a system of K ≥ 3F + 1 nodes, 

∆LocalTimer(t) ≤ ∆Precision. 

 

Proof – It follows from Lemma StateTimerLessThanPrecision that, during the resynchronization 

process, in steady state, even when the system experiences a momentary-divergence, the 

StateTimer never reaches ∆Precision /γ and thus the LocalTimer will not be reset during this 

process.  On the other hand, it follows from theorem ClosureAllMaintain that once synchronized 

the good nodes will remain within ∆Precision of each other.  Thus, during steady state, ∆LocalTimer(t) 

≤ ∆Precision.                  ♦ 

 

Lemma SyncWithinP –  A  good  node  transmits  a   Sync   message  within at  most  (PR + PM). 

 

Proof – From lemma MaintainWithinPR, a node in the Restore state will time out within PR.  So, 

if a node transitions from the Restore state to the Maintain state before it times out, it had 

remained in the Restore state for at most (PR - 1).  From lemma RestoreWithinPM, the node will 

time out within PM.  It follows from the protocol that a good node transmits a Sync message upon 

entering the Restore state.  Therefore, within at most PR + PM = P a node transmits a Sync 

message.                  ♦ 

 

The proof proceeds with the following three parts: F = 1, F = 0, and F > 1.   The cases of 

F = 1 and F = 0 are special cases, and the case of F > 1 is the general case. 

 

5.1.  Proof For F = 1 

 

The remainder of the proof for the case of F = 1 is presented in this section.  We first 

present the proof for the ideal case where the logical timers of the good nodes are in-phase with 

respect to each other and the network imprecision and the oscillator drift are zero, i.e., d = 0 and 

∆Drift = 0.  We then expand the proof to a realizable system in subsequent subsections. 
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5.1.1.  In-Phase Case 
 

In this scenario, the local oscillators and logical timers of all good nodes are assumed to 

be in-phase with each other, and the network imprecision and the drift are zero.  Since ∆Drift = 0, 

local oscillators and logical timers remain in-phase with each other.  This idea is depicted in 

Figure 13 where γ  = 2. 
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Figure 13.  Ideal case, transitions of logical timers are in-phase. 

 

Theorem ConvergeSomeMaintainF1K4 – A system of F=1 and K=3F+1=4 nodes satisfying the 

pre-convergence conditions with some of the good nodes in the Maintain state will always 

converge. 

 

Proof – The good nodes in the Restore state are there because they have not met the transitory 

conditions.  There are three possible scenarios for the system. 

 

Case 1 - All good nodes in the Restore state transition to the Maintain state before the nodes in 

the Maintain state transition to the Restore state.  It follows from theorem ConvergeAllMaintain 

that such a system always converges to within ∆LMEM. 

 

Case 2 - All good nodes in the Maintain state transition to the Restore state at least (3F - 1)·γ 

before the nodes in the Restore state transition to the Maintain state.  It follows from theorem 

ConvergeNoneMaintain that such a system always converges. 

 

Case 3 – Some good nodes transition in and out of the Restore state while others transition in and 

out of the Maintain state.  This scenario encompasses those that are not covered in case 2 above.  

Since there are three good nodes, let’s consider the system where N1 transitions to the Restore 

state while N2 transitions to the Maintain state.  Therefore, N2 and N3 receive a valid Sync 

message within the next γ.  Now, let’s consider the following two sub-cases. 

 

Case 3.1 – N3 is in the Maintain state.  After either N2 or N3 transitions to the Restore state, the 

other node receives a total of TR valid Sync messages and transitions to the Restore state.  Recall 

that receiving a valid Sync message prevents a node from transitioning to the Maintain state 

(transitory condition 2).  In the mean time, if N1 had remained in the Restore state due to not 

meeting the transitory conditions, then for all good nodes, StateTimer(t) < PR - 3F - 1, and it 

follows from theorem ConvergeNoneMaintain that such a system always converges.  If N1 had 

transitioned to the Maintain state before the Sync message from N2 and N3 arrive, N1 receives TR 

valid Sync messages and returns to the Restore state.  Note that the transitory conditions prevent 
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N1 from transitioning to the Maintain state while N2 and N3 transition to the Restore state.  Once 

again, at this point and for all good nodes, StateTimer(t) < PR - 3F - 1, and it follows from 

theorem ConvergeNoneMaintain that such a system always converges. 

 

Table 1.  Activities of a system of K = 4 nodes and F = 1. 

