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Abstract 1 

Global satellite analyses showing strong correlations between aerosol optical depth and 2 

cloud cover have stirred much debate recently. While it is tempting to interpret the results 3 

as evidence of aerosol enhancement of cloud cover, other factors such as the influence of 4 

meteorology on both the aerosol and cloud distributions can also play a role, as both 5 

aerosols and clouds depend upon local meteorology. This study uses satellite 6 

observations to examine aerosol-cloud relationships for broken low-level cloud regions 7 

off the coast of Africa. The analysis approach minimizes the influence of large-scale 8 

meteorology by restricting the spatial and temporal domains in which the aerosol and 9 

cloud properties are compared. While distributions of several meteorological variables 10 

within 5°×5° latitude-longitude regions are nearly identical under low and high aerosol 11 

optical depth, the corresponding distributions of single-layer low cloud properties and 12 

top-of-atmosphere radiative fluxes differ markedly, consistent with earlier studies 13 

showing increased cloud cover with aerosol optical depth. Furthermore, fine-mode 14 

fraction and Angstrom Exponent are also larger in conditions of higher aerosol optical 15 

depth, even though no evidence of systematic latitudinal or longitudinal gradients 16 

between the low and high aerosol optical depth populations are observed. When the 17 

analysis is repeated for all 5°×5° latitude-longitude regions over the global oceans (after 18 

removing cases in which significant meteorological differences are found between the 19 

low and high aerosol populations), results are qualitatively similar to those off the coast 20 

of Africa.  21 

 22 

23 
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1. Introduction 1 

Many questions surround the use of passive satellite observations for studying 2 

aerosol-cloud interactions. Several studies (e.g., Coakley et al. 1987; Han et al, 1994; 3 

Bréon et al., 2002; Sekiguchi et al., 2003) have used a range of techniques to observe the 4 

first indirect effect (Twomey, 1977), while others have found evidence of precipitation 5 

suppression (the second indirect effect, Albrecht, 1989) in regions of biomass burning 6 

smoke (Rosenfeld 1999; Andreae et al. 2004; Koren et al. 2004), urban and industrial air 7 

pollution (Rosenfeld 2000, Matsui et al., 2004), and desert dust (Rosenfeld et al. 2001). 8 

More recently, satellite analyses have revealed a persistent correlation between cloud 9 

fraction (f) and aerosol optical depth (τa) in regions influenced by marine aerosol, smoke, 10 

dust and industrial air pollution (Ignatov et al., 2005; Loeb and Manalo-Smith 2005; 11 

Kaufman et al., 2005; Matheson et al., 2006).  12 

While results from studies showing a correlation between f and τa are qualitatively 13 

similar, their interpretation varies greatly. Ignatov et al. (2005) note that the aerosol-cloud 14 

correlations are either “real” (increased hygroscopic aerosol particles that influence cloud 15 

formation) or artifacts of the retrievals (residual cloud in the imager field-of-view). Loeb 16 

and Manalo-Smith (2005) point to the importance of meteorology: f and τa are both 17 

correlated with relative humidity (RH) and wind speed. As RH increases, water uptake by 18 

aerosols (determined by the solubility of the particle mass) changes the aerosol particle 19 

size, density, refractive index, and scattering extinction (e.g., Clarke et al. 2002). This, 20 

together with larger wind speeds (which increase sea salt particles), lead to larger τa. 21 

Mauger and Norris (2007) used data from the North Atlantic to argue that the history of 22 

meteorological forcing controls both AOD and cloud fraction. In their analysis, scenes 23 
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with large AOD and large cloud fraction had origins closer to Europe and experienced 1 

greater lower tropospheric static stability 2–3 days prior to the satellite observation than 2 

did scenes with small AOD and small cloud fraction. Matheson et al. (2006) raise 3 

additional possible reasons for the aerosol-cloud correlations, including increased particle 4 

production near clouds, an increase in aerosol size caused by in-cloud processing, and 5 

sunlight reflected by nearby clouds enhancing the illumination of the adjacent cloud-free 6 

pixels causing τa to be overestimated. In contrast, Kaufman et al. (2005) conclude that 7 

most of the correlation is explained by the aerosol indirect effect, and that there is a low 8 

probability the results are due to errors in the data or coincidental, unresolved, changes in 9 

meteorological conditions that also lead to higher τa. 10 

A possible physical mechanism by which the aerosols interact with clouds to 11 

produce an increase in f is through precipitation suppression, or the second indirect effect. 12 

