


TABLE OF CONTENTS 

Page . 
SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

ITaTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

DESCRIPTION OF SYSTEM . . . . . . . . . . . . . . . . . . . . . . .  5 

CALIBRATION OF SYSTEM COMPONENTS . . . . . . . . . . . . . . . . .  6 

Displacement ~ y r o s  . . . . . . . . . . . . . . . . . . . . . . .  6 

Ti . . . . . . . . . . . . . . . . . . . . . . . . . . .  Rate Gyros I 

. . . . . . . . . . . . . . . . . . . .  Dynanic measurements 7 

Steady-state measurements . . . . . . . . . . . . . . . . . .  7 

Amplifier Gain . . . . . . . . . . . . . . . . . . . . . . . . .  8 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  Servo Gain 8 

Sens i t iv i ty  and Rate Potentiometers . . . . . . . . . . . . . .  9 

. . . .  FREQUENCY-BXSPONSE CmCTERISTICS OF COl!TROL SERVO SYSTEM 9 

Frequency-Response Measurements Using a Sinusoidal- 
Voltage Input . . . . . . . . . . . . . . . . . . . . . . . .  9 

Equipment . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

. . . . . . . . . . . . . . . . . . . . . .  Accuracy of data 10 

. . . . . . . . . . .  Elec t r ica l  and mechanical d i f f i cu l t i e s  11 

. . . . . . . . . . . . . . . .  Measurement of gearing factor  12 

. . . . . . . . . . . . . . . . . .  Frequency response curves 12 

. . . . . . . . . . . . . . . . . . . . . . . . .  Bench t e s t s  13 

. . . . . . . . . . . . . . . . .  Elevator-system ground t e s t s  13 

. . . . . . . . . . . . . . . . . .  Effect of sens i t iv i ty  13 

. . . . . . . . . . . . . . . .  Effect of s~mfaca loading 14 

. . . . . . . . . . . .  Effect of input-voltage magnitude 14 

@$ p p ppp@qf 'g $qp/ v ~ ~ p p $ . p v y ~ @ $ f f $ .  / , . $ @ & / A &  6 $ < $ $  

p .,$ p2.. g :  " " " , . @yppi&?y ... "- ,Pjqfl/, . $gFg I .  
8 , 7 I ; ,  

32y:k .,M8. +fl re &,... T ~ .  pp? k 6  J g y & g & . 5 5 P ~  3 * k d h d B  $: 



Page 
Aileron-system ground t e s t s  . . . . . . . . . . . . . . . . .  15 

. . . . . . . . . . . . . . . . . .  Effect of sens i t iv i ty  16 

. . . . . . . . . . . . . . . . . . . .  Effect of loading 16 

. . . . . . . . . . . .  Effect of input-voltage magnitude 16 

. . . . . . . . . . . . . . . . .  Ruddsr-systam ground t e s t s  16 

. . . . . . . . . . . . . . . . . .  Effect of sens i t iv i ty  17 

E f f e c t o f l o a d  . . . . . . . . . . . . . . . . . . . . . .  17 

. . . . . . . . . . . .  Effect of input-voltage magnitude 17 

Frequency-Response Measurements With Oscillating Vortical . . . . . . . . . . . . . . . . . . . . .  andRate+jro 1nput;s 17 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  Pitch 18 

. . . . . . . . . . . . . . . . . . . . . . .  Trensient Response 18 

AlXALYSIS OF DmPPMIC CHARACTERISTICS OF EKEVATOR CHANNEL . . . . . .  19 

Autopilot Frequency and Transient Response With . . . . . . . . . . . . . . . . . . . . .  Displacement Signal 19 

. . . . . . . . . . . . . . . .  Calculation of e r ror  voltage 19 

. . . . . . . . . . . . . .  Calculation of open-loop response 20 

. . . . . . . . . . .  Determination of servo=-system constants 22 

. . . . .  Servo-system constants from closed.. loop response 23 

. . . . . .  Servo-system constants f r o m  opan-loop response 23 

Servo-systcm constants from transient  response . . . . . .  23 

comparison US constants determined by various methods . . 27 

. . . . . . . . . .  Opes-loop servo system t ransfer  function 28 

Comparison of experimental and theore t ica l  response curves . 30 

. . . . . . . . . . . .  Corngarison of 3ench and ground t e s t s  31 

Calculation of frequzncy response for  any value of 



Page . 
Axtopilot Frequency Response With Displacement a ~ d  

Rate Signals . . . . . . . . . . . . . . . . . . . . . . . . .  34 

. . . . . . . . . . . . . .  Calculation of response with r z t e  31t 

. . . . . . . . . . . . .  Determimtion of rate-gyro sigrial. 35 

. . . . . . . . .  C ~ z l c u l ~ t i o n  of error  voltage with r ~ t e  signa.1 36 

Comparison of calculated and measured responses . . . . . . .  37 

Elevcztor Coatrol Czble Response . . . . . . . . . . . . . . . .  37 

. . . . . . . . . . . . . .  AKA-LYSES OF AILERON AID BUDDER CHANNEM 38 

CONCLmING REbiXRIS . . . . .  ; . . . . . . . . . . . . . . . . . .  39 

EEFmNmS . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 
lABX;E I 

FIGIJRZ LEGXNDS 

F LGURES 



I?ATIONAL AW ISORY COMMITTEE .FOR AEROIPIUTICS 

RESEARCH MEMORANDUM 

fo r  the 

Bureau of i2eronautics, Navy Dezartment 

DYiUMIC RESPONSE OF CONTROL SERVO SYSTEM IPEZALD I N  

NIUS-EQUIPIJED S B 2 C 3  A1RPLAE.B C B ~  NO. + 83135) 

By Lo~ris  3 ,  Smf:us md  Elvood C . Stewart 

Dyl?aaic--respo,~se measurements for  various coi~dit:oi-1s of displace- 
me;!t and sa t e  s j.g?.al i iqu t  , sens i t iv i ty  settiilg, a~ld  simulated hinge 
inomeat were made of the three control-surface servo systems of ail 
l?Al1S-equipped remote-controlled airplwe while cm the  gro1un.d. The 
basic components of the servo systems are  thas'e of the General Elec t r ic  
Company type G-1 autopilot using e l e c t r i c a l  'signal. sources, solenoid- 
operated valves, aad hydraulic pistons. Tkie t e s t  procedures and 
d i f f i c u l t i e s  are aiscussed, Both frequency and transient-response data, 
are presented and comparisons a re  made. The constarrtis describing the 
servo system, the undemped natural  frequency, and the damping ratio,are 
determined by several methods. The resppnse af the system with the 
addition of airframe r a t e  s ignal  is  calculated. The t ransfer  function 
of the elevator surface, linkage, and cable system i s  obtained. The 
agreement between various methods of mea6uremnt and calculation i s  
considered very good. The aata  are  c o q l e t e  enough and i n  such form 
t h a t  they m a y  be used d i rec t ly  with the  frequency-resp0ns.e data of an 
airplane t o  predict  the s t a b i l i t y  of the  autopilot-airplauze combination. 

INTRODUCTION 

A radio-remote-controlled SB2C-5 airplane, BuAer No, 83135, has 
been loaned by the Bureau of Aeronautics, Navy Department, t o t h e  Ames 
Aeronautical Laboratory of the NACA fo r  an intensive evaluation of the 
control system, The radio-control iznd s tab i l iza t ion  equipment was 
develxlped and ins ta l led  by the Naval A i r  Experimental Station, 
Philadelphia, Pa. 

The airplane i s  s tabi l ized by an automatic p i lo t  sensit ive t o  
airplane a t t i tude  and r z t e  of change of a t t i t ude ,  Comnand signals 



transmitted t o  the airplane by radio act  t o  introduce voltages into the 
servo signal c i rcui ts  t o  cause the airplane, through the automatic pilot, 
t o  assume the desired ~ t t i t u d e s .  For satisfactory perf ormace under 
remote control, the servo systems of the autopilot must provide stable 
control of thc: airplane for  a l l  f l igh t  conditions and manewers includ- 
ing tnke-of f and l ad ing .  

In evaluating the performance and s tab i l i ty  of the system, it has 
been planned t o  determine the responses of the autopilot and of the 
airplane separately, t o  combine them mathematically, and t a  cempare the 
resul t  with the aeasured response of the autopilot--airplane combination, 
This report is concerned with the detailed measurements and calculations 
fo r  the autopilot systom only, with the airplane on the ground, 

Sta t ic  measurements of the various autopilot compenents were f i r s t  
made t o  obtain the i r  values f o r  use i n  l a t e r  calculatians and t o  d e t e r  
m5ne the l inear  operating range of the system. 

Frequency md transient-response measurements for  various condi- 
t ions of input signal amplitude, sensi t ivi ty setting, and hinge moment 
were then made and the effect  of the control surface, linkage, and 
cable system, hereinafter referred t o  as the linkage system, was deter- 
mined, The effect  of airframe ra te  signal, i n  addition t o  the displaee- 
men* signal, also was experimentally determined, 

From these data it was then possible t o  make numerous calculations 
which ei ther  simplified the t e s t  procedure, afforded a check of the 
resul ts ,  or defined the system i n  terms of constants, Where these cal- 
culations are not covered i n  servo l i te ra ture ,  the necessary equations 
are fu l ly  derived i n  the text .  In  all cases the application of servo 
theory t o  a practical case i s  clearly shown. 

Tne value of error  voltage a t  which the servo-system operation 
becomes nonlinear was  determined from the s t a t i c  measurements, A 
method fo r  calculating the error  voltage as a function of frequency fo r  
a given input signal amplitude is given. Thus, it was possible t o  
u t i l i ze  an input signal fo r  which the servo remained i n  the l inear  range 
of operation, which i s  a necessary requirement for l inear  theory calcula- 
tions. No attempt i s  made i n  t h i s  report t o  analyze effects of nan- 
l ineari ty.  

The open-loop trtznsfer function of the servo was determined and it 
was found tha t  the system i s  closely represented by a second-order 
d i f ferent ia l  equation. Thus,it may be defined i n  terms of two constants, 
the undamped natural frequency md the damping r ~ t i o ,  Methods are given 
for  the determination of these constants from which the equation of the 
system i s  written. This not only affords a useful method of system 
analysis but, since the equation represents values of a pract ical  a d  
existing servo, it is  also useful for  theoret ical  studies of airframe- 
autopilot s tabi l i ty .  Comparisons of the frequency-response curves arc 
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made f o r  (1 )  the theore t ica l  second-order system, (2) the system as 
a ins ta l led  i n  the airplane, and (3)  the bench setup i n  which control- 

surface linkage is  absent. A useful formula f o r  determining the fre- 
quency response f o r  any desired value of sens i t iv i ty  from the  
measured response a t  a par t icular  sens i t iv i ty  se t t ing  i s  given. 

A method i s  developed f o r  calculating the frequency responses 
with various amounts of airframe r a t e  signal from the measured 
response of the system with sine-wave input and from the dynamic 
response of the  r a t e  gyro. 

Finally, the  frequency response cf the control.-surface linkage 
system was determined. Thus, the response of the surface t o  the 
servo-system inpu'c signal m a y  be calculated d i rec t ly  from the  basic 
servmystern response. 

A vector t ransfer  function, output over input 

A, vector t ransfer  function of amplifier 

Am vector t ransfer  function of servo valve and actuator 

Arm vector t ransfer  function of r a t e  gyro fo r  maximum excitation 

f frequency, cycles per second 

I algebraic sum of servo-transfer-valve currents 

k, aql i f ier-s tat ic-gain constant, milliamperes per vol t  

kf f ol101,~-up constant, vo l t s  per inch of servo displacement f o r  
f u l l  e::citat ion 

kg gyro constant, vol ts  per degree 

km servo-valve and actuator-static-gain constant, inches per second 
per milliampere 



$ rate-gyro constant, vol ts  per cycle per second per degree 
0s c i l l a t  ion 

kt, amplifier-servo-velocity constant, secondm1 

Kc linkage-system constant, surface deflection per uni t  servo t ravel ,  
degrees per inch 

M peak-amplitude r a t i o  of frequency response 

Pa attenuat Lon of amplifier attenua.t or, dimens ionles s 

Pf attenuation of follow-up voltage, percent (actual sens i t iv i ty  ) 

Pr r a t e  attenuation, percent (actual r a t e )  

R general symbol f o r  dimensionless amplitude ra t io ;  absence of 

subscript denotes amplitude r a t i o  of servo response fg) 
\ v 

R f r  amplitude r a t i o  of servo response with the addition of input 
r a t e  s ignal  

T t i m e  constant of servo system 

ve error  signal of servo system, input t o  amplifier attequator, 
vo l t s  

ver  e r ror  signal of semo system with addition of r a t e  signal, 
vo l t s  

vf follow-up selsyn output modified-by sens i t iv i ty  set t ing,  vol ts  

v follow-up selsyn output modified by sens i t iv i ty  se t t ing  with 
f r  addi t ionof  r a t e  s igna l ,vo l t s  

vg displacemnt-gyro output, vo l t s  

vi t e s t  input signcl, vo l t s  

v, rate-gyro output modified by r a t e  set t ing,  vol ts  

6 con t ro lau r f  ace deflect ion, degrees 

6 servo displacement, inches 

tze phase angle of ve r e l a t ive  t o  vi., degrees 



~f phase angle of vf re la t ive  t o  v i ,  degrees 

E f r  phase angle of vfr re la t ive  t o  'Pi, degrees 

er phsse angle of r a t e  gyro, vr re la t ive  t o  v i ,  degrees 

5 dampingratio 

8 angle of pitch, degrees 

u angular frequency, radians per second 

0% angular frequency a t  which the break between -6 and -12 decibel 
per octave slopes occurs on an open-loop frequency-response plot 

._JM angular frequency of peak-amplitude ra t io ,  M 

c undamped natural  angular frequency '+ angular frequency of t ransient  osci l la t ions 

DESCRIPTION OF SYSTEM 

The components of the servo system are basically those of the 
General Elec t r ic  Company type G-1 autopilot consisting of e l ec t r i ca l ly  
driven displacement and r a t e  gyros, selsyn-type pickoffs t o  provide 
400-cycle signals, a t'nree-channel electronic amplifier, solsnoid- 
operated valves, a;nd hydraulic pis ton servos operated a t  160 pounds 
per square inch, Tne maximum output force available a t  t h i s  pressure 
i s  about 250 pouiids . The servos are  attached t o  the control-surface 
cables a t  points qui te  f a r  removed from the surfaces themselves. A 
block diagram of one channel of the  system ( l a s s  remote control and 
t r i m  compoiients ) is shown i n  f igure 1. 