 

Time Node 1 Node 2 Node 3 

t0+PR -2
  ?

????
  � 0

----
, Restore

 
 ?

----
  � 0

----
, Maintain  (PR - 2)

???? 

t0+PR -1  1
---- 

 1
x--- 

 (PR - 1)
x--- 

t0+PR 
  2

---x 
 2

x--x
 � 0

----
, Restore  PR

----
 � 0

----
, Restore 

 Due to TimeOutRestore()
 

t0+PR+1
  3

-x-- 
 1

----
  1

-x-x
   � 0

----
, Restore

 

t0+PR+2
  4

--x- 
 2

--x-
  

 
 1

----
   

 

t0+PR+3
  5

---x 
 3

----
  � 0

----
, Maintain  2

---x
 
 

t0+PR+4
  6

---- 
� 0

----
, Maintain

 
 1

----
  3

----
    � 0

----
, Maintain

 

t0+PR+5
  1

---x 
 2

---- 
 1

---- 

 

Case 3.2 – N3 is in the Restore state.  For this scenario, the system is analyzed at about PR from t0 

on the time axis (see pre-convergence conditions) when N3 is about to time out.  The node 

activities are described with the help of the above table. 

 

Table 1 is an execution trace of a system with parameters K = 4, F = 1, with no clock 

drift, ∆Drift = 0.  Nodes 1, 2, and 3 are good nodes, and node 4 is the faulty one.  The table has 

four columns, one for time reference and one for each good node.  A row depicts activities of all 

good nodes at the corresponding time.  Cell contents for the node columns consist of a number 

(corresponding to the value of its StateTimer) representing the internal status of a node with the 

stored messages as superscripts, and a description of the possible action by the node.  Symbol ‘x’ 

represents a received valid Sync message and symbol ‘–’ represents no valid Sync message 

received from the corresponding node.  The position of superscripts, 1 thru 4, corresponds to the 

source of the message.   

 

At (t0+PR -2) in the table, N1 transitions to the Restore state while N2 transitions to the 

Maintain state and N3 is in the Restore state.  There are two possible cases regarding N3.  If N3 

times out within the next γ  it will transition to the Maintain state and receive and retain the Sync 

message from N1.  It follows from Case 3.1 above that this system always converges.  This is a 

trivial case and not shown in the above table. 

 

If N3 times out after consuming the Sync message from N1, i.e., at (t0+PR) as listed in the 

above table, in order to keep N1 in the Restore state and prevent the system from synchronizing, 

N1 has to receive a new valid Sync message.  If N1 receives a valid Sync message from another 

good node, it will have to be from N3 and it follows from Case 3.1 above that this system always 

converges.  So, let N1 receive a valid Sync message from the faulty node.  At the next γ, i.e., at 

(t0+PR+1), N1 must receive a message from another good node.  Let that message come from N2, 

i.e., N2 transitions to the Restore state due to receiving a message from the faulty node at (t0+PR).  

Therefore, at (t0+PR+1), N3 and N1 will have received one new valid Sync message and N1 will 

have to stay in the Restore state for the next γ.  To keep N1 in the Restore state and prevent the 
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system from synchronizing, N1 has to receive a new valid Sync message every γ.  To meet the 

∆SS,min timing requirement, the next message has to be from a good node, thus at (t0+PR+1), N3 

has to transition to the Restore state.  In this case all good nodes will be in the Restore state with 

StateTimer at two extremes; StateTimer(t) ≤ 3 < (PR - 1) and N1 and N2 have met the first of 

transitory conditions, and StateTimer(t) = 0 < (PR - 3F - 1) and N3 has not met the first of the 

transitory conditions.  In a similar argument as in the proof of theorems ConvergeNoneMaintain 

and ConvergeAllMaintain these nodes will not time out and such a system always converges to 

within the initial precision of ∆LMEM.  Otherwise, at (t0+PR+1), N1 and N2 will transition to the 

Maintain state and the system consists of TR good nodes in the Maintain state.  It follows from 

Case 3.1 above that this system always converges.              ♦ 

 

Theorem ConvergeSomeMaintainF1KGT4 – A system of F=1 and K >3F+1 nodes, satisfying 

the pre-convergence conditions with some good nodes in the Maintain state, will always 

converge. 