An increase in aerosol abundance causes an increase in the number of cloud-condensation 13 

nuclei (CCN), leading to smaller cloud droplets, reduced precipitation, longer cloud 14 

lifetimes, and increased f. Implicit in the argument that the satellite-derived aerosol-cloud 15 

correlation is evidence of the aerosol indirect effect is the assumption that satellite-16 

derived τa is correlated with CCN concentration. However, most CCN are too small to 17 

contribute to radiances observed by satellite instruments. While no definitive proof of a 18 

relationship between column optical depth and CCN exists, a study by Kapustin et al. 19 

(2006) suggests that under certain conditions there is a strong link. Kapustin et al. (2006) 20 

derive a proxy for CCN (from size distribution measurements), which they relate to 21 

aerosol optical properties, such as the aerosol index (AI, product of τa and Angstrom 22 

exponent, α), a parameter often used by the satellite community because it is more 23 
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sensitive to the accumulation mode aerosol concentration (e.g., Deuze et al., 2001; 1 

Nakajima et al., 2001). Kapustin et al. (2006) conclude that correlations between optical 2 

parameters and the CCN proxy appear to work best in conditions of pollution aerosol 3 

with moderate amounts of coarse dust, and that the correlation between aerosol index and 4 

CCN is likely strongly dependent upon RH. 5 

In this study, satellite observations are used to examine aerosol-cloud 6 

relationships for broken low-level cloud regions off the coast of Africa. The analysis 7 

seeks to minimize the influence of large-scale meteorology by restricting the spatial and 8 

temporal domains in which the aerosol and cloud properties are compared. Each day, 9 

cloud properties and various large-scale meteorological variables are sorted by aerosol 10 

optical depth and the resulting distributions are directly compared. 11 

2. Observations and Methodology 12 

To investigate relationships between aerosols, clouds and meteorology, a global 13 

dataset with 1° spatial and daily temporal resolution is created which combines several 14 

data sources. We combine radiative fluxes from the Clouds and the Earth’s Radiant 15 

Energy System (CERES) (Wielicki et al., 1996), cloud and aerosol properties from the 16 

MODerate resolution Imaging Spectroradiometer (MODIS), meteorological parameters 17 

from the Global Modeling and Assimilation Office (GMAO)'s Goddard Earth Observing 18 

System DAS (GEOS-DAS V4.0.3) product (Suarez et al., 2005), wind speed divergence 19 

derived from the SeaWinds instrument on the QuikSCAT satellite, and aerosol type 20 

information from the Model for Atmospheric Transport and Chemistry (MATCH) 21 

(Collins et al., 2001). CERES fluxes, MODIS aerosol and cloud properties, and GEOS-4 22 

parameters are from the Terra Edition2B_rev1 Single Scanner Footprint TOA/Surface 23 
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Fluxes and Clouds (SSF) product (Loeb et al., 2003, 2005). The SSF consists of cloud 1 

property retrievals from Minnis et al. (1998) and Minnis et al. (2003), and aerosol 2 

property retrievals from the MOD04 product (Remer et al. 2005), and a second aerosol 3 

retrieval algorithm applied to MODIS (Ignatov and Stowe 2002). In this study, we use 4 

collection 4 MODIS products. 5 

We consider one month (September 2003) of data off the coast of Africa between 6 

0°S-30°S and 50°W-10°E and restrict the analysis to regions dominated by sulfate 7 

aerosol according to the MATCH model. Only single-layer low clouds in 1° regions with 8 

both cloud and aerosol retrievals are considered. Each day, cloud and aerosol retrievals in 9 

every 5°×5° region are sorted into two populations: (I) 1° subregions with MODIS τa less 10 

than or equal to the mean 5°×5° value (<τa>); and (II) 1° subregions with τa greater than 11 

<τa>. Stratifying each 5°×5° region each day into two groups ensures that both groups are 12 

influenced by the same large-scale meteorological influences. Next, distributions of 13 

meteorological, cloud, aerosol and radiative flux parameters from the two populations are 14 

directly compared. To define the above two populations MODIS 0.55-µm τa retrievals 15 

are used (Remer et al., 2005). In the analysis we only consider low-level cloud properties 16 

from 1° sub-regions in which the high cloud coverage is < 2.5%, and a valid MODIS 17 