The s ignal  c i r cu i t  is  shown schematically i n  figure 2. Thc ampli- 
f i e r  delivers a balanced output current t o  the  two co i l s  of the  
control-valve solenoid under s t a t i c  operation. Changes of input s ignal  
vary the r a t i o  of current i n  the two co i l s  causing the  valve stem t o  
move proportionally i n  one direct ion or the other. The follow-up selsyn 
is ,a t tached d i rec t ly  t o  the servo output shaft  and i ts  exci tat ion i s  
varied by means of a potentiometer labeled "Sensitivity" and graduated 
from 0 t o  100. High ~ a m i t i v i t y  (high-scale reading) implies a large 
exci ta t ion volt~ge and a resul tant  small surface and servo movement t o  
c a c e 1  out any given gyro -input voltage. 

A signal derived from airplane r a t e  of pitch, r o l l ,  o r  yaw by 
means of a r a t e  gyro i s  available i n  the appropriate channel. A 



potentibmeter labeled "Rate" controls the amount of r a t e  signal used and 
is  graduated from 0 t o  100, defining the  percent of exci ta t ion voltage 
used on the pickoff ( a  transducer whith produces m e lec t r i ca l  sigml 
proportional t o  a mechanical movement). 

The "speed" and  rim" signals shown l n  f i g w e  2 were not used in 
these t e s t s ,  

CALl33RATION O% SPSTEM COMPONENTS 

Displ-acement Gyros 

The ve r t i ca l  (pi tch and r o l l )  and direct ional  (yaw) displacement 
gyros were calibrated i n  terms of volt  output from the selsyn pickoffs 
per degree displacement. The gyros were mouated on rotatable tables  
which could be s e t  within 0.1'. The voltage was read with a Ballantine 
vacuum-tube voltmeter. A s  was t o  be expected, readings much below lo 
were mecmingless due t o  the presence of a quadrature voltage. It is  t o  
be noted that t h i s  quadrature voltage has l i t t l e  e f fec t  on the opera- 
t i o n  of the servo since the a q l i f i e r  is responsive only t o  signals i n  
phase or 180~ out of phaso with thr; primmy 400-cycles-per-second supply, 

It was part icular ly d i f f i c u l t  t o  obtain good data Srom the pitch 
pickoff of tho ve r t i ca l  gyro becnuse of small random osci l la t ions of 
the  gyro i n  pi tch and e l e c t r i c a l  noise apparently originating i n  the 
gyro motor. The measurements of the gyro i n  pitch were mde with a 
0.5 microfarad condenser across the output as is norm,lly used i n  the 
WE5 system f o r  phase correction, 

It is  well t o n o t s a t  t h i s  point t h a t  the gyro constmts,  as well as 
513. other pickoff const,mts, %re materially affected by the v d u c  of 
condensers placed across t h e i r  output, These condensers Dxe ususlly 
added a f t e r  the autopilot i n s t a l l a t ion  has been mdc i n  order t o  correct 
the  rhnse of t h a  40O-cps voltage a d  theref ore are usuctlly neglected in 
the iritial design of the system. I n  the case of the pitch-gyro pickoff, 
the adC.ed condenser a,pproximiltely doubled the  output voltcge . Eence it 
is  very important tha t  the finst1 cal ibrat ion of gickoffs be mde i n  the 
system as ins ta l led  i n  the a i rp lme  with a l l  components connected for 
normzl operat ion. 

Over the ranges tested the output voltage varied l inear ly  with 
displacement. The ranges covered f o r  pitch, r o l l ,  tuld yaw axes were, 
respectively, +30°, +16O, and kg0. Values of the gyro   on st ants are 
as follows: 
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Pitch - 0.51 vol t  per degree 

Roll  - .56 volt  per degree 

Yaw - .50 volt  per degree 

Rate Gyros 

Dynamic measurements.- The frequency responses f o r  the r a t e  gyros 
P 

were determined by osc i l la t ing  the gyros sinusoidally on a table  driven 
by a rela%ively long crank arm and a variable-speed transmission. This 
mechanical app~.ratus i s  shown i n  figure 3. An input of +lo was used up 
t o  a frequency of 2 cps, the region of primary interest .  Sl ight ly 
beyond 2 cps, f o r  t h i s  input, the gyro gimbal h i t  i t s  mechanical stops. 
The resonant frequency of the osc i l la t ing  tab le  was found t o  be around 
13 cps so t h a t  i t s  effect  a t  2 cps was negligible, The amplitude 
mensurements were made by comparing the peak of the modulated 400-cps 
sef-s-yn p ickoff  voltage on an oscilloscope t o  tha t  from a constant 
400-cps voltage source. The phase was found from an oscillograph 
record of the  modulated kO+cps voltage output, the zero phase refer- 
ence coming from a cont8ctor, m&ed on the osc i l la t ing  table,  which 
providod a mark on the oscillograph reeord when the table  was  a t  zero 
posit  ion. 

The frequency-response data f o r  the r a t e  gyros are presented i n  
f igures  4(s), (b),  a d  ( c ) .  Thd phase eagle of only the pitch-rate 
gyro was measured and it should be noted thrzt t h i s  angle was not qui te  
90'. Since the  gyros are s l igh t ly  unsymmtrical, two amplitude curves 
are  given f o r  the two directions of motion, 

The frequency response of a r a t e  gyro over a wider range i s  of 
some in teres t  m d  i s  shown i n  f igure 5 f o r  the roll-rate gyro. This 
curve was obtained with the rocking tab le  apparatus using a very 
small input amplitude of the order of a;?proximately 0.1'. The ,gyro 
is extremely underdamped and has i ts  resonznt frequency a t  4.5 cps. 
It w i l l  be noted thct  the response does not f a l l  off as  sharply ss 
might be expected a t  5 cps and above. This phenomenon was  caused by 
the e f fec t  of the t ab le  resonance mentioned previously. 

Steady-state measurements.- The pitch- androll-rate gyros were - 
a lso  calibrc~ted on a rotat ing tab le  with variable-speed s2lections. 
The output-voltage character is t ics  are shown i n  figures 6 (a )  and (b)  . 
A sl-ight difference i n  absolute output w i l l  be noted f o r  opposite 
directions of ro ta t ion  zlthough the slopes, which me the only concern 
here, are very nearly alike.  In  addition, the calibrations are not 
perfectly s t ra ight  l ines.  



Obviously, it is  possible t o  predict the frequency response from 
the steady-state data, neglecting the effect of resonance. This was 
done, taking into sccount the nonlinear steady-state curves by using 
thc  s tedy-state  cal ibrat ion value corresponding t o  the penk r a t e  of 
pi tch a t  each frequency considered. The peak r a t e  of pi tch was used 
since the peck value of voltage was measured i n  determining the fre- 
quency response experimentally. The nonlinearity of the steady-state 
cal ibrat ion means t h c t  the output voltage w i l l  not be exactly sinusoi- 
d a l  &d tha t  the calculated frequency response w i l l  not be qui te  l inear.  
Agreement of experimental and calculated r e su l t s  is shown i n  figures 
4(e) rtnd (b)  m d  is  f a i r l y  good up t o  the higher frequencies where reso- 
nmce ef fec ts  occur. 

Amplifier Gain 

The ,amplifier gain f o r  each of the three channels wns determined 
by reading the differences between output currents t o  the  valve sole- 
noids fo r  var-ious inp~~tvo l t ages .  Plots  f o r  the three channels are  
shown i n  figure 7. For each chmnel the slope of the l inecr  portion of 
the  curve represents the gsin of the amplifier, the aversge value of 
which is, t o  two significant figures, 350 millicmperes por vol t .  The 
l inea r  r'mge of the 'amplifier i s  of pa,rmount interest .  Inspection of 
these curves shows tha t  the amplifier is l i z e a r  within 10 percent over 
c?. rznge of approximately 30.10 volt .  The above values apply when the 
Lmplif i e r  goin coatrol  i s  s e t  a t  maximum. I n  generd ,  the  system i s  
opzrated with tho gcin a t  minimum which introduces za zttenuation 
fac tor  of 0.29. Thus, with minimum gcdn set t lng,  cm input signal of 
S .35  volt  mc,y be used without exceeding the l inear  rmge of the c.mpli- 
f ier.  AS w i l l  be secn from the next paragrGph, the amplifier is  the 
f 2rs.t element t o  saturEte and thus bceomes the l imiting component of the 
servo system with respect t o  l ineari ty .  

Servo Gain 

The gcin of the valve-servo combination was obtnined i n  terms of 
the  servo speed versus solsnoid unbalance current. The speed was 
determined by recording, on a Bmsh oscillogrzph, the output of a pick- 
off attached t o  the servo piston shaft .  Pen posit ion on the oscillo- 
graph was cclibrated against servo posit ion. Unbalance currents were 
applied t o  the solenoids and t h e  servo allowed t o  assume a steady speed. 
A plot  of the r e su l t s  i s  shown i n  f igure 8. The gzin i s  l inear  over 
the  maximum available range of unbalance currents from 0 t o  50 m i l l i e  
pcres ead has a v d u e  of 0.050 inch per second per millizs~pere. The 
m2;;irmun available stroke of the  p i s ton  is  approximately f2  inches. 



Sens i t iv i ty  a,nd Rate Potcntiom~ters 

The sens i t iv i ty  (follo~q-up) md r z t e  potentiometers i n  the ndfust- 
ment u ~ i t  on the SB2C-5 airplane were c a l i b r ~ t e d  by menswing the out- 
put voltage as a function of d i d  se t t ing  fo r  112 vol ts  excit.ztion. 
Tile voltage values were reduced t o  percentnges of f u l l  exci ta t ion r,ad 
definctd as ?ctual s ens i t iv i t i e s  or  r a t e s ,  Tho re1t.tionshlp of din1 
se t t ing  t o  actual  sens i t iv i ty  is  shorn i n  f igure 9 f o r  the scnsitiv- 
i t y  potew~tiomtsrs. As e m  be seen, t h f s  relationship is  not linecx 
over the r a g e  considered, The r ~ t e  potentiometers were somewhct more 
15.nen.r and t h c i r  celibrctions are shown i n  figure 10. The sensit ivi-  
t i c s  pad r?tes  which w i l l  be reforred t o  throughout t h i s  report m e  the 
actual values, t h a t  is, percen-k of f u l l  exci ta t ion (112 vol t s )  ra ther  
them d fa l  sett ings.  

The r e l a t  i o n s h i ~  between the follow-up selsyn ou tpu t  voltage fo r  
fuJ-3. exci ta t ion znd %he servo motion i s  defined as and wes found 
t o  be 3.4.0  volt^ per inch, The linkage system constant kc expressed 
as the s t a t i c  r z t i o  of surface deflection $0 servo displace~ient fo r  
each of the charnels was four~a t o  be 

Elevator -- 15.6~ per inch 

Aileron - ~ 3 . 7 ~  ( t o t a l )  per inch 

Rudder - 14.7O per inch 

3';-equer~ey-idesponse Measurements Using a Sinusoidal- 
Volt age Input 

Equipment.- For frequsncy-response t e s t s  of the servo system a 
400-cps siglral voltrzge, the a p l i t u d e  of which vzried sinusoidall;jr, was 
infxoduced i n  ser ies  with the follow-up selsyn and the c ~ q l i f i e r  input 
with the remainillg s f g ~ ~ a l  so-drces shorted out ,is i s  equivalent t o  
breaking (and e l ec t r i ca l ly  grounding) the  system a t  point {(a) i n  fig- 
ure 2. With t h i s  comection, the closed-loop response i s  obtained. 

The sine4,rz,xre s ignal  generator cons i s t ed  of a yrecision autosyn 
driven by a constant-speed motor through a ball-disc vzriable-speed 
drive mechanism. A cpakoperated switch was provided end adjusted t o  
make oontsct a t  a poiat of zero a ~ t  osyn output voltage once every 
cycle t o  serve as ,ci, pliass reference mrk .  



Selsyn pickoffs of the type used i n  the  autopilot were mounted on 
the servo piston shaft  ( i n  tandem with the fol low~up sclsyn) a t  point 
(a) of figure 1 and a t  the control surface, point (b )  of figure 1. The 
400-cps output voltage of each selsyn pickoff was r ec t i f i ed  by a bridge 
c i r cu i t  comprised of two 1 ~ 4 8  germanium diodes and two res i s tors ,  passed 
tlzrough a low-pass f i l t e r  avld fed t o  a Brush direct-current amplifier 
an6 osc i l logr~ph.  Itwwas found necessary, f o r  recording purposes, t o  
replace the Holt zer4abot  400-cycle, 3-phase, 75WA inverter used i n  
the SB2C-5 airplcvlc with one having be t t e r  wave form. A Leland inverter 
of th s  same ra t ing  was used. !%is change of inverters had negligible 
e f fec t  on the  frequency response of the autopilot although, when an 
inverter with s t i l l  poorer wave form was used, the servo response was 
observed t o  bc def in i te ly  sluggish by comparison, 

The device used t o  s i m l a t e  hinge moment consisted of s lever act- 
ing on a rod i n  torsion. 1: 3/8-inch s t e e l  rod was r ig id ly  c l ~ q c d  zt 
one end. A t  paother point along the rod, depending oa the  load t o  be 
simulated, one end of the lever arm was c l3~ped.  Bell-bewing supports 
were then m0vi.d t o  e i ther  side of the lever arm t o  support the rod. The 
other end of the lever arm wcts coupled t o  the control surfece through c?. 

connecting rod i n  such a m e r  th3.t the l a t t e r  was essent ia l ly  2.t r igh t  
~ n g l c s  t o  both the lever zrm crnd the chord of the control surface, thus 
minimizing ~ w y  nonlinecrity between rod tlnd control-surface deflection, 
This resulted i n  a smooth md  l inea r  rclc"-tion between load and surface 
deflection with liogligible increase i n  i n e r t i a  of the control system 
and with no deed spot a t  zero loading. A photograph of the apparc.tus i s  
shown i n  figure 11. 