 

This case is a generalization of theorem ConvergeSomeMaintainF1K4 for F > K.  In a 

similar argument, such a system always converges.  We do not provide the details of the proof of 

this theorem here but would like to point out that the system consists of three sets of good nodes, 

S1, S2, and S3, where Ki = | Si |, i = 1, 2, 3.  Since K > 3F + 1, G > 2F + 1 and at least one set, S1, 

has K1 ≥ TR.  In other words, the presence of the additional good nodes expedites the 

convergence process. 

 

Theorem ConvergeSomeMaintainF1 –  A system of F=1 and K ≥ 3F+1 nodes, satisfying the 

pre-convergence conditions with some good nodes in the Maintain state will always converge. 

 

Proof – It follows from theorems ConvergeSomeMaintainF1K4 and 

ConvergeSomeMaintainF1KGT4 that such a system always converges.              ♦ 

 

Theorem StabilizeF1 –  A system of F = 1 and K ≥ 3F + 1 nodes self-stabilizes from any 

random state after a finite amount of time. 

 

Proof – The proof of this theorem consists of proving the convergence, closure, and congruence 

properties as defined in section 3.6.  The approach for the proof is to show that a system of K ≥ 

3F + 1 nodes converges from any condition to a state where all good nodes are in the Restore 

state and then synchronously transition to the Maintain state within a guaranteed initial precision.  

The system is then shown to remain within the timing bounds of the synchronization precision of 

∆Precision.  This idea is depicted in Figure 6. 

 

The approach for the proof is depicted in Figure 8.  The system is shown to converge 

from any state and upon convergence maintain the closure property. 

 

Convergence Property –  ∆LocalTimer(C) ≤ ∆Precision.  

The proof is done in the following three cases. 

  

Case 1 –  None of the good nodes are in the Maintain state. 
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For all good nodes, if StateTimer(t) < PR - 3F - 1, it follows from theorem 

ConvergeNoneMaintain that such system always converges.  Otherwise, it follows from 

theorem ConvergeSomeMaintainF1 that such system always converges. 

 

Case 2 –  All good nodes are in the Maintain state. 

It follows from theorem ConvergeAllMaintain that such system always converges. 

 

Case 3 –  Some of the good nodes are in the Maintain state. 

It follows from theorem ConvergeSomeMaintainF1 that such system always converges. 

 

Closure Property – ∀ t ≥ C, ∆LocalTimer(t) ≤ ∆Precision. 

It follows from theorems ClosureAllMaintain and LocalTimerWithinPrecision that upon 

convergence, such system always remains stabilized and ∆LocalTimer(t) ≤ ∆Precision for t ≥ C.  

 

Congruence Property – ∀ good nodes Ni and Nj, ∀ t ≥ C, LocalTimeri(t) = 0 � Ni and Nj in the 

Maintain state. 

It follows from theorem Congruence that upon convergence, this property is satisfied. 

 

Therefore, such system always self-stabilizes.             ♦ 

 

Since this protocol self-stabilizes from any state, initialization and/or reintegration are not 

treated as special cases.  Therefore, a reintegrating node will always be admitted to participate in 

the self-stabilization process as soon as it becomes active. 

 

Theorem ConvergeTime –  A system of K ≥ 3F + 1 nodes and F ≤ 1 converges from any random 

state to a stabilized state within C = (2PR + PM)·γ. 

 

Proof – In order for the system to stabilize, all good nodes must undergo the resynchronization 

process.  It follows from Lemma SyncWithinP that a good node initiates this process by 

transmitting a Sync message within at most P.  It follows from theorem StabilizeF1 that the 

system always converges.  Also, it follows from that theorem and Lemma MaxResyncDuration 

that the system converges and all good nodes will transition to the Maintain state at the end of 

the resynchronization process and within the next PR. Therefore, the system converges within at 

most ((PR + PM) + PR)·γ  and C = (2PR + PM)·γ.             ♦ 

 

Since PActual < P and typically PM >> PR, the maximum convergence time, C, can be 

approximated to C ≅ P.  Therefore, C is a linear function of P and, similarly, of PM. 

 

5.1.2.  Out-of-Phase Case 

 

The out-of-phase scenario is defined as a system where the logical timers of the good 

nodes are out of phase with each other, but the local oscillators are in-phase, and the network 

imprecision and the oscillator drift are also zero, i.e., d = 0 and ∆Drift = 0.  In this scenario, since 

∆Drift = 0, the local oscillators of all good nodes remain in-phase with each other.  This idea is 

depicted in the following figure where γ  = 2. 
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Figure 14.  Ideal case, transition of logical timers are out-of-phase. 