AOD is observed within the region. A minimum of two 1° sub-regions satisfying these 18 

criteria are required in order for a 5° region to be included in the analysis. This typically 19 

results in 2 to 10 1° sub-regions per 5° region. 20 
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3. Results 1 

Figs. 1a-f show relative frequency distributions of 750-1000 mb potential 2 

temperature difference (θ
750

-θ
1000

), precipitable water (p
w
), sea-surface temperature 3 

(SST), 10-m wind speed (w
s
), QuikSCAT-based wind divergence (∇w), and wind 4 

direction (wd). Although not a comprehensive list, these meteorological parameters are 5 

correlated with the occurrence of low-level cloud amount (e.g., Klein, 1997; Xu et al., 6 

2005). As shown, nearly identical distributions are obtained for each of these parameters, 7 

confirming that the two aerosol populations are influenced by the same large-scale 8 

meteorological influences. As indicated in Table 1, which shows the sample mean values, 9 

differences between the means of the distributions are not significant at the 95% 10 

confidence level.  11 

The corresponding aerosol property distributions are shown in Figs. 2a-c. By 12 

definition, τa values for population II are larger than those for population I (Fig. 2a). The 13 

overall mean τa for population I is 0.11 compared to 0.15 for population II (Table 1). 14 

Interestingly, population II seems to have a larger mass fraction of smaller aerosol 15 

particles than population I, as shown in both the fine-mode fraction (η) (Fig. 2b) and 16 

Angstrom exponent (α) (Fig. 2c) distributions. η is obtained directly from the MOD04 17 

aerosol product while α is computed using MODIS aerosol optical depth retrievals at 18 

0.55-µm and 0.86-µm. The mean η (α) ranges from 0.37 (0.42) for population I to 0.43 19 

(0.62) for population II. Sample mean differences between the populations are significant 20 

at the 95% level for both parameters (Table 1). In fact, the difference between the means 21 

exceeds the 95% confidence interval (σ95) by a factor of 2 to 3. Kaufman et al. (2005) 22 

also found an increase in η in the transition from clear oceanic air to high dust or smoke 23 
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concentrations. However, in contrast to the Kaufman et al. (2005) results, the aerosol 1 

populations considered in Fig. 2 are restricted spatially (i.e., to 5°×5° regions) and 2 

experience similar large-scale meteorology. To ensure that spatial gradients within the 3 

individual 5°×5° regions aren’t contributing to the differences in η and α between the 4 

two populations, Figs. 2d shows histograms of the difference between the mean latitudes 5 

for the 1° subregions used to define the two populations, and Fig. 2e shows the difference 6 

between the corresponding mean longitudes. In each case, the peak in the distributions of 7 

mean latitude and longitude difference is close to zero, indicating that local gradients in 8 

aerosol optical depth aren’t responsible for the differences in η and α.  9 

Figs. 3a-f and Table 1 compare TOA flux and cloud property distributions 10 

between populations I and II. SW TOA flux, f, surface-cloud top temperature difference 11 

and cloud liquid water path all tend to be significantly larger in population II compared to 12 

population I. The CERES LW TOA flux is smaller for population II, consistent with the 13 

larger surface-cloud top temperature difference, cloud fraction and liquid water path. 14 

Similar results are obtained when we restrict the analysis to regions dominated by smoke 15 

aerosol (as opposed to sulfate) according to the MATCH model.  16 

The one cloud parameter that shows no significant difference between the two 17 

populations is droplet effective radius (re). To investigate this further, Fig. 4a-d shows 18 

differences between population II and population I cloud properties as a function of the 19 

corresponding difference in 0.55 µm aerosol optical depth (black circles). In order to 20 

reduce sampling noise, the averages were computed in discrete intervals of Δτa of width 21 

0.02. The histogram in each plot indicates the number of 5º regions falling in each 22 

interval. For Δτa < 0.08, corresponding to approximately 90% of the regions, Δre is 23 
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slightly positive with an average value of 0.23 µm. It is only in the top 10% of the 1 

distribution (i.e., Δτa > 0.08) that we see the expected anticorrelation between Δre and 2 