Accwacg of do,ta.- Thc cccurncy of cmplitude mezsurements is  depend- 
e n t  on both the piczoff o i r cu i t  and the recording circuib;. For the  
f i r s t  fnctor,  the  servo n ~ d  surfme-positlon pxc~offs ,  i n  combination 
with t h e i r  r ec t i f i e r s  and f i l t e r s ,  were calibrated i n  term of surface 
gosition. The f i l t e r  direct-current output, in vol ts ,  was read with a 
Rhodes potentiometer voltmeter (accuracy of 1/4 percent ) while the 
surfnce posit ion was measured with a bubble protr~?ctar  t o  within 0.1'. 
Linearity within 1 percent was obtained over the working range, which 
was limited t o  small angles of pickoff ro ta t ion  (several degrees of sur- 
face deflection). Tests made of the Brush amplifier and oscillograph 
showed an accuracy of 12 peroent i n  amplitude f o r  90 percent of the 
rezdings; t h i s  figure includes effects  of gain change and d r i f t  i n  the 
oscillograph m p l i f i e r  md  resolution of the  oscillograph trace.  Thus, 
an over-a11 accuracy of the pickoff and oscillograph combination be t t e r  
than t 3  percen* was achieved f o r  the amplitude measurements. 

The accuracy of phcse mecsurements cemot be s tated i n  simple per- 
centage terms since It depends on several factors,  such as oscillogra!.ph- 
paper speed, sine-wave frequency, end the magnitude of the phase angle, 
It i s  possible t o  s e t  the phase reference marker i n  the sine-wave g e n e r r  
t o r  t o  within .+lo. There is  a possible e r ror  of +2O a t  the lowest fre- 
quencies, which diminishes t o  l e s s  than 'lo at 1 cps ?did above as a 



r e s u l t  of choosing the zero amplitude l i n e  which determines the zero 
point on the output sine wave t o  be compared with the phcase marker. 
Finally,  there  is  m error  due t o  the l imiting accuracy with which it 
i s  possible t o  measure. It was found t o  be best expressed as approxi- 
mately +2O per cycle per second up t o  a frequency of nearly 1 cps. 
Beyond t h i s  frequency, because of change i n  paper speed and increasing 
phase-lag angle, the percent e r ror  i n  phcse-angle measurement rapid12 
decreases. Thus, a t  0.1 cps the m?ximum t o t a l  e r ror  i n  phase mgle  
might ba k3O c a d  a t  1.0 CPS, 24.0~.  

It is  d i f f i c u l t  t o  assess the accuracy with which large quantit ies 
of data are read, but the poss ib i l i ty  of errors  restllting from t h i s  
process must be considered i n  the f i n d .  accuracy. New of the zbove 
errors ,  however, including those incurred i n  reading the data, are  of a 
random n~.ture and hence the  accuracy of the curves, which lame been 
fairer2 thro2gh experimental points, should be reason,sbly close t o  the 
vs1u.e~ given zbovo. Ths general accuracy of data i s  shown by Y E  small 
dispersion of experir~zentnl points i n  several of the frequency-response 
cur'CTe s . 

Elec t r ica l  and mech?,nicnl d i f f i cu l t i e s  ,- Numerous minor d i f f  icul- 
t i e s  were encountered i n  determining the autopilot response. In gen- 
e ra l ,  the over-all performace wns not great ly  affected by these trou- 
bles  but mensurements nnd ~ m l y s i s  were aade d i f f i cu l t  . Some of these 
troubles are ~elztioiled here t o  i a d i c ~ t e  the so r t  of f2ctors tha t  must 
bc rzckoned with ir, order t o  be cer ta in  tha t  the desired performance is  
being obtained. Poor wave form of n 4 0 ~ - c ~ c l c  i n v e ~ t ~ r  has already 
been mentioned. 

It wns found tha t  the amplif i e r  perform~icc was m,t~riaU~r cffectcd 
by the  tubes used. Rcndorn select iox of tubes produced, i n  some cnses, 
12rgc unbnlnncc currents i n  the zmplifier output. While the t r i m  volt- 
rbge could b~ adjusted t o  coxpensate fo r  the unbalance, the systen w2s 
no lor-ger opcr?;biizg i n  the l inear  rmge for  one direction of motion. 
It w2s thus necess;1.ry t o  t r y  sevcrnl tu3es t o  achieve ra ?,pproximtely 
balrzced output. 'Phis coi~dition could ccusc serious d i f f i cu l ty  if the 
systorn verc: opcr:~ted a t  close t o  m i m u x  sens i t iv i ty  i n  order t o  obtzin 
optimum p~rform~nci?,  as w i l l  be shown l c t e r .  

A smcbll mount of plcy ex i s t s  i n  the levor mech,mism connecting 
the follow-~7.p solsjrn ill the elevator cuto--trin follow-up box t o  th.2 
servo pistoa. When the rncchazisn wc?s replaced by a single lover with 
no :zp>z~.ent plzy, It 1z7.s found t h A  the systen could be oper2ted r-t a 
higher grain ( sens i t iv i ty  se t t ing)  thmz previously r~ i thout  incurring 
staady oscil lntion. However, there wzs negligible diffcronce i n  thct 
frequency rcsponso o,t p ~ s c t i c a l  sensitivity sc t t inss .  

A sililil3;~ c o n d i t i o ~  w3.s encountered with respeck t o  w , v i ~ - 1 1 ~  time 
of the system, The sens i t iv i ty  could be se t  progressively higher with- 
out osc i l l s t ion  with the passing of time up t o  sevcr-1 hours. Again, 



however, the. difference i n  the t ransient  a d  frequency response a t  prac- 
t i c a l  s ens i t iv i t i e s  was negligible a f t e r  3. b r i e i  warm-up time of, sc-y, 
30 minutes. 

A serious trouble thz t  proved very d i f f i cu l t  t o  find, due t o  the 
smvll notions involved, was encountered i n  the  aileron system. With a 
sine-wave s ignzl  input t o  the servo system-, the cileron surfnce pro- 
duced a f lat-topped s iae-wave output. It was found thc t  a f l a t  spot 
hcd been worn on the aileron torque tube where the servo-driven horn wns 
attached resul t ing i n  appreciable backlcsh. That section of the torque 
tube was replaced, corqletely el ininat ing the  trouble, 

The rudder output was c badly dis tor ted sine wave. The trouble was 
due mainly t o  the rudder-servo horn linkage and mounting. The deck t o  
which the horn wzs attached was strengthened and the  whole assenbly 
tightened. The performnvlce was iq roved  5ut not t o  the extent desired. 
Some of the rcwdining d i f f i cu l ty  is  due t o  the f l e x i b i l i t y  of the link- 

systen and t o  the eccentric connection of the servo piston shaft  t o  
the horn, but it was not considered jus t i f ied  i n  t h i s  instance t o  make 
t h i s  or other possible improvements. 

Measurement of g e a i n g  factor.- For each frequency-response run, 
the  s t a t i c  values of servo m d  surf ace output motions were determined 
f o r  the given input e l ec t r i ca l  signal.  The fac tor  re la t ing  these q u a -  
t i t i e s  i s  termed the gearing fac tor  and is given i n  inches per vol t  a d  
degrees per vol t  f o r  servo and surface, respectively. The resul%s of 
these measurements are graphed i n  figures 12(a),  (b), and (c)  f o r  the 
elevator, a i lera?,  and rudder channels, respect ivexy. Cons idcrat ion of 
f igure 1 indicates tha t  the gearing factor  is inversely proportional t o  
the  actual  sensi t tvi ty ,  which i s  borne out; i n  the curves presented. 

It my be seen from thc: plots  tha t  the elevator and rudder-surf ace 
g e ~ r i n g  factors  i n  pr.,rticular are  considerably reducad when the surfaces 
a re  subjected t o  loads simulating hinge noments. Quantitative values of 
load f o r  the maximum--load condition are given l a t e r .  Measurements of the  
sercro gearing factors  vider load were not made, but study of additional 
dzta  not presented indicated t h a t  most of the  difference i s  due t o  the 
linl<~.g;e systems. 1% i s  important t h a t  the change i n  gearing factors  
under 1oa.d be taken in to  consideration when de-terrilining gearings f o r  the 
nut opilot-ciirf rmnc combinat ion. 

Frequency response curves.-- Tho frequency-response datz presented 
i n  the following sections are shown i n  the form of phase angles a d  
nondimens ional &plitudo r a t  i os p lo t  t cd against f rcqucncy,  he phase 
znglc is  the angle by which the  output wave lags (or leads)  the input 
wave, being ncgstive f o r  lagging ~tngles and posit ive f o r  leading angles, 
The amplitude r a t i o  i s  the  r a t i o  of sorvo or  surface Cmplitude a t  any 
given frcwency t o  the respective amplitude at zero frequency fo r  a 
constmt araplitude s ine-wave input; s ignal  . Thus, it is a dimens ionles s 
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quantity and must be multiplied by the gearing fector, which is  depend- 
ent on sens i t iv i ty  sett ing, i n  order t o  determine the actual output 
nmgnitude. Thus, the  actual output magnitude of e i ther  servo or sur- 
face i s  the product of the amplitude r a t io ,  the gearing given i n  
figure 12, m d  the input voltage. 

Beach tests.-  One chcannel of the servo system wczs s e t  up on a. 
bench i n  the lcborartory, par t ly  t o  become f ~ a i l i a r  with the system 
before tes t ing  it i n  the airplane md part ly  t o  compare the  response 
under labor a t  ory conditions with tha t  obtained when ins t  a l led  i n  the 
airplane. Control-surface i n e r t i a  m d  hinge moment were not simulsted. 

It was found tha t  the amplifier output currents were somewhat 
unequal fo r  zero input signal so t h c t  a balzncing c i r cu i t  was added i n  
one of the cathode c i r cu i t s  t o  bring the currents t o  brs1:ince. This wcs 
do-m only on the bench t e s t s  since t r i m  potentiometers occompl-ish the 
scme r e s c l t  i n  the airplane. 

Frequency-response runs of the  servo output were made f o r  a lzrge 
rcnga of sensi t i - r i t ies  apd i.nput voltages, These data w i l l  not be pre- 
sented separately, but typ icc l  runs w i l l  be shown i n  com2r~rison wlth 
the airplcine ground-test runs l a t e r  i n  the report .  

Elevat or-system ground t e s t s  ,- Tae elevzt or system was very 
I___ 

thoroughly inves-t'igated i n  the ' c i r p l m e  on the ground i n  order t o  deter- 
nine the rcl2tivu iruportrmce of severd vzriables. The three variybles 
under invest igzt  ion were ( 1) sens i t iv i ty ,  (2)  surface l o d i n g ,  itnd 
( 3) illput signal mgnituds. Frequency -response c h ~ x ~ c t e r i & i c s  of tho 
servo cad e lev t~tor  sWfcc.ce were rnwsured f o r  s c v c r ~ l  v n l ~ ~ c s  of sensi- 
t i v i t y  ranging from 24 t o  63 percent f o r  four diffcrcnt  losdings, 2nd 
f o r  i: Ember of input signals rctnging betwsen 0.115 :-ad 1.56 vol ts .  
Dctn m e  prcsoatod i n  figurus I 3  t o  16, inclusive, rad grouped i n  
m~m?,er t o  show thc ef fec ts  of the v ~ r i ~ ~ b l a s .  Tbs r,r,r=lysis of tho system 
based on th2se c-mves is prcsentod lc.ter, 

For mcnsu.rin,g the e f fec ts  of sens i t iv i ty  and lo3ding, the i l l p ~ t  
sign32 used ~r2.s of a low enough vnluc not t o  cause ( ~ J T  s ~ t u r o t i o n  of tha 
zmpllfier. The offect  of szturat ion is covsred mdcr the section on 
variat ion of i n p t .  

1. Eff2c"cf sens i t iv i ty  .- FLgu3-es 13(n) sznd (b)  show the servo 
3.nd surf acc res>onscs, respectively, t o  a sine-w1,ve input s ig,r.-.,l 
t o  the servo system f o r  nctusl  s ens i t iv i t i e s  of 24, 33, 42, 52, 
and 63 percent. The input s igncl  was k0.115 vol t ,  corresponding 
%o rtpproxirmtely + 1/4O of pitch, and the surface T T ~ S  not loaded. 
A sens i t iv i ty  of 76 percent wr~s found t o  be s l ight ly  unstcble nt 
cer ta in  frequencies 2nd i s  not shown. It m y  be noticed that ,  
while there is n large c h q e  i n  response ct the htgh frequenctes 
3s bet~reea different  sens i t iv i ty  se t t ings  , therz is sn rtlmost 
ncgliglble c h a g e  below 1 cps. Such difference as docs ex i s t  is 



i n  fcvor of the  highest sens i t iv i ty  se t t ing  because of the s l igh t ly  
improved response (reduced amplitude r a t i o  and phase lag)  i n  the 
l a t t e r  region, 

If figures 13(a)  m d  ( b )  are compared, it may be noted tha t  the 
surface frequoiicy response is  qui te  different  from the servo 
response. This difference, the e f fec t  of e l a s t i c i t y  i n  the ccble 
connection between servo snd surface, is more clear ly shown i n  
figures l4(a) ,  (b) ,  and ( c )  where the servo a d  surface responses 
are ;plotted together on the same graph f o r  each of three sentit iv- 
i t i e s ,  namely, 24, 42, and 63 percent. Again it is seen tha t  the 
differences we qui te  small below 1 cps, but rapidly increase a t  
higher frequencies. 