 

In this scenario, d = 0 and ∆Drift = 0, therefore, γ  = D.  We do not provide a paper-and-

pencil proof of the out-of-phase scenario here.  The proof follows the same line of reasoning as 

above. 

 

A system of K = 4 nodes for γ  = 1, 2, 3, and 4 were model checked and proven to self-

stabilize in the presence of one arbitrary faulty node as expected.  Details of the model checking 

effort for this scenario will be the subject of a subsequent report. 

 

5.1.3.  A Realizable System 
 

A realizable system is defined as a system where the logical timers and the local 

oscillators of the good nodes have unconstrained relative phases, and the network imprecision 

and the oscillator drift are not constrained to be zero, i.e., d ≥ 0 and ∆Drift ≥ 0.  In this scenario, no 

assumptions are made about the relative phase difference of local oscillators and logical timers of 

the good nodes.  The local oscillators and logical timers of all good nodes may drift apart with 

respect to each other.  Here, we constrain a realizable system such that 0 ≤ d ≤ 1.  For such a 

system we also constrain D ≥ 1.  Therefore, γ ≥ 2.  A paper-and-pencil proof for this scenario is 

more complex and is left for future work. 

 

Nevertheless, we focus our attention here on the model checking results and report on the 

issues associated with mapping this protocol to a real system.  Since for model checking 

purposes d is treated as an integer [Mal 2007, 2008], its value is randomly selected to be either 0 

or 1 for a given transmission of a Sync message.  Several such systems with d = {0, 1}, D = 1, 2, 

or 3, and γ  = 2, 3, or 4, respectively, were model checked and proven to self-stabilize in the 

presence of one arbitrary faulty node.  Details of the model checking of this scenario will be the 

subject of a subsequent report.  The results reveal that for such a realizable system to self-

stabilize two additional good nodes are needed.  As shown in the following counterexample, a 

system of K = 4, d = {0, 1}, D = 1, and γ  = 2 does not self-stabilize. 
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Table 2.  Counterexample for a system of K = 4 nodes and F = 1. 

 

Time Node 1 Node 2 Node 3 
t + 0

 
 1

--xx
  � 0

--xx
, Restore

 
 4

--x-
   1

---- 

t + 1
 

 0
--xx 

 4
----

 � 0
----

, Maintain  1
---- 

t + 2
 

 1
---- 

 0
x---

  2
x---

 
 

t + 3
 

 1
---- 

 1
x---

 
 

 2
x---

 
 

t + 4
 

 2
----  

� 0
----

, Maintain
 

 1
x--x  

� 0
x--x

, Restore
 

 3
---x

 
 

t + 5
 

 0
-x-- 

 0
x--x

  3
-x-x 

t + 6
 

 1
-x-x

 � 0
-x-x

, Restore
 

 1
----

   4
-x--

  
 

t + 7
 

 0
-x-x

 
 

 1
----

   4
----  

� 0
----

, Maintain
 

t + 8
 

 1
---- 

 2
x---

   0
x--- 

t + 9  1
---- 

 2
x--x

 
 

 1
x---

 
 

t + 10  2
----  

� 0
----

, Maintain
 

 3
---x

 
 

 1
x--x  

� 0
x--x

, Restore
 

t + 11  0
--x- 

 3
--x- 

 0
x--x

 

t + 12  1
--xx

  � 0
--xx

, Restore
 

 4
--x-

   1
---- 

 

There are two solutions for the above system: either the Byzantine-faulty node is 

restricted to influence the nodes at greater intervals, or additional good nodes are added to the 

system. 

 

We define three types of Byzantine faulty behaviors here.  Recall that ∆SS,min = TDmin·γ  + 

1 clock ticks and for F = 1, ∆SS,min = 2γ  + 1. 

• A type-A Byzantine faulty node transmits Sync messages arbitrarily but at intervals 

greater than or equal to ∆SS,min, measured separately at each receiving good node.  Note 

that this type is a redefinition of the Byzantine faulty node behaving arbitrarily at every 

clock tick but is tailored for this protocol. 

• A type-B Byzantine faulty node transmits Sync messages arbitrarily but at intervals 

greater than or equal to 3γ  + 1, measured separately at each receiving good node.   

• A type-C Byzantine faulty node transmits Sync messages arbitrarily but at intervals 

greater than or equal to 4γ  + 1, measured separately at each receiving good node. 