Δτa. For Δτa > 0.08, Δre has a mean of -0.54 µm, and reaches -2 µm at Δτa=0.15. Since 3 

most of the samples have small Δτa, the overall mean re difference between populations I 4 

and II is small. In contrast, the other cloud parameters (Fig.s. 4b, c and d) all tend to show 5 

positive differences at all intervals of Δτa. In addition Δf and Δτc show a positive 6 

correlation with Δτa.  7 

To examine relationships between aerosol and cloud properties in other locations, 8 

the analysis is extended to all 5°×5° oceanic regions in which MOD04 aerosol retrievals 9 

are available. In order to acquire sufficient sampling, all September days from 2002 10 

through 2005 are considered. In addition, to minimize the influence of large-scale 11 

meteorology, only 5°x5° regions in which the difference in each of the meteorological 12 

parameters (i.e., p
w
, w

s
, wd, ∇w, θ

750
-θ

1000
, SST, and SST-T

c
) between the two populations 13 

is less than the 95% confidence interval are included. Figs. 5a-b show the resulting 14 

differences in cloud fraction (Fig. 5a) and fine-mode-fraction (Fig. 5b) between 15 

populations I and II. Differences are calculated from the product ΔX/Δτa × <τa>, where 16 

ΔX is the mean difference in X between populations I and II, and <τa> is the overall 5°x5° 17 

mean τa. In the majority of regions, populations with larger τa also have larger f and η , 18 

consistent with results in Figs. 2 and 3. Fig. 5 clearly suggests these correlations are quite 19 

robust and occur in most oceanic regions. At higher latitudes the number of 5°x5° regions 20 

satisfying our selection criteria decreases dramatically, especially over the Southern 21 

Ocean between 40°S-60°S where cloud cover is generally quite large. Regions with 22 

negative δη (e.g., off the coast of California, in the Gulf of Mexico, over the 23 
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Mediterranean and Black Seas, and at high latitudes) are likely spurious as these regions 1 

were generally sampled fewer than 5 days during the entire period considered.  2 

4. Discussion 3 

While it is tempting to conclude that correlations between aerosol and cloud 4 

properties are due to indirect effects of aerosols, other explanations should also be 5 

considered. The results presented here suggest that large-scale meteorology is likely not a 6 

factor since identical distributions of several meteorological variables were obtained for 7 

both aerosol populations. An alternate interpretation of the results in Section 3 is that 8 

cloud contamination in the τa retrievals is responsible for the apparent aerosol-cloud 9 

correlations. For example, in regions of higher f within a 5°×5° region, cloud 10 

contamination may lead to higher τa, causing population II to be cloudier. However, Fig. 11 

2b and 2c show that the fine-mode fraction and Angstrom exponent are actually larger for 12 

population II, which does not support this hypothesis. If cloud contamination were the 13 

dominant reason for differences between populations I and II, one would expect popu-14 

lation II to have less fine-mode aerosols, not more.  15 

A critical parameter missing in this analysis is RH. Klein (1997) used 25-years of 16 

radiosonde data from ocean weather station November, located halfway between San 17 

Francisco and Hawaii, to investigate correlations between low cloud amount and several 18 

meteorological variables. He found that low cloud amount is positively correlated with 19 

RH in the cloud layer (~850–950 mb), and negatively correlated with RH immediately 20 

above the trade inversion. Similar conclusions were reached in Slingo (1980), Albrecht 21 

(1981), and Bretherton et al. (1995). At the same time, τa also increases with RH (Clarke 22 

et al., 2002). Thus, one could reasonably argue that the aerosol-cloud correlations 23 
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observed in the satellite observations are nothing more than the response of both the 1 

clouds and aerosols to changes in RH. Unfortunately, RH data from meteorological data 2 

assimilation models are unreliable due to poor boundary layer physics 3 

(parameterizations) in the models.  4 

To investigate theoretically if increasing RH can produce increases in Angstrom 5 

exponent similar to those in this study, we examine the effect of aerosol swelling on α 6 

and the effective radius (Hansen and Travis, 1974) for an aerosol size distribution 7 

representative of marine environments. We begin with a dry bimodal aerosol size 8 

distribution that is composed of ammonium sulfate in mode 1 and sea salt in mode 2: 9 

 (1) 10 
  11 
where Ci represents the modal volume concentration (accumulation or coarse), Ri is the 12 

median or geometric mean modal radius, and σi is the variance or width of each mode. 13 

The accumulation mode of our assumed size distribution has dry values of R1=0.106 µm 14 

and σ1=0.4; the coarse mode has dry values of R2=1.42 µm and σ2=0.78. These size 15 

distribution parameters are based upon the AERONET climatology at Ascension Island 16 