The ef fec t  of the elevator-control-cable resonance near 5 cps I s  
shown on both servo and surface response curves. The ef fec t  on the 
surface response: i s  very great compared t o  the e f fec t  on the sersTo 
response which exhibits only a s l igh t  leveling off i n  the amplttude 
curve and a peak i n  the phase curve. These effects  t r i l l  be dis- 
cussed i n  d e t a i l  l a t e r .  

- 
2.  Effect - of surface loading.- Frequency-response runs were mde 
fo r  sever.>l values of simulc.ted-surf ace hinge moment i n  cddition 
t o  the no-lond runs. The m;tximum lo& used-wes 20 foot-pounds per 
degree e l ev~ , to r  deflection corresponding roughly t o  cm airspeed of 
200 h o t s  on the SB2C+ a i rp lme.  Since the differences between 
various loadings rzre not great,  f igures 15(a) ,  (b) ,  (c ) ,  and (d) 
compere only the no-load rznd mnxim~wload conditions for  save ;fad 
surface a t  seil-sitivities of 24 :md 42 perceat ~t an input of '0,115 
vol t .  While thz difference i n  irmplitude r a t i o  and phase l cg  i s  
not very grc3-t under the two lozding conditions, it my wxrmt 
consideration i n  cpplying the data, depending on the frequency 
of in te res t .  It my be noticed tha t  the  servo response f o r  the 
loaded case does not exhibit  the  peaking of phase and leveling of 
~rnplitude z t  high frequencies as i n  the no-locd czse. For the 
surfzce-respo~ise curves the application of lozd ccuses XCI increzsc 
i n  the frequency 2% which the e l evz to r -~on t ro~cnb le  system 
affects  the ~implitude and phase. 

The data for  figures 15(a) ,  (b), ( c ) ,  md (d)  were taken at a 
l d e r  time thoxi the runs presented i n  figures 13(a) ?ad (b) .  Tne 
ne-locld servo responses were nearly ident ica l  f o r  the  two se t s  of 
curves, but it should be noted tha t  the  surface responses were 
somewhat differeat  because the tension of the elevator-control 
cable had been cl tered between these t w o  t e s t s .  

3. Effect of input-voltage magnitude.- Figures 16(a),  (b), ( c ) ,  
2nd (d)  show the ef fec t  on the frequency response of a variat ion 
of input voltage of k0.20, 0.39, 0r78, nd 1156 vol ts  f o r  senei- 
t i v i t i e s  of 26 nnd 56 percent a t  no load. These inputs correspond 
t o  approximixtelr f 3/B0, 3/b0, 1-1/2O, cznd 3' of .gyro displacement. 



Figures 16(e) and ( f )  show the ef fec t  under maximum load and a t  a 
sens i t iv i ty  of 41 percent. This particulclx range of inputs was 
chosen t o  study the e f fec ts  of satur3,tion. Pa r t i a l  plots  of the 
calculzted -or voltage, or input t o  the amplifier, Ere d s o  
shown on the curves f o r  the servo response only t o  indic-xte the 
frequency a t  which the system departs from l inear i ty  by 10 percent 
due t o  p a r t i d  szturation of the amplifier. 

It would be expected t h a t  the  responses f o r  different  inputs 
should be essent ial ly  the scam i n  the region where the  system 
ren2ins i n  the l inear  o p ~ r c ~ t i n g  range; tha t  is, where the input 
t o  the gclin control of the 'amplifier does not rmkerially exceed 
0.35 vol t ,  ,ma should not d i f f e r  appreciably u n t i l  the error  
voltage has considerably exceeded the  nonlinsar level. mis is  
borne out by the curves presented. Thus, for  prc2ctlcd purposes 
involving c3lc1fi~t ions fo r  airfrnme-iiutopilot s t ab i l i t y ,  the l i m i t  
of error  voltsge may be extended somewhct. 

It be noticed tha t  the  values of sens i t iv i ty  2nd input 
s ignal  used i n  t h i s  investigstion m e  different  from those values 
i n  the two preceding sections. This was duo t o  cn appzrent chmge 
i n  g ~ i n  of the system for  these t e s t s .  When the wore f i r s t  
checked it was found tha t  t& responses of these runs did not agree 
with thoso of s i m i 1 t . r  runs taken f o r  other investigations. Analy- 
sis of the d2ta by comparing the  amplitude ~ n d  phase responses, the 
frequenciss of the amplitude r a t i o  pecks, and the c ~ ~ l c u l n t e d  o-pen- 
loop responses revealed thxt  the  difference between the responses 
i n  0.11 c2ses corresponded t o  an incroase i n  gain f o r  the condition 
of these runs by Fn fac tor  of about 1.7. This gain change was 
traced t o  the f ortrard gain c i r c u i t  ( composed of amplif ier-gain 
potentiometer, amplifier, and servo) since the gain of the  feed- 
back c i r cu i t  ( composed of the follow-up uni t  and sens i t iv i ty  
potentiometer) was found t o  be ident ical  i n  all t e s t s .  The source 
of the trouble was due very probably t o  the amplifier-gain control 
having been accidentally displaced from i ts  normal minimum p ~ s i t i o n .  
For comparison purposes, however, it is  necessary tha t  the forward 
gain be ident ical  i n  a11 tes-bs. The response for  the system i n  
which the gain potentiometer was not a t  i t s  minimwn value i s  iden- 
t i c a l  t o  tha t  of the system with a minimum-gain se t t ing  and a 1.7 
factor  increase i n  values of s zns it iv i ty ,  input-s ignal amplitude, 
and er ror  voltnge. This correction has been applied t o  the values 
given i n  f iguzne 16, 

Aileron-system ground, tests.-  After an excanination of the elevator 
data it was found tnat such a complete coverage of the three variables, 
sens i t iv i ty ,  loading, and input, was not necessary f o r  the aileron and 
rudder channels. Three sens i t iv i ty  set t ings were considered t o  be 
suf f ic ien t  t o  covcr the range of in te res t .  Because of the snail ef fec ts  
fou.nd i n  the elevztor channel, it w a s  dccfded t o  simulate only two lo ld  
conditions. An input-signal value was chosen which did not cause . 



saturat ion below 2 cps ( the region of in te res t  f o r  the autopilot-airplane 
combination). This was determined by br ief  t e s t s  and c,dculation of the 
e r ro r  voltage a t  2 cps. The calculation of e r ror  voltage is described in 
the  Ana lp i s  section of t h i s  report. An additional input of very lmge  
nagnitude was  a l so  investigated. Since the  principal region of in t e res t  
l i e s  i n  the frequency spectrum below 2 cps, of the ai leron runs are 
plot ted only out t o  tha t  frequency. 

1, Effect of s e n s i t i v i a -  The responses of the ai leron c h a e l  
fo r sens i t iv i t i e s  of 26, 44, and 65 percent a re  shown i n  figures 
17(a) a d  (b )  f o r  the servo and the surface, respectively. The 
input signal used was S.275 vol t  corresponding t o  *1/2O of r o l l .  
As was the case with the elevator channel, there is  l i t t l e  differ- 
ence i n  r e su l t s  between sens i t iv i t i e s  below 1 cps, but such differ- 
ence as 'chere is favors the  highest sens i t iv i ty  se t t ing  because ef 
i t s  s l igh t ly  reduced amplitude r a t i o  and phase lag. In contrast 
with the elevetor data already presented, effects  of the aileron 
linkagc system on the servo and surface responses ere minor over 
the frequelcy range t a s t ed  (up t o  10 cps). 

2. Effect of loading.- The effects of surface loading are  shown 
i n  h g u r e s  1812) pad (b)  fo r  servo and surface 8% n sens i t iv i ty  
se t t ing  of 4.4 percent cmd an input of 20.275 volt .  While two 
values of loading were tested,  only the  maxifim-lond condition is 
compared t o  the no-load d ~ t a  since there is  l i t t l e  e f fec t  from the 
lo&. This maximum load was taken as 12  foot-pounds per degree 
ai leron deflection corresponding roughly t o  an airspeed of 200 knots * 

i n  the SB2C-5 airplane. Up t o  frequency of 2 cps, which i s  the 
upper l i m i t  of the lozded curves, the differeslce between no locd 
nnd m ~ i m u m  l o ~ d  m y  be seen t o  be negligible. The ef fec t  was no 
greater  at  other sens i t iv i t i e s  . 
3. Effect of input-voltage magnitude.- As ms s ta ted  previously, 
it was possible t o  choose an input voltage tha t  would not szturate  
the sysiem ill the region below 2 cps; t h i s  value was taken as 
0.275 volt ,  or zpproximtely 1/2O. To show the effect  of a large 
signal which does saturate  the system at low frequencies an mpli-- 
tude of 1.65 volts,  or approximately 3O, was used. The responses 
under these two input conditions are  conpared i n  f igure 19 fo r  
servo and surface with no load. The er ror  voltage is  a lso  plot ted 
i n  t h i s  figure t o  indicate the frequency a t  which the system 
becomes nonlinear. The effect  of magnitude of input signal with 
maximum hinge tlioment was essent ial ly  the  same as with no load a.nd 
i s  not presented since it has been shown tha t  the  addition of load 
has negligible effect  up t o  2 cps. 

Rudder-system - grouuld tests.-  A s  has been discussed previously, 
t he  rudder response was qui te  d is tor ted  from a pure sine wave, thus ma* 
ing analysis of the data d i f f i c u l t .  Only part  of the data taken are 
presented here. 
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In  general, the same conclusions as were reached on the  elevator 
and ai leron channels regarding ef fec ts  of sensi t ivi ty ,  load, and input 
magnitude are val id  f o r  the rudder channel. Again, the s ignal  ampli- 
tude chosen, +a. 25 volt ,  corresponding t o  about *1/2', did not cause 
s~,tura;t ion of the system i n  the region below 2 cps. 

1. Effect  of sensitivity.- The responses f o r  sens i t iv i ty  set t ings 
02 24, 42, and 62 percent are  shown i n  figures 20(a) and (b) f o r  
servo and surface, respectively, a t  an input of *0.25 vol t .  The 
response of the rudder surface a t  a sens i t iv i ty  of 62 percent was 
so  badly dis-torted t h a t  it was not consiaered worth-while t o  evalu- 
a t e  the data. It may be noted tha t  the e f fec ts  of the rudder- 
linkage system are very pronounced. 

2. Effect of load.- The responses under maxiam load are compared 
with the no-load data i n  figures 21(a) and (b)  f o r  the servo and 
surf ilce at an input of f 0.25 volt .  The m c x i m  load was taken sts 
19 foot-pounds per degree rudder deflection, again corresponding 
t o  an airspeed of 200 knots, The effect  of load i s  moderate on the 
servo response, but is very pronounced on the surface response 
zbove a frequency of 1 cps , 

,3. Effect of i~rn t - t ro l t2ge  m~gnitude,- The servo response f o r  a 
large signal input, 1.0 vol t  or  2O, is  comp8,red with tha t  f o r  
k0.25 vol t  input i n  figure 22 nt s sens i t iv i ty  of 42 percent. 
Plots of the e r ror  voltage arc  a l so  shown t o  indicnte the frequency 
a t  which satx.1rc7,tion occurs. The surface response Tor the large input 
s ignal  was too dis tor ted t o  evcluate the data. 

Frequency+csponse Measurements With Oscillating 
Ver t ica l  and Rate-Gyro Inputs 

I n  order t o  determine experimentally the response of the system 
with both displace~uent and r a t e  signals, it w a s  necessary t o  osc i l la te  
mechanically %he displacement and r a t e  gyros instead of using a, syn- 
t h e t i c  input signal. These gyros were mounted on the osc i l la t ing  tab le  
apparatus previously described ( f ig .  3). The signal c i r cu i t  was then 
the same as i n  the normal autopilot i n s t a l l a t ion  ( f ig .  2) .  ~ e s t s  were 
made art actual r a t e  set t ings of 8, 20, and 31 percent f o r  the elevator 
and 7.2, 18, and 27 percent f o r  the  ai leron channels which covered the  
range of pract ical  set t ings used i n  f l i g h t .  

The frequency range was r e s t r i c t ed  from B.1 cps t o  2 cps only f o r  
two reasons. The er ror  voltage reached saturation before 2 cps for  the 
lowest r a t e  se t t ing  used ( r a t e  of 8). In addition, as has been pointed 
otrt before, the e f fec t  of the tab le  resonanco is negligible a t  2 cps but 
becomes progressively worse f o r  higher frequencies. 



Pitch.- The f i r s t  t e s t  was  made with the  vertical-gyro-elevator- 
c h m a l  pickoff fed  through i ts two-phase transformer as the displace- 
sent input. With the osc i l la t ing  tab le  a t  a s tands t i l l ,  it was noted 
t h ~ t  the gyro output was quite unsteady, causing a j i t t e r y  surface 
li?ovement. An overhaul of the gyro showed tha t  the damper used i n  the 
erection systeln was dir ty .  Cleaning t h i s  damper made a def in i te  
improvement i n  the gyro behavior. Nevertheless, when the  t e s t  was t r i e d  
agzin, the surface was s t i l l  j i t t e ry .  The d i f f i cu l ty  appeared inherent 
i n  the  e l e c t r i c a l  system rznd was traced t o  an e lec t r i ca l  interact ion 
between the gyro motor exci ta t ion and the  servo system. Disconnecting 
t h i s  exci tz t ion (phase 3) stopped the j i t t e r i n g  completely. The t e s t  
could hme been performed by opening the  motor excitation each time 
before taking dcta except f o r  excessive gyro d r i f t  with the power off.  
Therefore, the vc r t i ca l  gyro was reoriented by go0 and the aileron- 
chc7mel pickoff was used i n  place of the elevator-channel pickoff. The 
surface response wns then qui te  good and the previous interaction was 
absent. 