 

Model checking results indicate that the system of K = 4 nodes described above self-

stabilizes in the presence of a type-C Byzantine faulty node.  Alternatively, after the addition of 

another good node, a system of K = 5 nodes self-stabilizes in the presence of a type-B Byzantine 

faulty node.  The following table is a counterexample for a system of K = 5 nodes and in the 

presence of a type-A Byzantine faulty node. 
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Table 3.  Counterexample for a system of K = 5 nodes and F = 1. 

 

Time Node 1 Node 2 Node 3 Node 4 
t + 0

 
 1

---xx
�0

---xx
, Restore

 
 4

-----
�0

-----
, Maintain  3

----x 
 1

----- 

t + 1
 

 0
---xx 

 0
x----

   3
x---x 

 2
x---- 

t + 2
 

 1
----- 

 1
x---

  4
x----

 
 

 2
x----

 
 

t + 3
 

 1
----- 

 1
x---x

�0
x---x

, Restore
 

 4
-----

�0
-----

, Maintain  3
----x

 
 

t + 4
 

 2
-x---  

 0
x---x

  0
-x---

 
 

 3
-x--x

 
 

t + 5
 

 2
-x--- 

 1
-----

  1
-x--- 

 4
-x--- 

t + 6
 

 3
----x

 
 

 1
-----

   1
-x--x

�0
-x--x

, Restore
 

 4
-----

�0
-----

, Maintain 

t + 7
 

 3
--x-x

 
 

 2
--x--

   0
-x---x

  0
--x--

  

t + 8
 

 4
--x-- 

 2
--x--

   1
----- 

 1
--x-- 

t + 9  4
-----

�0
-----

, Maintain  3
----x

 
 

 1
-----

 
 

 1
--x-x

�0
--x-x

, Restore
 

t + 10  0
---x-  

 3
---xx

 
 

 2
---x-

 
 

 0
--x-x

 

t + 11  1
---x- 

 4
---x- 

 2
---x-

 
 

 1
-----

 

t + 12  1
---xx

�0
---xx

, Restore
 

 4
-----

�0
-----

, Maintain  3
----x 

 1
----- 

 

After addition of another good node, a system of K = 6 nodes self-stabilizes in the 

presence of a type-A Byzantine faulty node.  The following table is a summary of the conditions 

that a system in this scenario requires to self-stabilize in the presence of a Byzantine-faulty node. 

 

Table 4.  A realizable system with 0 ≤ d ≤ 1 and F = 1. 

 

K Byzantine Node ∆∆∆∆SS,min Intervals 
4

 
4γ  + 1

 

5
 

3γ  + 1
 

6
 

2γ  + 1
 

 

 

5.2.  Proof For F = 0 
 

The proof for the case of F = 1 readily applies to the special case of F = 0 and K ≥ 2.  We 

present the proof of this special case separately.   

 

Theorem ConvergeNoneMaintainF0 – A system of K ≥ 2 nodes satisfying the pre-convergence 

conditions with none of the good nodes in the Maintain state and for all good nodes, 

StateTimer(t) < PR - 2, will always converge to within an initial precision. 

 

Proof – The proof is similar to the proof of the general case as presented in theorem 

ConvergeNoneMaintain.  Since none of the good nodes are in the Maintain state, they are in the 

Restore state because they have not met the transitory conditions.  We consider the system at the 

point of transmission of a Sync message by the last good node in the Maintain state, where for all 

nodes StateTimer(t) < PR - 2.  The nodes will receive one last valid Sync message, will remain in 

the Restore state for another γ, and since there are no faulty nodes present, all nodes will 

transition to the Maintain state within the following γ.  Thus, they will not time out while in the 

Restore state. 



 

30 

 

Similar to the argument in the proof of theorem ConvergeNoneMaintain, the earliest a 

good node transitions to the Maintain state is at tEM where EM = D + γ.  The latest a good node 

transitions to the Maintain state is at tLM and after remaining in the Restore state for TDmin = 2, 

i.e., LM = 2γ.  So, the time difference between the NLM and NEM is given by 

StateTimerLM(t) - StateTimerEM(t) = ∆LMEM. 

∆LMEM = LM - EM = 2γ  - (D + γ) = γ  - D = d.  

 

Therefore, such a system always converges to within the initial precision of ∆LMEM.         ♦ 

 

Theorem ConvergeF0 – A system of F = 0 and K ≥ 2 good nodes will always converge. 