(Smirnov et al., 2002), located in the Southern Atlantic Ocean near the middle of our 17 

study area (i.e., 14.415° West, 7.976° South). The radii quoted here are slightly smaller 18 

than Smirnov et al. (2002) because the AERONET climatology represents wet aerosols. 19 

We arrived at our dry radii by assuming that the accumulation mode is composed of 20 

hydrated ammonium sulfate and that the coarse mode is composed of hydrated sea salt at 21 

a relative humidity of 70%. 22 
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We model the hygroscopic growth of these two modes using nine different 1 

accumulation mode fractions, as shown in Figure 6. We computed the Angstrom 2 

exponents using Mie theory (Wiscombe, 1980) and derived the wet aerosol refractive 3 

indices from a subroutine available at http://gacp.giss.nasa.gov/data_sets/ (courtesy of 4 

Andy Lacis). This subroutine uses the spectral refractive indices of dry ammonium 5 

sulfate (Toon et al., 1976) dry sea salt (Shettle and Fenn, 1979), and water (Hale and 6 

Querry, 1973) to compute the spectral refractive index of aqueous mixtures using the 7 

water activities and refractive indices at the 0.6328 µm wavelength (Tang and 8 

Munkelwitz, 1991,1994; Tang, 1996).  9 

We first consider the hygroscopic growth of the accumulation mode of this size 10 

distribution, which is shown in the upper left corner of Figure 6 (i.e., C1/(C1+C2)=1 ). In 11 

this case, the Angstrom exponent has a value of α=3 when RH=55%, and decreases to a 12 

value of α=1.7 when relative humidity increases to RH=99%. Hence, the Angstrom 13 

exponent decreases as the aerosol effective radius increases, which is consistent with 14 

conventional expectations (Angstrom, 1929; Schuster et al., 2006). Coarse mode growth 15 

does not have the same impact on the Angstrom exponent, however (i.e., C1/(C1+C2)=0  16 

in Figure 6). This is because the Mie extinction efficiency for the large coarse particles 17 

does not exhibit dramatic changes over the coarse particle size range. Finally, Figure 6 18 

indicates that bimodal mixtures of these two modes can result in Angstrom exponents 19 

that can either increase or decrease as aerosols swell, depending upon the initial 20 

accumulation mode fraction and relative humidity. In general, dry accumulation mode 21 

fractions of less than 0.6 tend to produce an increase in the Angstrom exponent as 22 

aerosols swell, while dry accumulation mode fractions greater than 0.8 tend to produce a 23 
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decrease in the Angstrom exponent as aerosols swell (for these lognormal parameters). 1 

We also note that bimodal distributions with a hygroscopic fine mode and a hydrophobic 2 

coarse mode (such as dust) can also produce increases in the Angstrom exponent as the 3 

fine mode swells (not shown).  4 

We can use these theoretical aerosol growth curves to understand how swelling 5 

might be responsible for the change in α that we observed in our South Atlantic study. 6 

Recall that the mean α ranges from 0.42 for population I to 0.62 for population II, which 7 

is indicated by the dashed lines in Figure 6. Hence, aerosol swelling can produce the 8 

observed δα between populations I and II if the dry accumulation mode fraction is about 9 

0.3 and the average relative humidity varies from 55 to 96% between the two regions. 10 

The same δα could also be achieved with our assumed size distributions over a much 11 

smaller difference in humidity (97-99%) if the dry accumulation mode fraction is only 12 

0.2 (of course, intermediate ranges of relative humidity are also possible with 13 

intermediate accumulation mode fractions). We also note that the wet accumulation mode 14 

fractions vary from 0.05 to 0.12 for this range of α and these size distributions (not 15 

shown), which is consistent with observations in that region (Quinn et al., 2001; Smirnov 16 

et al., 2002).  17 

Another possible explanation for the strong aerosol-cloud correlations in the 18 

satellite data is the so-called “cloud adjacency effect”, whereby cloud free pixels are 19 

brightened (or shadowed) by reflected light from surrounding clouds (Kobayashi et al., 20 

2000; Cahalan et al., 2001; Wen et al., 2001, 2006, 2007; Nikolaeva et al., 2005). Wen et 21 

al. (2006) used Monte Carlo simulations of TOA reflectance to show that the overall 22 

effect of clouds is to enhance the reflectance in clear regions leading to systematically 23 
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higher aerosol optical depth estimates for pixels closer to clouds. Furthermore, Wen et al. 1 