Fi-gurcs 23(%?) ,and ( 3 )  show D11e resul tcnt  experimental responses 
f o r  this t c s t  f o r  actual ra tes  of 8, 20, and 31 percent. The f irst  
thing t o  notice is  tho improvement i n  the phase-angle response which 
now shows lezd instcadi of lag  over most of the frequency mange of inter- 
e s t .  It w i l l  a lso be noticed t h a t  the  amplitude r a t i o  increases very 
rcpidly both with increasing rszto potentiometer se t t ing  and with fre- 
quency, tending t o  pa r t i a l ly  neutrclize the beneficial  e f fec ts  of leading 
phcse a ~ g l e .  

Roll.- 80 d i f f i cu l t i e s  were experienced i n  the aileron-channel 
t c s t s .  The resu l t s  are shown i n  figure 24 for  ac.t;unl ra tes  of 7.2, 18, 
and 27 percen*. The scm comen-t;s us were mnde with reference t o  the 
p i tch  channel cpply h ~ r e  as well, 

Transient Response 

In  general, t ransient  responses t o  a s tep  input s ignal  were recorded 
f o r  a11 conditioas f o r  which frequency runs were made. The teckinique 
eraployed was t o  leave the sine-wave generator i n  a fixed posit ion a t  the  
desired input voltage a d  t o  alternately- short  and unshort the input 
voltage t o  obtein both polar t t ies  of t ransients ,  A t-ypical s e t  of tran- 
s ien ts  f o r  the elevctor-channel servo and surface is  shown i n  figure 25 
f o r  ac tu r l  s ens i t iv i t i e s  of 24, 42, and 63 percent each f o r  an input 
s t ep  magnitude of 0.115 volt .  Results Elnd analysis of ,dl trensient  
t e s t s  ere presented i n  a l a t e r  section. 
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ANALYSIS OF DPNAMIC CHARACTERISTICS OF ELEXATOR CEJANNEL 

Autopilot Frequency and Transient Response 
With Displacement S i g n d  

For purposes of calculations involving the autopilot, it i s  desir- 
able t o  know the analytic expressions which represent the system 
response and t o  show how closely these expressions simulate the experi- 
mental t e s t s .  In  t h i s  way servo performance is  not o-nly put into more 
compact form, but operation can be predicted f o r  values of parameters 
not specif ical ly  tes ted.  The desired expressions, therefore, w i l l  be 
derived i n  the following sections. 

Calculation of e r ror  voltage.- In general, calculations from 
frequency-response dcta are  based on l inear  relationships and the data 
must, therefore, be taken over the l inea r  operating rmge of the system. 
A s  has been previously shown, an er ror  voltage input t o  the attenuator 
of the servo amplifier i n  excess of 0.35 vol t ,  b i t h  the amplifier s e t  
for  minimum gain, caused the  system t o  aepart from l inear  operation. It 
becomes necessary, then, t o  calculate t h i s  e r ro r  voltage t o  determine 
the frequency range of l inear  operation f o r  each condition. This can be 
done by using the measured frequency response as  fo l lo??~:  

With reference t o  figure 1, the  basic input equation f o r  the servo 
system alone ( i n  which case vi = vB\ is  

where ve a d  vf are vector quant i t ies  with phase angles re la t ive  t o  
the vector v i .  

The amplitude r a t i o  and phase angle of the  scrvo-system closed-loop 
response m y  be represented by R and ~ f ,  respectively. A s  previoukly 
defined, then, fo r  a constant input signal 

where 6, is the servo motion. 

This equation may be put in to  a more convenient form by two simpli- 
fying r e l ~ t i o ~ i s h i p s .  F i r s t ,  since the l inear  range of t11e pickoffs i s  
never exceeded in  these t e s t s ,  vf = klBs where kl is  a constant. 
Second, a t  zero frequency the e r ror  voltage is  negligible so tha t  

rV 

( v ~ ) ~ , ~  - V i a  Therefore, equation (2)  reduces t o  



The phase angle ef is  defined ss posit ive when vf leads v i  and 
:aeg~Aive when vf lags vi. 

Then - vc - vi - vi ~ e " f  

and 

wlm re  

= (v, - viR cos ef) - J(V$R s i n  e f )  

R s i n  f f  
-3, 

E, = -tan 
1-3 cos Ef 

Only the mgnitudc of ve i s  of in te res t  hcrc. Inspection of eque- 
t i o n  ( 3 )  sh~ws t h a t  fo r  s glvsn input s ignal  thz error  voltage increases 
as th2 closed-loop responso mzgnitude and phase c , ~ g l ~  increzsc. Thus, 
f o r  the condit-ioil of disp1a.cemen-b s igru l  only, the e r ror  voltags w i l l  be 
smll a t  verj7 !!ow frequencies and increase t o  P. peak nc2.r the resoncost 
frequerlcy. Ultimz"coly, a t  high frequencies where th@ rcsponse 
dininishcs t o  zero, the e r ror  voltnge approaches the input volt2ge. 

The variat ioa of the  erro? voltcge is  plotted on sorne frequency- 
rcsponse curves; wboreas on others where no plot i s  given it my  be 
assumed t h a t  f o r  the cn t i re  response the e r ror  voltage does not reach 
the l imiting value f o r  l i nec r i ty  . 

Celculr.tion 02 open-loop response.- The order of the d i f f e ren t i a l  - 
equation which governs the response over the frequency range of interest  
may be determined from the open-loop character is t ic  which expresses the 
relationship between output and input with the loop opened, tha t  is, 
with the f olios+-up voltage disconnected from the amplifier attenuator 
input. This i s  equivalent t o  the r a t i o  of output t o  e r ror  vf/ve i n  
the closed-loop case and hence my be calculated fromthe closed-loop 
frequency-response curves. It i s  generally not feasible t o  measure 
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the opcil-.loop response direct ly .  This is  duz t o  the largo and iwracti=- 
c a l  a~:lplj.tudes a t  lo:.? frequencies and a lso  beceuse of irkoront d r i f t  i n  
=n open-looptype system. The method of calculation is giver, s :~~sc . j - -  
qwnt ly  and nust  be coxfkmd t o  those frequency-response curves en t i re ly  
i n  tlia l i n ~ a r  range. 

Refarring t o  the preceding section and dividing equa%ion (3)  by 
equ~2:ion ( 5 )  gives 

or, i n  decibels, 

~ n d  a phase a11gI.e of E -. E 
f e  

Fron equations (4)  and ( 5 ) ,  

E = --sin-l f I4 e .. s i n  Ef 
1 J X + R ~  - m coos ef 

S~bst i . tu t ing  equahion (7)  i n  (9)  yields 
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The phase angle of vf/ve is  therefore 

'Y Vf -\, 
illgie , - 1 = cf -+ sinw1 (121 s i n  c f )  

\ ve 1' 

The clevator-channel, open-loop, frequency-response char-cteristic was 
calculated by means of equations (8) and (10) from the closed-loop fre- 
quency-response data of figure l 3 ( a )  fo r  sens i t iv i t i e s  of 24 and 1 ~ 2  per- 
ce;?t. The open-loop res2onse i s  plotted i n  figure 26. Slopes of -6 db 
and -12 db Fer octave represent, respectively, the effect  of terms of 
the f i r s t  and second ord-er i n  the  denominator of thf: t ransfer  function 
(reference 1, p. 241). It may be seen from these curves tha t  a second- 
order diTferential  equation i s  obeyed f a i r l y  closely as shown by the 
qui te  def ini te  slopes of -6 and -12 db per octave. On the basis of t h i s  
analysis, seconci-order d i f f e ren t i a l  equations may be used satis-factorily 
f o r  calcul2.t i o ~ s  . 

The t rue  posiLion of the two slopes may be d i f f i c u l t  t o  locate pre- 
c i sc ly  f o r  sevcral reasons. A t  low frequencies the accurecy might be 
expocted t o  be poor, since, as may 5e soen i n  equation (7), whn R % 1 
ELnd cosr f f  xl, vf/vC3 i s  extremely c r i t i c a l  t o  small e r rors  i n  R or 
q. In addition, the slope f a l l s  off from the -6 value because the 
origins1 closcd-loop phase angle did not l cve l  off a t  zero angle, d.de t o  
londing of the servo 3s describvd i n  a l s t e r  scction comparing experi- 
mental and theoretical responses. In equat-ion ( 7 ) ,  then, it may be seen 
th2.t too large n phase angle Ef would cause a f a l l i ng  off of the 

f rcsponse vf/ve. A t  high frequencies, on the othcr hand, where R < <1, 
the i2ccurac~r ]nay e lso  bc expected t o  be poor. AE R approaches zero, 
log vf/v, (set eq~~.c,tion ( 8 ) )  becomes larga negativc1~- and n sccrtter of 
po-irits ~y be ob~er7~ed because of the d i f f icu l ty  of ~ocsur ing  small 
valuc;s or" R ;7,ccurately. In addition, the reaction of the elevator- 
control systen oxi the servo, which Secomes appreciable a t  sens i t iv i ty  
set t ings a3ove 42 percent, lmy cmse LI, departure from the s t raight  l ines  
i n  n narrow freq~xeiicy band around 5 cps. 

It m2;- be lioted tha t  the ve r t i ca l  spacing between the gain curves 
should equal the r a t i o  of sens i t iv i t i e s  expressed i n  decibels. This 
spacilig should, therefore, be  bout 4.8 db which i s  recsonnbljj close t o  
the actual  value of about 4 db. 

Deterraim'tion or' servo system constants,- Since 5t  has been deter- 
minsd t h ~ t  thc servo system imder study boho.vcs as a second-order system, 
j.ts cliarsctcristics cctn be defined fo r  szntilybical purposes i n  terms of 
two constcnts , the damping ra t io ,  and con, the undtlinped nntural 
angulcr frequcncy. The actual  n ~ ~ n e r t c a l  valucs cEn be determined i n  n 
iiumbcr of ways which offer eucellcn% checks against each other. Evalua- 
t i o l s  call bc; made from e i ther  the closed-loop freqaency response, from 
thz open-loop rGsponso, or from trcnsient  dart;o.. These methods f 0 1 1 0 ~  

with numori c a l  vnlues tczbulntud i n  tzb12 I .  
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1. Servo-system constants from closed-loop response .- Servo theory 
fo r  a second-order equation (reference 1, p. 107) shows tha t  the 
resonant angular frequency aM and thhc peak height ht of the 
closed-loop response are  given by 

from which the two unknowns f; and % may be calculated fo r  given 
values of M and ($1. Equations (11) and (12) were applied t o  the 
responses f o r  sens i t iv i t i e s  24 through 63 percent sham i n  figure 
13(a) 

2. Servo-sgstcm constants from open-loop response.- It i s  a lso - 
possible t o  f ind  ( and un from the open-loop plots  already dis- 
cussed, i n  which case the values ultimately de~end  upon many points 
on the closed-loop f requency-response curve rather  than upon the 
values a t  the point of peak responFe only. It can be shown (refer- 
ence 2, p.222) tha t  the intersect ion of the -12 db per octave slope 
with the zero decibel l ine  occurs a t  con and tha t  5 = %/wn 
where wb i s  the frequency a t  which the break between the -6 and 
-12 db per octave slope occurs. 

As has been pointed out, portions of the open-loop curve are  
subject t o  appreciable e r ror  so tha t  the exact posit ion of the two 
slopes i s  not easy t o  determine accurately. Hence, the system 
values detarmined from the open-loop curves m5gh.t be expected t o  be 
inaccurcte. The values for  i n  t h i s  casc were not too consistent 
with thosi: obtained by other methods although the :% values agreed 
sa t i s fac tor i ly .  

3. Servc-system c o n s t ~ n t s  f r o n t r a n s i e n t  rosponsc.- The constants 
of t h i s  systcm can a lso  be determined qui te  simply from the tran- 
s ient  stap-input data. For { <1 it has been shown in  servo 
l i t e ra tu re  (reference 1, pp. 4 8 3 1 )  tha t  the  basic t ransient  cqus.-- 
t i o n  i s  

where 



24 

Since 

then 

3. ( t )  = 1 - ( t )  

v f e - b n t  s i n  (,mint / J1-c2 + a 
-- 

- ( t )  = 1 - 
J1--rg 

(15 

For i l l u s t r a t ive  purposes a t r m s i e n t  sketch represented by equa- 
t i o n  (13) is  shown as follows: 

If the' daaping r a t ios  a re  low enough so t h s t  the output tran- 
s ient  consists of several osci l la t ions,  equation (15) can be us& 
di rec t ly  t o  evaluate 5 and % since the frequency of the tran- 
s ien t  osci l la t ions i s  

and the exponential envelope is  e-c%t . Direct measurement 
cxf % md the determination of k k  fr om points on the envelop  
curve a t  two different times is  then suff ic ient  t o  f ind the tIro 
unknowns. 
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Pract ical  sens i t iv i ty  set t ings,  however, usually do not exhibit  
enough osci l la t ions t o  permit d i rec t  measurement of at or t o  
accurately define the envelope. I n  such cases, wn and ot may 
be determfned from the peak heights as long as a t  l eas t  one peak 
appears, For t h i s  purpose it w i l l  be necessary t o  f ind  the times 
a t  which peaks of the osci l la t ions occur by equating the derivative 
of equation (15) with respect t o  ant t o  zero. 