 

Proof – The proof follows in the following three cases. 

 

Case 1 – All nodes are in the Maintain state.  Since there are no faulty nodes present, TR = 1.  

Therefore, as soon as one of the nodes transitions to the Restore state, all others will follow 

within the next γ.  All good nodes will transition to the Restore state within γ  of each other.  At 

this point, for all good nodes, StateTimer(t) < 2 << PR - 2 and none of them has met the 

transitory conditions.  Since there are no faulty nodes present, the nodes will transition to the 

Maintain state within the next γ  and thus will not time out while in the Restore state.  It follows 

from theorem ConvergeNoneMaintainF0 that such a system always converges to within ∆LMEM. 

 

Case 2 – All nodes are in the Restore state.  Since in this case no other assumptions are made, 

some nodes transition to the Maintain state due to timeouts while others by meeting the 

transitory conditions.  Nevertheless, all nodes will transition to the Maintain state within TDmin·γ 

of each other.  As a result the initial precision is TDmin·γ.  It follows from case 1 that this system 

will be within the initial precision of ∆LMEM within the next synchronization round. 

 

Case 3 – Some nodes are in the Maintain state while others are in the Restore state.  If the nodes 

in the Restore state transition to the Maintain state before the nodes in the Maintain state time 

out, then the system will consist of all nodes in the Maintain state.  It follows from case 1 that 

such system always converges.  Conversely, if the nodes in the Maintain state transition to the 

Restore state before the nodes in the Restore state time out, then the system will consist of all 

nodes in the Restore state.  It follows from case 2 that such system always converges.  If some 

nodes transition to the Maintain state due to time out, while at least one other node transitions to 

the Restore state, then since TR = 1, all nodes that have transitioned to the Maintain state will 

transition back to the Restore state within the next γ.  It follows from case 2 that such system 

always converges.  Therefore, a system of F = 0 and K ≥ 2 good nodes will always converge to 

within ∆LMEM. 

 

From theorem ConvergeNoneMaintainF0 the initial guaranteed precision after the 

resynchronization is the maximum value of ∆LMEM.  For this case, since F = 0, TDmin = 2 and  

 

StateTimerLM(t) - StateTimerEM(t) = ∆LMEM. 

∆LMEM = LM - EM = (TDmin + F)·γ  - (D + γ) = 2γ  - (D + γ) = γ  - D = d. 
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Therefore, the system converges to within at most (γ  - D) = d of each other.          ♦ 

 

The guaranteed synchronization precision ∆Precision after elapsed time of P is bounded by, 

∆Precision = ∆LMEM + ∆Drift. 

 

For F = 0, 

∆Precision = ∆LMEM + ∆Drift = d + ∆Drift. 

 

Corollary PrecisionTDminF0 –  For F = 0, ∆Precision > TDmin·γ  if ∆Drift > D + γ. 

 

Proof –  

∆Precision > TDmin·γ  

(γ  - D) + ∆Drift > 2γ  

∆Drift > D + γ                  ♦ 

 

Theorem ClosureAllMaintainF0 – A system of F = 0 and K ≥ 2 good nodes, where all nodes 

have converged such that all nodes are in the Maintain state and ∆LocalTimer(t) ≤ ∆Precision, shall 

remain within the synchronization precision ∆Precision. 

 

Proof –  Since all good nodes are in the Maintain state, it follows from lemma RestoreWithinPM 

that upon timeout, the nodes will transmit Sync messages and transition to the Restore state 

within PM.  As they transmit Sync messages, their transitions to the Restore state are recorded by 

other good nodes that are in the Maintain state.  Furthermore, since TR = 1, as soon as one node 

transitions to the Restore state, the other nodes will transition to the Restore state within the next 

γ.  At this point, for all good nodes, StateTimer(t) < 2 << PR - 2 and none of them has met the 

transitory conditions.  Since there are no faulty nodes present, the nodes will transition to the 

Maintain state within the next γ  and, thus, will not time out while in the Restore state.  It follows 

from theorem ConvergeNoneMaintainF0 that such a system always converges to within ∆LMEM.♦ 

 

Theorem StabilizeF0 – A system of F = 0 and K ≥ 2 nodes self-stabilizes from any random state 

after a finite amount of time. 