(2007) and Marshak et al. (2007) showed that the enhancement is more pronounced at 2 

shorter wavelengths leading to an apparent bluing of aerosols near clouds. Marshak et al. 3 

(2007) argue that the enhancement in the cloud-free column radiance comes from the 4 

enhanced Rayleigh scattering due to the presence of surrounding clouds. This 5 

interpretation would cause an apparent increase in η and α with cloud fraction, consistent 6 

with the results in Section 3.  7 

If Rayleigh scattering above the cloud layer is indeed responsible for the bluing of 8 

the aerosols at TOA, this may explain why the same effect is not observed at the surface 9 

by Koren et al. (2007). Using Aerosol Robotic global network (AERONET) data in the 10 

vicinity of clouds, they found that τa increased and α decreased with decreasing distance 11 

from a cloud, suggesting that aerosol particles become larger near clouds. Koren et al. 12 

(2007) also examined variations in MODIS spectral reflectances as a function of distance 13 

from a cloud. They found larger relative increases in reflectance with decreasing distance 14 

from a cloud at 2.1 µm than at 0.47 µm. We note that such relative changes in spectral 15 

reflectance don’t necessarily mean that Angstrom exponent and/or fine-mode fraction 16 

changed. As a test, we performed radiative transfer calculations using the coupled Ocean 17 

Atmosphere Radiative Transfer (COART) model (Jin et al., 2006) with maritime aerosols 18 

from Hess et al. (2005) at 0.55 µm aerosol optical depths of 0.05 and 0.15. We found that 19 

the relative reflectance difference at these two optical depths was five times larger at 2.1 20 

µm than at 0.47 µm with no change in aerosol size distribution. Cleary, a more 21 

meaningful comparison would be to examine variations in τa as a function of distance 22 

from the cloud at different wavelengths rather than relative reflectance. 23 
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5. Summary 1 

Satellite observations are used to examine aerosol-cloud relationships using a 2 

sampling strategy that minimizes the influence of large-scale meteorology on the aerosol-3 

cloud property comparisons. One month of CERES and MODIS aerosol, cloud and 4 

radiation data from September 2003 off the coast of Africa are considered. Each day, 5 

cloud and aerosol properties within individual 5°x5° regions are sorted into two 6 

populations according to whether aerosol optical depth retrievals in 1°x1° subregions are 7 

less than or greater than the 5°x5° regional mean aerosol optical depth. Distributions of 8 

meteorological, cloud, aerosol and radiative flux parameters are then compared for the 9 

two populations for all 5°x5° regions during the entire month. 10 

While distributions of several meteorological parameters (e.g., precipitable water, 11 

wind speed and direction, wind divergence, 750-1000 mb potential temperature 12 

difference, SST) showed no significant differences between the low and high aerosol 13 

optical depth populations, the cloud properties and TOA radiative fluxes showed marked 14 

differences. The population with larger aerosol optical depth had systematically higher 15 

cloud cover, liquid water path, and SW TOA flux. Temperature differences between sea-16 

surface temperature and cloud-top also were greater and the LW TOA flux was smaller, 17 

suggesting higher cloud tops. In addition, fine-mode fraction and Angstrom exponent 18 

were significantly larger for the high aerosol optical depth population, even though no 19 

evidence of systematic latitude or longitude gradients between the aerosol populations 20 

was observed. Repeating the analysis for all 5°×5° latitude-longitude regions over the 21 

global oceansafter removing cases in which significant meteorological differences 22 

were foundyielded similar results too those obtained off the African coast.  23 
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The lack of a meteorological explanation for the strong correlations should not be 1 

interpreted as evidence of aerosol enhancement of cloud cover. Other possible 2 

explanations include artifacts of the aerosol retrievals near clouds, aerosol swelling, in-3 

cloud processing, and particle production near clouds. Further research is needed to 4 

improve our understanding of these processes. 5 
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Figures 
Figure 1 Relative frequency distribution of (a) 750-1000 mb potential temperature 

difference; (b) precipitable water; (c) sea-surface temperature (SST); (d) wind 

speed; (e) wind divergence from QuikSCAT; (f) wind direction in all 5°x5° regions 

dominated by sulfate aerosol between 0°S-30°S, 50°W-10°E. 