.os (,,, J1Z-c .'; = I, 
.\ 

s i n  A-F + 0' 
JZ /' 

Comparison of equa%ions (16) and (14) indicates that  

fo r  consecutive maxima and minima. A t  the  values defined by equa- 
t i o n  (17), the respo-nse of equation (15) i s  

Vf e-Sant -- ( t , n )  = 1. - s i n  (nn: + 0) 
v i rn 

For a l l  values of n ( including zero) 

- 
/- -1 ~ I - I , ~  

sin(nrr + o) = (-1)" s i n  o = (-1)" s i n  ( t a n  ~, 

'=. 5 1 
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Therefore, equation (18) reduces t o  

Equation ( 2 0 )  may be expressed i n  terms of only by substi- 
tu t ing  f o r  %t from equation (17). Then, fo r  the upper envelope 
of peaks defined by odd values of n, 

- nrr 
_C__ 

where - 

Yn = e ( n  odd) 

from which can be solved as follows : 

Thus f; can be calculated from equation ( 23) by measuring yn a t  
a known-order peak. It must be remembered tha t  i n  the previous 
t ransient  sketch y, is defined as the percentage of overshoot in 
terms of the f i n a l  value since the f i n a l  valus is  unity. Then the 
value of f, can be found from equation (17) as 



Thus 5 and f n  canbe  foundby measuring y and tn f o r  a 
par t icular  value of n and solving equations P23) and (24). 
Obviously th5s method is  applicable t o  a l l  sens i t iv i ty  set t ings 
fo r  which a t  l eas t  one output overshoot ex is t s .  It can be applied 
t o  successive peaks of the osci l la t ions although each t r i a l  should 
give the same values. The spread i n  theso values i s  indiccted i n  
tab le  I. 

In  the actual  analysis of the t ransients ,  several e f fec ts  caused 
uneirpected changes i n  t ransient  response and they w i l l  be mentionea 
only br ief ly .  F i r s t ,  opposite servo or surface deflections were 
found t o  define inconsistent 5; values, probably becGuse of 
unequal 10ad~ngs i n  these two directions,  Second, the above incon- 
sistency was ~ iegl ig ib le  a t  low, but ;lot a t  high, sens i t iv i t ies .  A 
study of the relationship defined by equation (23) shows tha t  a 
small difference i n  overshoot for  high damping rEt ios  (low sensi- 
t i v i t y )  has negligible e f fec t  on the determinatioa of 5; compared 
t o  thz t  f o r  101.r dap ing  r a t ios  where the effect  i s  magnified. 
Third, the value of as  evaluated a t  successive peaks appecrs 
t o  decrecsc, prob2bly bemuse of blacklnsh. 

4. Compzrison of constants determined by various methods.- Table I - 
shows the comp~rison of system constants as4determined by the afore- 
mentioned methods. In  addit ion, the  values obtaiaed from n "best 
fit" theoret ical  curve are shown, It i s  known from servo theory 
t h a t  con i s  d i rec t ly  proportional t o  and 5 i s  inversely propor- 
t i ona l  t o  the square root of tho over-a11 gaia factor  of the open 
loop. In t h i s  case the gain fac tor  is  proportional t o  Pf SO tha t  

ideal ly  is inversely proportional t o  & and f n  i s  

d i rec t ly  proportional t o  6. On logarithmic plots these relation- 
ships are s t ra ight  l ines  of slope 1/2. Therefore, log and 
log f, were plotted as a function of log Pf fo r  the various 
methods used t o  evaluate 5 and fn, and a s t raight  l i n e  with the 
ideal  slope 1/2 was then drawn t o  give the best f i t  of the experi- 
mental points. The best-fit values given i n  table  I are points on 
these l ines ,  the equations f o r  which are 

Comparison of constants from a l l  methods and the best-fit theo- 
r e t i c a l  values show good agreement up t o  perhasps a sens i t iv i ty  of 
52 percent. k t  higher sens i t iv i t i e s  a l l  the values f o r  5 ,  as 
calculated from experimental data, remain i n  quite good agreement 
bu% they indicate a def ini te  departure from the theoret ical  fi 



relationship. The ri thods which depend on the closed-loop fre- 
quency response cannot be used beyond a sens i t iv i ty  of 63 percent 
because of saturation ef fec ts ,  but even a t  63-percent sens i t iv i ty  
both t ransient  and frequency--response methods indicate a change 
from the theoret ical .  

The departure a t  high sens i t iv i t i e s  from theore t ica l  behavior 
could be caused by e i ther  or both of two factors:  the reaction of 
the elevator linkage on the  servo response, and the backlash and 
f r i c t i o n  i n  the piston, valve, and follow-up uni t .  Both factors  
cause a decrease i n  5 below the theore t ica l  value. The ef fec t  of 
the elevator-control reaction, which becomes important only a t  high 
sens i t iv i t ies ,  w i l l  be presented i n  the section comparing bench and 
ground t e s t s .  The ef fec t  of backlash should be approximately the 
same a t  a l l  s ens i t iv i t i e s  since the amplitude of mechanical motion 
z t  resonant frequency was of the same order of magnitude a t  a l l  
sensitivities, any increase i n  amplitude r a t i o  a t  higher sensitiv- 
i t i e s  beiag ~1.pproximtely offset  by the reduced s t a t i c  deflection. 

The natural  ~iidamped frequencies fn, however, remain i n  f a i r l y  
good and consistent agreement over the  en t i r e  frequency range. 
Evidently the factors which cause a low value of 5 a t  high sensi- 
t i v i t y  e i the r  do not influence f, t o  an appreciable extent O r  

tend t o  compensate for  cach other,  

Open-loop servo system t ransfer  function.- The servwsystem response 
under-investigation &an be' expressed msthematical-ly i n  terms of a second-- 
order open-loo:@ response equakiion, or t ransfer  function, as 

where % represents the system gain m d  T the systemtims constant. 

It w i l l  bc shoxm thc t  the constants kv and T can be obtuinud 
from the constaslts and an which hove been determined previously. 
T l i ~  relationshi,p comes from the oquatioxrs given i n  reference 1, pages 
43-49. It should be noticed tha t ,  since each term i n  these equations 
represents a force, the variables should be expressed i n  units of 
motion, such as inches; then, since the s a e  constc;?t m,y be chosen 
r3la;l;ing motio:a and voltage f o r  both o ~ t p ~ ~ t  and error ,  the basic equa- 
t i o n  m y  be exprossed i n  terms of voltages RS shown. 



Letting d/dt = ju, then 

Comparing e q ~ ~ a t i o n s  (27) and (28) gives 

and 

Substitution f o r  values of 5 and f n  from equations (25) and (26) 
gives 

-1 kv = 61 F J ~  sec 

T = 0.070 sec 

Theoretically the open-loop plot of figure 26 may a lso  be used t o  
calculate the constants of equation (27). In  practice, however, T 
c m o t  be found by t h i s  method with any degree of accuracy. It m y  be 
eas i ly  demonstrated th8t the break frequency between the two asymptotes 
occurs when uT = I (reference 1, p. 238) from which T could be cal- 
c ~ ~ l a t e d ,  but as mentioned previously these asymptote8 are not determined 
suf f ic ien t ly  accurz,tely f o r  t h i s  calculation. 

The gain constant i n  equation ( 27) can be evalua.ted from the open- 
loop response by measuring the decibel gain from the cwve a t  a known 
frequ-ency aid solving f o r  k, as 

Evn lu~ t ion  of equation (31) i n  terms of n general sens i t iv i ty  gave 

A check lilay 31~0 be made on k, using the s t a t i c  calibrations pre- 
viously presented. Its valus czn be obtained from the re la t ion  
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which has dimensions of sec-1. The values of the f i r s t  three factors  
were found previously t o  be 

Pa = 0.29 f o r  minimum gain 

k, = 350 milliamperes per vol t  

- 0.05 inch/second 
km - milliampere 

hf = 14 -0 volt  s/inch 

Substituting these values i n  equation (32) gave a value of 

The resul tant  open-loop response f o r  equation (27) f o r  a minimm 
amplifier gain se t t ing  and based on the best-fit theore t ica l  values 
would then be 

The complete range of k, depends then upon actual  sens i t iv i ty  
and the amplifier gain set t ing.  A t  minimum gain (pa = 0.29) and with 
a sens i t iv i ty  of 24 percent (Pf = 0.24), kv = 15 sec-*'. A t  a high 
sens i t iv i ty  of 63 percent, kv = 38 sec-1. 

Comparison of experimental and theore t ica l  response curves.- For 
purposes of com?arison, an idea l  response f o r  a second-order equation 
corresponding t o  the damping r a t i o  and natural  f req~ency calculated i n  
tab le  I has beevl plot ted i n  f igure 27 with the actual ground-test 
experimental curves f o r  a sens i t iv i ty  of 33 percent. These ideal  curves 
may be calculated or taken from noz?dimensional curves given i n  many 
tex ts .  Two ground runs taken a t  different  times are presented t o  indi- 
cate the repeatabi l i ty  of the system. General agreement my be seen t o  
be quite good. 

Two defini te  e f fec ts  should be noted, however. F i r s t ,  ths  reaction 
of the elevator-controk-cable system on the servo response causes the 
experimental values t o  deviate appreciably from the theoret ical  a t  high 
frequencies. Second, the low-frequency phase s h i f t  fo r  ground t e s t s  
always approaches a constant value of 6' t o  lo0, as may be seen also i n  
the curves previously presented. This merely means tha t  6' t o  10' l ag  
between input and follow-up voltage is  required t o  produce a small e r ror  
s ignal  before the o u t p ~ ~ t  w i l l  move. This minimum er ror  voltzge required 
t o  moTJe the output i s  equcl t o  the value of input voltage when the 
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output i s  zero, t h ~ t  i s ,  V i  s i n  E f .  For an input of kO.115 vol t  and 
phase angle of so, t h i s  minimum voltage is  0.016 volt .  Fr ic t ion  i n  
the valve and piston i s  a probable source of t h i s  phenomenon. 

Experim~ntal response curves a t  other sens i t iv i t i e s  have been c o w  
pared t o  the theoret ical  responses with similar correlation as above. 
Agreement was found t o  depart a t  a sens i t iv i ty  of 63 percent which would 
be expected because it has already been shown tha t  the basic system con- 
s t m t s  5 and w, do not obey the second-order equation theory a t  t h i s  
:lnd higher sens i t iv i t ies .  

Comparison of bench md  ground tests.-  I n  general, the comparison 
of ground and bench t e s t s  might be expected t o  show s l ight  differences 
since a different s e t  of servo-system components was used f o r  the bench 
t e s t s .  In addition, i n  contrast t o  the ground t e s t s ,  no control linkage 
system was attached t o  the servo during the bench t e s t s .  Figure 28(a) 
shows the comparison of bench and ground t e s t s  fo r  a sens i t iv i ty  of 
24 percent. Several offects  are readi ly apparent. The ELrnplitude curves 
are s l igh t ly  different ,  which could be caused by a s l ight  difference i n  
the gain factor.  The dip of amplitude fo r  the ground t e s t s  around 5 cps 
is  the reaction of the  elevator controls as rhentioned previously. 
Purely on the basis of the comparative amplitude curves, the phase 
curve fo r  ground t e s t s  should be nec-,yly equal or s l ight ly  below thrzt for  
bench t e s t s  ir, midfrequencies. However, the ground curves have the 
greater lag, which m y  be the effect  of a greater loading of the servo 
i n  ground t e s t s .  Elevator-control reaction, again, causes the peaking 
ef fec t  around 5 cps on the phase curves which i s  absent i n  bench tes t ss ,  

A very informative comparison i s  shown i n  figure 28(b) f o r  the high 
sens i t iv i ty  of 63 percent. AS was pointed out i n  a previous section, 
the ground t e s t s  depzrted from theory a t  t h i s  sens i t iv i ty  z!nd this se t  
of curves indicates several causes. Table I shows thz t  the dmping 
r a t i o  should be about 0.31, but tha t  the value actually obtained fo r  
the ground t e s t s  wns 0.17. Applicrttion of preceding methods t o  the bench- 
t c s t  data revealed tha t  = 0.31, which i s  i n  agreement with the theo- 
r e t i c z l  value, Thus the explanation of the departure from the theoreti- 
c a l  value i n  grolz?d t e s t s  a t  high sens i t iv i t i e s  may be found i n  the  dif- 
ference between ground and bench t e s t s .  Two possible causes fire d i f fe r -  
ences i n  backlash of pistons, valves, or  follow-up units, and the reac- 
t i o n  of the elevator linkage system. 

Backlash i n  the piston, valve, or follow-up uni t  has the e f fec t  of 
c:~using a more unst3ble system or reduced (j. As mentioned previously 
i n  the t rcnsient  section, there wns sone indication of backlcsh i n  valve 
or piston. Trouble with follow-up backlash i n  ground t e s t s  and improve- 
ruents t o  minimize t h i s  have been mentioned under mechanical d i f f icu l t ies .  
The follow-up uni t  i n  bench t o s t s  was coupled d i rec t ly  t o  the servo 
shaft ,  thus avoiding linkages with consequent backlash. 



The second possible cause of the difference, elevztor-linkage reac- 
t ion,  would cppear t o  be the more importmt. The osci l lc t ions of the 
elcv2,tor linkage iiapose mechanical loads bock on the servo system which 
may affect  the servo output or  take up the backlash i n  the  system. A t  
low sensj-t ivit ies,  the natural  frequency of the linkage system i s  much 
higher than tha t  f o r  the servo system so t h a t  reactions are  nsgligible. 
Thus, a t  a sens i t iv i ty  of 24 percent, table  I shows tha t  f o r  the servo 
system f n  i s  equal t o  2.3 cps, which should be compared t o  a resonant 
frequency of 4.8 cps f o r  the linkage system as shown l a t e r .  A t  high 
sens i t iv i t i e s ,  however, the natural  frequency for  the servo system 
apyroaches tha t  for  the control system and hence reactions are  possible. 
A t  a sens i t iv i ty  of 63 percent, f n  f o r  the servo system equals 3.8, 
which i s  reasonably close t o  the value f o r  the linkage system. 