 

Proof – It follows from theorem ConvergeF0 that the nodes converge and upon convergence 

transition to the Maintain state within ∆LMEM of each other.  It follows from theorem 

ClosureAllMaintainF0 that such system of F = 0 and K ≥ 2 nodes always remains within the 

∆Precision bounds.  Thus, ∆LocalTimer(t) ≤ ∆Precision.  It follows from theorem Congruence that upon 

convergence, this property is satisfied.  Therefore, such system always self-stabilizes.        ♦ 

 

5.3.  Generalization Of The Protocol, For F > 1 
 

It follows from theorems StabilizeF0, ConvergeNoneMaintain, ConvergeAllMaintain, 

and ClosureAllMaintain, and their corresponding assumptions that a system under their 

associated conditions always self-stabilizes for all F ≥ 0 and 0 ≤ ρ << 1.  It can readily be shown 

that in the absence of faulty nodes, this protocol always converges from any arbitrary state.  

Also, if the faults are transient such that the time interval between the consecutive manifestations 
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of the transient faults is greater than the convergence time C, the system always self-stabilizes 

for all F ≥ 0.  Nevertheless, since theorem ConvergeSomeMaintainF1 cannot be generalized, this 

protocol does not seem to solve the general case of clock synchronization for F > 1.  Table 5 is a 

trace of a counterexample for a system with K = 8 nodes, where F = 2 and G = 6. 

 

Let’s consider the system where some good nodes transition in and out of the Restore 

state while others transition in and out of the Maintain state.  Also, let the system consist of three 

sets of good nodes, S1, S2, and S3, where Ki = | Si |, i = 1, 2, 3.  For simplicity, let’s assume that all 

good nodes in a set Si are in synchrony with each other such that they all transition from one state 

to another at the same time.  Now let’s consider K1 = K2 = K3 = F < TR.  The following table 

depicts a scenario that repeats indefinitely and reveals that such a system will not always 

converge. 

 

Table 5.  Activities of a system of K ≤ 4F nodes, F > 1. 

 

Time S1 S2 S3 

t + 0
 

 2
---x 

 2
x---

  5
----

 � 0
----

, Maintain
 

t + 1
 

 3
---x 

 3
x--x

 � 0
x--x

, Restore  1
----

 
 

t + 2
 

 4
-x-- 

 1
-x--

  2
-x--

 
 

t + 3
 

 5
---- 

� 0
----

, Maintain
 

 2
---x

 
 

 3
-x-x

 � 0
-x-x

, Restore
 

t + 4
 

 1
--x- 

 3
--x- 

 1
--x-

 
 

t + 5
 

 2
--x- 

 4
---x

  2
---x 

t + 6
 

 3
--xx 

� 0
--xx

, Restore
 

 5
----

  � 0
----

, Maintain  3
---x

 
 

t + 7
 

 1
x---  

 1
x---

   4
x--- 

t + 8
 

 2
---x 

 2
x---

   5
----

 � 0
----

, Maintain
 

 

The scenario that repeats consists of a set transitioning to the Restore state at the same time 

another set transitions to the Maintain state while the third set is in the Restore state.  For 

instance, at t+6, S1 transitions to the Restore state, S2 transitions to the Maintain state and S3 

remains in the Restore state.  Therefore, during the next γ  all sets receive up to F valid Sync 

messages.  The set S3 is forced to remain in the Restore state while S2 has up to F valid Sync 

messages. 

 

Although this protocol does not solve the general case of this problem, it provides 

mathematically proven and mechanically verified [Mal 2007, 2008] partial solutions for specific 

cases of F = 0 and F = 1.  We intend to use these specific cases as the building blocks for larger 

and more complex systems. 

 

6.  Protocol Overhead 

 

Since only one message, namely Sync, is required for the operation of this protocol,  the 

protocol overhead during steady state is at most (depending on the amount of ∆Drift) two 

messages per P.  Also, since only one message is needed, a single binary value is sufficient to 

represent it. 
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7.  Possible Applications 

 

The proposed self-stabilizing protocol is expected to have many practical applications as 

well as many theoretical implications.  Embedded systems, distributed process control, 

synchronization, fault tolerance with Byzantine agreement, computer networks, the Internet, 

Internet applications, security, safety, automotive, aircraft, wired and wireless 

telecommunications, graph theoretic problems, leader election, time division multiple access 

(TDMA), and the SPIDER
1
 architecture [Tor 2005A, 2005B] at NASA-LaRC are a few 

examples.  These are some of the many areas of distributed systems that can use self-stabilization 

in order to design more robust distributed systems. 