Figure 2 Relative frequency distribution of (a) aerosol optical depth, (b) fine-mode 

fraction (fraction of the optical thickness contributed by fine aerosols), and (c) 

Angstrom exponent (from 0.55µm and 0.87 µm aerosol optical depths) for two 

populations of aerosol in all 5°x5° regions dominated by sulfate aerosol (according 

to MATCH) between 0°S-30°S, 50°W-10°E. Relative frequency distribution of the 

difference in (d) mean latitude and (e) mean longitude between the two aerosol 

populations in individual 5°x5° regions. 

Figure 3 Relative frequency distribution of (a) CERES SW TOA flux; (b) cloud fraction; 

(c) sea-surface minus cloud-top temperature; (d) effective radius; (e) liquid water 

path and (f) CERES LW TOA flux for single-layer low clouds in regions influenced 

primarily by sulfate aerosols (according to MATCH) between 0°S-30°S, 50°W-

10°E. 

Figure 4 Average (a) δre, (b) δf, (c) δτc, and δ(SST-Tc) for different intervals of δτa. Gray 

bars correspond to the number of 5º regions used to compute the averages in each 

δτa bin. 
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Figure 5 Differences in (a) cloud fraction and (b) aerosol fine-mode fraction for low and 

high aerosol optical depth areas within 5°×5° latitude-longitude regions over ocean. 

Gray color indicates no sampling. 

Figure 6 Impact of relative humidity on the aerosol angstrom exponent and effective 

radius for nine bimodal size distributions with different accumulation mode 

fractions (dry). Note that the Angstrom exponent can increase or decrease with 

respect to relative humidity, depending upon the details of the size distribution. 

Dashed lines represent the mean Angstrom exponents for populations I and II. 
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Tables 

Table 1 Mean values corresponding to the two populations defined in Section 2 from 1° 
gridded daily data. Also shown are the mean difference and 95% confidence interval 
in the difference, and the ratio of the mean difference to the 95% confidence interval 
(significant differences are shown in bold type). (τ

a
=aerosol optical depth; η

a
=fine-

mode fraction; α=Angstrom exponent; p
w
=precipitable water; w

s
=wind speed; wind 

direc=wind direction; wind_div=wind divergence; θ
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temperature difference; SST=Sea-surface temperature; SST-Tc=SST minus cloud-top 
temperature; F
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=longwave top-of-atmospere 

flux; f=cloud fraction; r
e
=droplet effective radius; LWP=liquid water path. 
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Figure 1 Relative frequency distribution of (a) 750-1000 mb potential temperature difference; (b) precipitable water;  
         (c) sea-surface temperature (SST); (d) wind speed; (e) wind divergence from QuikSCAT; (f) wind direction in all 5°x5°  
         regions dominated by sulfate aerosol between 0°S-30°S, 50°W-10°E. 
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Figure 2 Relative frequency distribution of (a) aerosol optical depth, (b) fine-mode fraction (fraction of the optical thickness  
      contributed by fine aerosols), and (c) Angstrom exponent (from 0.55μm and 0.87 μm aerosol optical depths) for two  
      populations of aerosol in all 5°x5° regions dominated by sulfate aerosol (according to MATCH) between 0°S-30°S, 50°W-

10°E. Relative frequency distribution of the difference in (d) mean latitude and (e) mean longitude between the two aerosol 
populations in individual  

      5°x5° regions. 
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Figure 3 Relative frequency distribution of (a) CERES SW TOA flux; (b) cloud fraction; (c) sea-surface minus cloud-top  
       temperature; (d) effective radius; (e) liquid water path and (f) CERES LW TOA flux for single-layer low clouds in regions  
       influenced primarily by sulfate aerosols (according to MATCH) between 0°S-30°S, 50°W-10°E. 
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Figure 4 Average (a) δre, (b) δf, (c) δτc, and δ(SST-Tc) for different intervals of δτa. Gray bars correspond to the number of 5º regions used 
to compute the averages in each δτa  bin.  
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Figure 5 Differences in (a) cloud fraction and (b) aerosol fine-mode fraction for low and high aerosol optical depth areas  
       within 5°×5° latitude-longitude regions over ocean. Gray color indicates no sampling. 
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Figure 6  Impact of relative humidity on the aerosol angstrom exponent and effective radius for nine bimodal size distributions with 
different accumulation mode fractions (dry). Note that the Angstrom exponent can increase or decrease with respect to relative humidity, 
depending upon the details of the size distribution. Dashed lines represent the mean Angstrom exponents for populations I and II. 
 