Calculation o' frequency response f o r  any value of sensit ivity.-  
whi.1eTrequency &sponses were obtained and presented f o r  only a few 
different  values of sensi t ivi ty ,  it is  possible t o  obtain the response, 
within the linefir range of operation, a t  any particular sens i t iv i ty  by 
d i rec t  calculation from a known response, This method is  useful f o r  
obtninlng intermedizte values t h a t  may be required f o r  the desired 
~irpl'me--a,utopilot response a d  for  comparing two runs taken a t  differ- 
ent sensitivities. The method developed is shown subseqt~ently and has 
the adva.ntage the t  the primary closed-loop frequency-response data, can 
be uscd d i rec t ly  t o  calculate the new frequency response a t  the new 
sensitivity. Thus it is not necesswy t o  convert closed-loop t o  open- 
loop dzta, change the sens i t iv i ty ,  and then change back t o  ths  new 
closed-loop response 2s i n  the conventionc?l method. 

For the given sensitivity condition 1, servo theory shows tha t  the 
closed-loop response or t ransfer  function nay be represented by 

where Al is -the open-loop t ransfer  function derived from the product 
of the individucl component t ransfer  functions P,P-,A,~~P~, fo r  se t t ing  
1 of Pf. For the new d8sired gain condition 2, 

It is convenient t o  define AR as  
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Substituting A from equation (36) in to  equation (35), thus eliminat- 
ing A29 

From equation (34)) 

which, when substi tuted in to  equation (37)> gives 

Vf 1 The r a t i o  - i s  the complex vector R1eJEf l .  
V 1 

Vfl 
Substituting t h i s  exp~ess ion  f o r  - i n  equation (38), 

vi 

-- = - 
V i  1 + R ~ ( A ~ - ~ )  cos Efl + j l ? x ( ~ ~ - l )  s i n  Er r  
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Separating in to  am?litude and phase components, 

L !" l2 + ~ ~ ( ~ ~ s - 1 )  s i n  Efl ! I 1 + R ~ ( A ~ - ~ I  cos i: i 

where A and B are the r e a l  and imagiiiary parts, respectively, of the 
denominat or of equation ( 39 ) . 

Autopilot Frequency Xesponse Wlth Displacement and Rate Signals 

Calculatior- of response with rate.-- E x ~ e r i m n t a l  data f o r  the 
r&s&ocse with both  displeckment &d r s t e  signals have already been pre- 
sentod f o r  a limited number of conditions. The response with r a t e  
s ignal  my also 3e calculated using the fraquency response of the servo 
sj~sto?n without r a t e  signal ma the frequency response of the r a t e  gyro. 
T h ~ ~ s  the response c3n be predicted fo r  any other desired combination of 
sens l t iv i tg  and r a t e  not covered by the experimental dda. 

Let A represent tlie complex gain PaA,P,,kpPf fo r  the tmplif i e r ,  
servo, and follow-LIP unit .  The closed-loop amplitude r a t i o  c m  then be 
wri t ten as  

where vfr snd v,, m e  the follow-up voltage and er ror  voltage, 

respectively, with combination displ:.,cement and r?ts signal.  The dis- 
placement gyro output v i n  t h i s  case corresponds t o  the input sig- 
ncul vi. g 

Il?le e r ror  voltcge vGr m y  bi. expressed as 

ver = vg " Vr "," Vf, (42) 



where vr is  the r a t e  signal. 

Substituting ver from equation (42) in to  equation (41) 

For thc s i tua t ion  with no ra te ,  vr/vg i s  zero, and 

Combining equations (43) 2nd (44)  

This gives the r a t e  response vf,/vg as  G function of the no-rite 

response vf/vg and the amount of r a t e  vr. Expanding equation (45) 
then gives 

Vf, 
- =  
v = R cos Ef -k R 

8 

from which magnitude 2nd phase are  eas i ly  obtainable as shown i n  pre- 
vious examples if vr is  known. 

Determinztion of rate-gyro signcz1.- The rate-gyro output voltzge 
and- phase, as a function of frequency, were given i n  f igurc 4, Thc rate- 
gyro output voltage is  e ~ s e n t i ~ l l y  proportional t o  r a t e  of cht~nge of 
angle. Thus, if the pitch rz te  gyro is  assumed t o  bc rocking with a 
mot ion, 

8 = Bmay s i n  w t  
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then 

de 
- = &rnX cos cu t  
d t  

= 2 ~ f e & ~ ~  cos ust 

vrm(t) = $fQ,, cos us% (48) 

where v is the r a t e  signs1 before modif iczt ion by the ra te  potentiom- 
Tra e t e r .  Tne f i n a l  r a t e  signal c f t e r  modifico.tion by tho r a t e  potentiometer 

whcrc Pr i s  tht: pcrccntngc rn te  used, or, i n  vector r-otation, 

From the dyncmic rssponsc curves presented i n  figure &(a) ,  it crtn 
be scen t h a t  kr is  essentially c. const?mt up t o  about 1.2 cps, zbove 
which resonanct; effects  begin t o  a3pear. A t  frequencies above the rmge 
f o r  which k, is constant, values of k g  my be obtained conveniently 
f rorn figure 4(c) f o r  use i n  calculations. The phase mgle  Er was 
constant a t  86' leading ovcr the rmge t e s t ed  up t o  2 cps. 

V ~ U G . ~  of vr from equation ( 49 ) were used i n  cquntion (46), using 
vizlues of k,f from f igturc 4 (3) . 

C~lculr?,Z;ion of e r ror  voltage with r a t e  signal.- Frequency rdsponses 
with r a t e  s i g n x  calculated by equction (46) assume l inear  servo ch~~rzc -  
t e r i s t i c s .  The c n l c ~ l ~ t e d  responses would be expocted t o  cgree with the 
experimentally determined responses only so  long as the error  voltage i n  
the  experimental r m s  did not exceed the l inear  range of the amplifier. 
The magnitude of the error  voltage with a r a t e  signal present can be cal- 
cula-ted as  follows: 

For the case with r a t e  signal, the basic error  expression i s  given 
i n  equation (42).  The value of displacement gyro voltage vg, which 
correspands here t o  the input signal, i s  known for  a given run. Tkz 

value of vf i s  given by R v e 
f r  g 

jEfr where R and ep a r e t h e  
r r r 

amplitude r a t i o  m d  phase angle, respectively, of the output v with f r  



respect t o  the input vg when the ve r t i ca l  and r a t e  gyros are osci l la ted 
s i~nultaneously on the rocking tab le  assembly. Substituting values of 
vfr from zbove and v, from equation (49) i n  equation (42) gives 

ver = "g 
- B v e J E f r  + ($f )BeJE' fr  g 

= [ vg - Rf v cos Ef + pr(krf)B cos er1 - r g r 

j [Rf,vg s i n  ' ~ f  - pr(krf)e s i n  ~r ] r 

The plots  of the mgnitude of the  e r ror  voltage given by equation (50) 
are shown i n  figure 23(a) f o r  the three ra tes ,  8, 20, and 31 percent. 
Agrcemnt of experimental rate-response curves with theoret ical  curves 
can be expected only up t o  an er ror  voltage, again, of 0.35 volt ,  above 
which saturation ef fec ts  occur. 

Comparison of calculated and measured resnonses.- The above calcu- 
la t ions,  of course, depend upon the no--rate response, Since the input 
s ignal  f o r  the r a t e  t e s t s  i s  obtained from an osc i l la t ing  &yro, whereas 
tho no-rate t c s t s  were mde with n s~mthe t i c  input s i p l ,  it was desir- 
-:ble, before at tsapt ing zny check betweeil calculated and experimentally 
determined responses with r a t e ,  t o  first compare the responses fo r  zero 
rlzte using the  rocking table  assembly with t h z t  using the sine-wave 
gemrator.  rlgrcement was found t o  be f a i r l y  good over the range tes tzd  
up t o  2 cps so tha t  t h i s  comparison i s  not shown. 

By the use of the zcro-rate response curve, then, the responses 
with r z t e  were calculated from equation (45) f o r  ra tes  of 8, 20, and 31 
porcent, and m e  shown i n  figure 23(a) with the srperimentizl resul ts .  
The expcrimsntrzl calculated responses are  i n  very good agreement up 
t o  the  nonli~eesr l eve l  of e r ror  voltage. 

Elevztor Control Cable Response 

From ds ta  previously presented, it i s  possible t o  determine the 
elevator-lir,B~ge-system chzrncteristics.  The surface response curves 
i n  f igurc 14(a),  f o r  e::amplc, represent the output of the elevator linlc- 
zge system; whereas i ts  input is  the servo output as shown i n  the stme 
f i g w e .  Thus the t ransfer  function f o r  the elevator linkage system m c y  
be conputed as the r rk io  of surfcce t o  servo response. This transfer- 
f u c t i o n  ampli.f;ude and phase f o r  the no-load conditicn is  shown i n  
f f g w e  29(;?);  whereas 29(b) shows the amplitude plotted i n  decibels 
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against frequency. The equation f o r  t h i s  type mechanical system is  
closely represented by a quadratic equation with dimensionless constants 
5 and mn with the same meanings as defined fo r  the servo system. The 
damping r a t i o  5 would appear t o  be l e s s  than 0.1 and f n  is about 
4.8 cps; high frequencies approach a slope of 12 db per octave which i s  
consistent with the second-power term of a quadratic factor.  It i s  t o  
be expected tha t  t h i s  character is t ic  should vary with the  surface load- 
in,?; so t h ~ t  the same procedure was apglied t o  a s e t  of maximum-load t e s t s .  
The resul tant  effect ,  plotted i n  figure 29(c), shows the character is t ic  
t o  be appreciably altered, i ts  resonant frequency sh i f t ing  t o  about 
6.5 cps. 

The known transfer  function f o r  the elevator-control linkage may be 
used t o  predict the surface response re la t ive  t o  amplifier input from 
the  servo response f o r  any desired combination of conditions, pravided 
th?k react ions of the elevct or-control linkage system do not appreciably 
a l t e r  the servo response. The surface response is  then simply the 
product of the servo- and linkage-system responses. 

The interaction of the elevator linkage system on t h s  servo--response 
character is t ic  is  appreciable c 2 t  the higher sens i t iv i t ies ,  par t icular ly 
i n  the m~3ighborhood of resonant frequency. (see f ig .  28. ) Howcver, a% 
the  lower sens i t iv i t i e s  and at %he lower frequencies, even a t  63-percent 
sens i t iv i ty ,  thc: interaction is not great anti the ~,bove procedure fo r  
predicting surface response i s  valid.  

The measured elevator linkage responsc applies, of course, only so 
long as the control-cr,ble tension is  unaltered. 

ANALYSES OF A1L;ERON AND RUDDER C M L S  

A simi1:xr ma lys i s  of the ai leron and rudder charnels wzs not under- 
taken. A. calculiatiox of e r ror  voltage, as plotted on the  correspor~ding 
frcqr~ency-respoase rms, showed the ai leron runs t o  reach s n t u r ~ t i o n  on 
a l l  sensi t ivi t ies ,  thus making the methods of c~~lc l f i s t ions ,  r s  discussed 
p re~ ious ly ,  invalid. For the prime purpose of these t e s t s  it was  orily 
necessary tha t  the s r r o r  v o l t ~ ~ g e  did not exceed the liiniting value of 
0.35 vol t  a t  frequencies below 2 cps. I f  an anzlgsis s i n i l a r  t o  tha t  

on the elovator channel were t o  be made on the ai leron or rudder 
chnnnels, the input signal would have t o  be made low enough t o  prevent 
the e r ror  voltzgc from reaching i t s  l imiting value a t  PBjr frequency. 
The rudderchanlnel dztn, i n  addition, were not zs smooth and consistent 
as i n  the case of the other channels becnuse of the dis tor ted response 
of the rudder. 



CONCLUDING REMARKS 

Frequency-respo-ise d3.to of the servo system f o r  various conditions 
of opcr-tion are  p r e s e ~ t e d  i n  use-ble form, and the equctio-i fo r  the 
servo system with experimentally determined vc7,lues i s  given. It i s  
show11 thz t  thc frequency response i s  somewhat be t te r  ,.;t high values of 
s ~ n s i t i v i t y  bec2use of s l ight ly  reduced phase log and amplitude r?.tio 
~t frequencies up t o  approxiwtely 2 cps. The ef fec t  of large input 
Blgnals is  t o  reduce the amplitude r a t i o  and materially increase the 
phase lag, as would be expected when the system becomes nonlinear due 
t o  sa tura t io~i .  The system response measured a t  the surface exhibits 
higher amplitude r a t ios  and greater phase lags than a t  the servo output 
shaft  due t o  resonmice of the  control-surface linkage system, but again 
the difference i s  not g r e a t ' a t  frequencies below 2 cps. 

Of greater concern when cons ider  ing the applica,tio-ti of tile auto- 
p i lo t  t o  an a i r ~ l m e  is  the e f fec t  of the loading from tho control- 
surfc~ce h i n g ~  moment. The servo-system frequency response is  not 
gre8tly changed by the addition of load, but the sctucal output ampli- 
tude a t  ths  surface i s  materially reduced under these conditions, due 
principally t o  s t re tch  i n  the control ceble. This fac t  must be taken 
in to  acco~m.1; when determining the required gearing, or s t a t i c  r a t i o  
of nut opilot output t o  input, fo r  a i r f ro-m-autopi l~ t  s t ab i l i t y .  While 
f l e x i b i l i t y  i n  the control linkage would generally be considered objcc- 
tionable, it X X L ~  bc noted t h ~ t  it docs have the beneficial  effect  of 
reduciilg thc 2utopilot gearing a t  the higher airspeeds where the control 
effectiveness I s  high. This inherent reduction i n  gearing at high speeds 
should a id  i n  imintaining s t a b i l i t y  of the rtutopilot-~irplme combination 
over 3 wide spccd range. 