 

8.  Conclusions 

 

The self-stabilization problem has two facets.  It is inherently event-driven and it is also 

time-driven.  Most attempts at solving the self-stabilization problems have focused only on the 

event-driven aspect of this problem.  Additionally, all efforts toward solving this problem must 

recognize that the system undergoes two distinct phases, un-stabilized and stabilized, and that 

once stabilized, the system state needs to be preserved.  The protocol presented here properly 

merges the time and event driven aspects of this problem in order to self-stabilize the system in a 

timely manner.  Initialization and/or reintegration are not treated as special cases.  These 

scenarios are regarded as inherent part of this self-stabilizing protocol. 

 

In this report, a rapid Byzantine-fault-tolerant self-stabilizing clock synchronization 

protocol is presented.  The protocol presented here is independent of specific application-

dependent requirements and is focused only on clock synchronization of a system in the presence 

of Byzantine faults and after the cause of transient faults has dissipated.  The protocol utilizes a 

single message, Sync, and during steady state imposes an overhead of at most two messages per 

synchronization period.  A model of this protocol has been mechanically verified using SMV 

[SMV] where the entire state space has been examined and proven to self-stabilize in the 

presence of one arbitrary faulty node.  Instances of the protocol have been proven to tolerate 

bursts of transient failures and deterministically converge with a linear time with respect to the 

synchronization period as predicted.  This protocol does not rely on any assumptions about the 

initial state of the system except for the presence of sufficient number of good nodes, and no 

assumptions are made about the internal status of the nodes, the monitors, and the 

communication channels, thus making the weakest assumptions and producing the strongest 

results.  All timing measures of variables are based on the node’s local clock and thus no central 

clock or externally generated pulse is used.  The Byzantine faulty behavior modeled here is a 

node with arbitrarily malicious behavior.  The Byzantine faulty node is allowed to influence 

other nodes at every clock tick.  The only constraint is that the interactions are restricted to 

defined interfaces. 

 

Proofs of specific instances of this protocol are presented in this report.  This protocol has 

been the subject of a rigorous verification effort.  A system tolerating one Byzantine faulty node 

                                                 
1
 Scalable Processor-Independent Design for Enhanced Reliability (SPIDER). 
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has been model checked for the in-phase, out-of-phase, and realizable systems.  The SMV model 

checking results verified the correctness of the claims of this self-stabilizing protocol. 

 

Although this protocol does not solve the general case of the problem, it provides proven 

and verified solutions for specific cases.  The paper-and-pencil proofs presented here, in 

conjunction with the model checking results, indicate that the protocol is applicable to realizable 

practical systems.  We intend to leverage the specific cases as building blocks for larger and 

more complex systems. 

 

This protocol is intended to be the fundamental mechanism for bringing and maintaining 

a system within bounded synchrony.  Formalization and verification of the integration process of 

other protocols with this protocol in order to achieve tighter precision are underway.  

Nevertheless, proper means are embedded in this protocol to accommodate the integration 

process.  Implementation of this protocol in hardware and its characterization in a representative 

adverse environment are being planned. 
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Appendix A.  Symbols 

 
This appendix the symbols used in the protocol. 

 

Symbols Descriptions           

ρ  bounded drift rate with respect to real time 

d  network imprecision 

D  event-response delay 

F  maximum number of faulty nodes 

G  minimum number of good nodes 

K  sum of all nodes 

Sync  self-stabilization message 

S  abbreviation for Sync message 

∆SS  time difference between the last consecutive Sync messages 

TR  threshold for Retry() function 

Restore self-stabilization state 

Maintain self-stabilization state 

R  abbreviation for Restore state 

M  abbreviation for Maintain state 

PR  maximum duration while in the Restore state 

PR,min  minimum value of PR  

PM  maximum duration while in the Maintain state 

PActual  actual synchronization period 

P   synchronization period 

γ  equally spaced time intervals for time-driven activities 

C  maximum convergence time 

∆LocalTimer(t) maximum time difference of LocalTimers of any two good nodes at real time t 

LM  Latest Maintain 

EM  Earliest Maintain 

∆LMEM  difference of LM and EM, a.k.a. initial synchronization precision 

∆Precision maximum synchronization precision 

∆Drift  maximum deviation from the initial synchrony 

Ni  the i
th

 node 

Mi  the i
th

 monitor of a node 
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