On the SB2C.-5 airplane, the gearing i n  terms of control-surfncc; 
deflection per dcgrce of gyro incl inat ion i s  chmged by vzrying the 
sens i t iv i ty  ( follow--up) control. From the 6ata which have been proscntod, 
it i s  obvious t h s t  ch~nging the sens i t iv i ty  a l t e r s  the cutopilot dynamic 
chzracter is t lcs  as we13 as the character is t ics  of the autopilot-airplcie 
combinstion. The gearing could nlso be ch~nged by providing adjustablc 
cxcit?ction voltage f o r  the displacement gyro. This %rmigement would be 
more sakisfactory 3s it would permit adjustment of the gearing indepo;~d- 
e i l t l ~ ~  of the serve-system response. 

The optimu.m se t t ing  of sens i t iv i ty  or gain of the servo system i s  
detsrmined i n  p,zst by the response of the system t o  which it is  coupled. 
It is known thxt  the response of the SB2C-5 cirframe t o  forced oscil lc- 
t ions is negligible beyond 2 cps, While servo-systom design usuclly 
ca l l s  f o r  a penk-amplitude r a t i o  i n  the neighborhood of 1.4, t h i s  cr i te-  
r ion  docs not necess~x i ly  apply i n  t h i s  case. Larger peak values and 
correspocdingly lower damping r c t i o s  are tolerablz md  eve11 desirable 
I T ~ G Y I  the nn.tura1 frequency of the servo system i s  s e v e r r , l t i m s  tha t  of 
the short-period osc i l lz t ion  of the airframe because the higher pcak 



values are  accompanied by l e s s  phase lag  i n  the v ic in i ty  of the airframe 
ndcural frequency. Thus the sens i t iv i ty  or gain of the servo system 
should be s e t  as  high as possible without danger of incurring instabil-  
i t y .  

The servo system i n  general i s  considered t o  be well-designed since 
thsre  is  a considerable range over which it i s  s table  and the perform- 
ancz does not change greatly. The gyros, while probably adequate f o r  
the  SS2C-5 airplane, are not considered sui table  f o r  higher performance 
a i r c ra f t  due t o  gimbal f r i c t i o n  and e l e c t r i c a l  noise. Also, mechanical 
tolerances would have t o  be held more closely fo r  higher performance 
a.ircraft .  For the same reason an amplifier should be obtained that is  
not materially affected by changing tubes. 

The s u i t a b i l i t y  of t h i s  system fo r  controlling the SBX-5 airplane 
i n  f l i g h t  i s  the subject of fur ther  investigation. 

Ames Aeronautical Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Moffett Field, Calif .  
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TABLE 1.- SUMMARY OF CONSTANTS OF ELEVATOR-CHANNEL SERVO 
SYSTEM DETERMINED BY VARIOUS METHODS 

~-,..,- Damping ratio, Undamped natural frequency, 
"'-
~SGnsitivity 

Method ~ 24 33 42 52 63 24 33 42 52 - - - -

Closed-loop response 0.50 0.45 0.38 0.31 0.17 2.2 2.8 3.3 3.8 
4.1 

Open-loop response .67 - - .55 - - .- - 2.3 - - 2.9 - -

Transient response 
Minimum values .50 .42 .34 ·31 .16 2.2 2.6 2.3 3.2 
Maxim'LUD. values .52 .46 .36 -33 .17 2.3 2.9 2.9 3.8 

Best-fit theoretical curve .49 .42 .37 .33 .31 2.3 2 '7 • t 3.1 3.4 

fn 

63 

4.0 
4.2 

- -

3.5 
4.1 

3.8 

'1 



NACA RM SA50J05 

FIGURE ICEGENDS 

Figure 1.- Block diagram of one channel of autopilot. 

Figure 2.- Schematic diagram of one channel of autopilot signal cir-- 
cu l t s .  

Figure 3.- Ground t e s t  apparatus with osc i l la t ing  table.  

0 
Figure 4.- Frequency response of r a t e  gyros; 21 input. ( a )  Pitch. 

Figure 4.- Continued. (b)  Roll. 

Figure 4.- Concluded. ( c )  Yaw. 

Figure 5,-Response character is t ic  of r o l l  r a t e  gyro. 

Figure 6.- Calibration of ra.te gyros. ( a )  Pitch. 

Figure 6.- Concluded. ( b )  Roll. 

Figure 7.- Amplifier gain cha3 .ac te r i s t . i~~ .  

Figure 8 .- Valve and servo-actuator ' gain characteristic.  

Figure 9 ,- Calibration of sens i t iv i ty  potentiometers. 

Figure 10.- C e l i b r ~ ~ t i o n  of r a t e  potentiometers. 

Figure 11.- Surface hinge-moment simulator. 

Figure 12 .- Autopilot gearing character is t ics .  (a) Elevator channel. 

Figure 12.- Continued. (b)  Aileron channel. 

Figure 12.- Concluded. ( c )  Rudder channel. 

Figure 13 .- Effect of sens i t iv i ty  on elevator-chLwel frequency 
response; no load; C-0 .I15 volt ( ~ * 1 / 4 ~ )  input. (a) Servo response. 

Figure 13 .- Concludad. (b)  Surface response. 

Figure 14.- Effect of elevator linkage system on elevator-channcl fre- 
quency response f o r  v a r i o ~ ~ s  sens i t iv i t ies ;  no load; kO.115 vol t  
( 2 * 1 / 4 O )  input. (a)  Sensi t ivi ty ,  24 percent. 

Figure 14.- Continued, (b)  Sensi t ivi ty ,  42 percent. 

Figure 14.- Concluded. ( c )  Sensit ivity,  63 percont. 

Figure 15 .- Effect of load on elevator- channel frequency responsa ; 
W.115 vol t  (,"rt1/4°) input. (a) Sensi t ivi ty ,  24 percent; servo 
response, 
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Fig1-c 15 ,-- Cont iimed. (b )  Sensit ivity,  24 percent; surface response. 

Figure 15.- Coxtillusd. (c') Sensitivity,  42 percent; servo response. 

F i g u r ~  115 .- Concluded. (d) Sexsit ivity,  42 percent; surface response. 

F igure 16 .- E f  f ~ c t  of input signal amplitude on c:levator-channel 
frcqusncy respozse . (a )  Servo response; no load; sensitivity, 
26 percent. 

Flgure $5 .- Continued. (b) Surf ace response; no load; sensi t ivi ty ,  
26 percent. 

Figure 16 .- Colitinued. ( c )  Servo response; no load; sens i t iv i ty ,  
56 percent. 

Figure 16.- Coiitinued. ( d )  Surface response; no load; sensi t ivi ty ,  
56 perceilt. 

Fig.7.r-e 16.- Continued. ( e )  Servo response; maximum load; sens i t iv i ty ,  
41 percent. 

Figdre 16 .- Concluded. (f ) Surface response; maximum load; sensi t ivi ty ,  
41 perceist, 

P i g ~ r a  17.- Effect of sens i t iv i ty  on aileron-channel frequency response; 
no load; %I. 273 volt  ( */2O) input. . (a) Servo response. 

Figure 17.- Concluded. (b)  Surface response. 

Figurs 18.- Effect of load on aileron-cliannel frequency response ; 
k0.275 volt  (31/2O) input; sens i t iv i ty ,  44 percent. ( a )  Servo response. 

Figure 18.- Concludes. (b)  Surface response. 

Figure 1-9.- Effect of input s ignal  amplitude on aileron-cllannel 
frequency response; sens i t iv i ty ,  44 percent; no lo3d. 

Figwe 20.- Effect of sens i t iv i ty  on rudder-chamlel frequency response; 
no load; f0.25 volt  (%1/2O) input. ( a )  Servo response. 

Ftgwc 20 .- Concluded. (b)  Surface response. 

Figure 21.- Effect of load on rudder-chamel f requ~ncy response; 
-1-0.25 vol t  ( ~ K l . 1 2 ~ )  illput; sens i t iv i ty ,  41 percent. (a) Servo 
rzsponse . 

Figure 21 .- Concluded. (b )  Surf ace response . 
F igurc 22 .-- Effect of inpu.t signal nmplitude on rudder--channel 

frcqucncy responss; no load; sens i t iv i ty ,  41 percent. 



Figure 23.- Effect of r a t e  signal on elevator-cha~mel frequency response; 
9.113 vol t  (2+1/4 O) input; no load; sensi t ivi ty ,  24 percent. 
( a )  Servo response; experimental and calculated. 

Figure 23.- Concluded. (b) Surface response; experiraental only. 

Figure 24.- Effect of r a t e  signal on aileron-charulol f r eq~ency  response; 
expasinelltal response; k0.275 volt  ( ~51/2') input; no load; sensi- 
t iv i ty ,  4.4 p c r c e ~ t ,  

E'igurc 25.- Trmsieilt response of elevator channel. (a) Sensitivity,  
24 .oerccrl+. (b )  Sensi t ivi ty ,  42 percent. ( c )  Seiisitivity, 63 perceat . 

F5gure 26.- Open-loop servo frequency response of elcvatcr channel. 

Figwe 27.- Conparis011 of experimental ground t e s t s  and t l ieoret icsl  
clcvztor-chnrcticl scrvo frequcacy response; sens itivi.f;y, 33 percent. 

F-Lg-~rc 28 ,- Compnrisoi~ of bench and ground t e s t s  of elevator-chmnel 
sorvo frequeccy response. ( a )  Sensit ivity,  24 pcrcent . 

Piguro 28 ..-a Coack~dcd, (b )  Sensit ivity,  63 percent. 

Fj-gu-re 29 .- Traasfer flmction of elevator control linkage. (a) No load. 

Figurc 29 .- Coi1tin~:sd. (b)  Decibel amplitude rat io;  no load, 

Figire  29 .- Cor~cll.~d-cd. ( c )  Maximum load. 
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Figure 2.- Schematic diagram of one channel of autopilot s ignal  c i rcu i t s .  
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Figure 8.- Valve and servo-actuator gain characteristic a 



Figure 9.- Calibration of sens i t iv i ty  potentiomters.  
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(a) Elevator channel. 

Figure 12.- Autopilot gearing characteristics. 
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Frr uency, f, cps 9 

Servo response. 

Figure 13 .- Effect of sens i t iv i ty  on e l e v a t o r - c h ~ e l  frequency response; 
no load; +O . l l5  vo l t  (%+1/4O) input. 



(b )  Surf ace response. 

Figure 13,- Concluded. 



Figure 14.- Effect 

/ 

Fra uency ,  f ,  cps 9 

Sensi t ivi ty ,  percent. 

elevator linkage system f re- - 

quency response f o r  various sens i t iv i t i e s ;  no load; +0,115 vol t  
( % 1 / 4 O )  input. 
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( c )  Sensi t ivi ty ,  63 percent. 

Figure 14.- Concluded, 
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(a)  Sensi t ivi ty ,  24 percent; servo response, 

Figure 15.- Effect of load on elevator-channel frequency response; 
f 0,115 vol t  ( ~t1 /4O)  input. 
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Frs uency, f j  cps 9 

(b )  Sensit ivity,  24 percent; surf ace response. 

Figure 15.- Continued. 
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Sensitivity, 42 percent; response. 

Figure 15.- Continued. 



( d )  Sensi t ivi ty ,  42 percent; surf ace 

Figure 15.- Concluded. 
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( a )  Servo response; no load; sensi t ivi ty ,  26 percent. 

F igure 16 .- Effect of input s ignal amplitude on elevat or-cliannsl f re- 
quency response. 
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(b)  Surface response; no load; sens i t iv i ty ,  26 percent. 

Figure 16.- Continued. 
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( c )  Servo response; no 1.oad; sens i t iv i ty ,  56 percent. 

Figure 16. - C ont inued . 
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( d )  Surface response; no load; sens i t iv i ty ,  56 percent. 

Figure 16.- Continued. 
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( f ) Surface response; maximum load; s ens i t i v i t y ,  41 percent. 

Figure 16 .- Concluded. 



Servo response. 

Figure 17.- Effect of sensitivity on aileron-channel frequency response; 
no load; k0.275 volt (% t1/2') input. 



(b  ) Surf ace response. 

Figure 17.- Concluded. 
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(b) Surf ace response. 

Figure 18 .- Concluded. 



Figure 19 .- Effect of input s ignal  amplitude on aileron-channel f re- 
quency response; sensi t ivi ty ,  44 percent; no load. 
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Servo response. 

Figure X) .- Effect of sens i t iv i ty  on rudder-channel frequency response; 
no load; IY). 25 vol t  ( %1/p0) input. 
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(b) Surf ace response. 

Figure Concluded. 
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Frr uency ,  f, cps 9 

Figure 24,- ~ f f e c t  of r a t e  signal on aileron-channel frequency response; 
experimental. response; %I. 275 vo l t  (%k1/2°) input; no load; sensi- 
tivity, percent. 



(a )  Sensitivity,  24 percent. 

(b)  Sensi t ivi ty ,  42 percent. 

( c  ) Sensi t ivi ty ,  63 percent. 

Figure 25.- Transient response of elevator channe 
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Figure 26.- Open-loop servo frequency response of elevator channel. 
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Fre uency, f, cps f v 
(b) Sensitivity,  63 percent. 

Figure Concluded. 





(b)  Decibel amplitude rat io;  no load. 

Figure 29.- Continued. 
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Maximum 

29 .- Concluded. 




