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ABSTRACT 
 
Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth 
observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather 
prediction.  Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, 
and cloud information.  Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding 
Interferometer (IASI) measurements under “clear-sky” conditions.  Fast radiative transfer models, applied to the cloud-
free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval.  The 
inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has 
been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters.  
Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other 
impacted atmospheric and surface parameters.  Surface emissivity and surface skin temperature from the current and 
future operational satellites can and will reveal critical information on the Earth’s ecosystem and land surface type 
properties, which can be utilized as part of long-term monitoring for the Earth’s environment and global climate change. 
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1.  INTRODUCTION 
 
Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal 
critical information on the Earth’s ecosystem and land surface type properties.  The Earth Observing System (EOS) 
Aqua satellite with the Atmospheric InfraRed Sounder (AIRS) on board was launched on 4 May 2002.  Satellite 
ultraspectral data (such as from AIRS) has been shown to be significant to atmospheric research and monitoring the 
Earth’s environment1.  The Infrared Atmospheric Sounding Interferometer (IASI)2, on the Metop-A satellite3, launched 
on 19 October 2006, is the first of the advanced ultra-spectral resolution temperature, humidity, and trace gas sounding 
instruments being flown as part of the Initial Joint Polar System (IJPS) of POES (U.S. Polar Orbiting Environmental 
Satellites) and EPS (EUMETAT Polar System) programs, the precursor of the Joint Polar System (JPS) of National 
Polar-orbiting Operational Environmental Satellite System (NPOESS) and EPS operational satellites for the purpose of 
improved weather, climate, and air quality observation and forecasting.  Future satellite systems, such as the IASI on the 
European Metop-B and -C satellites and the Cross-track Infrared Sounder (CrIS) on the NPOESS Preparatory Project 
and the continuing series of NPOESS satellites, will continue to provide ultraspectral IR radiance observations that will 
be used for long-term monitoring for the Earth’s environment and global climate change. Long-term and large-scale 
observations needed for global change monitoring and other research can only be supplied by remote sensing4.  Surface 
emissivity retrieved from satellite ultraspectral IR measurements can be greatly beneficial but not limit the assimilation 
of hyperspectral resolution IR radiances in numerical weather prediction models, the climate simulation, and the surface 
temperature retrieval from other satellite broad-band measurements.  In this paper, a retrieval algorithm is briefly 
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described with samples demonstrating surface emissivity spectra retrieved from different surface types.  Global surface 
emissivity with a spatial resolution of 0.5×0.5 degrees of latitude-longitude are produced with temporal variation to 
indicate seasonal diversity of global land surface emissivity.  We demonstrate the emissivities rapidly retrieved with 
IASI satellite global measurements in conjunction with some initial retrieval analyses.  IASI is a Michelson 
interferometer with spectral coverage between 3.6 and 15.5 μm.  At nadir, the instrument samples data at intervals of 25 
km along and a cross track, each sample having a maximum diameter of about 12 km.  We are to demonstrate that 
surface emissivity from satellite measurements can be used in assistance of monitoring global change. 
 
 

2.  RETRIEVAL ALGORITHMS AND PERFORMANCE ANALYSIS 
 
The retrieval algorithm described herein only uses IR ultraspectral data; no other data from satellite or surface-based 
instruments nor from numerical weather analysis/prediction models is utilized in assisting or constraining the retrieval 
products.  The emissivity retrieval algorithm was initially developed with the NPOESS Airborne Sounder Testbed 
Interferometer (NAST-I)5 to retrieve emissivity EOF (empirical orthogonal function) coefficients using regression 
retrieval6,7.  The concept of retrieving emissivity EOF coefficients was later applied to the AIRS data with EOF 
regression8,9, followed by a physical retrieval10,11.  Global emissivity retrieval has been demonstrated previously by 
AIRS data.  As the regression retrieval is at least 50 times faster than channel based physical retrieval; it is worthwhile to 
re-evaluate emissivity retrievals to understand whether or not their accuracy is satisfactory in accurately producing other 
impacted geophysical parameters. 
 
The IASI fast transmittance model used herein is a combination of the Stand-alone AIRS Radiative Transfer Algorithm 
(SARTA)12 Version 1.07 and the physically-based cloud radiative transfer model based on the DIScrete Ordinate 
Radiative Transfer (DISORT)13 calculations performed for a wide variety of cloud microphysical properties14.  The 
retrieval algorithm used for IASI is based on that first developed and demonstrated with NAST-I using an EOF 
regression-training database that consists of 15,150 profiles obtained from the SeeBor database15.  The surface emissivity 
spectrum used with each training profile is randomly selected from a set of laboratory measured emissivity spectra for a 
wide variety of surface types16.  The cloud microphysical properties are also simulated.  A random number generator is 
used to specify cloud visible optical depth equally distributed within a pre-specified range.  A parameterization based on 
the balloon and aircraft cloud microphysical database17 is used to specify cloud effective particle diameter (De) from the 
cloud optical depth (τcld).  An iterative one-dimensional variational (1-d var.) multi-variable inversion using the 
minimum-information regularization method18 is used for obtaining the final retrieval in this system with emissivity 
obtained from the regression retrieval.  An all-season global EOF regression database is used to obtain the initial profile 
for the 1-d var. physical retrieval.  The physical iterative retrieval can effectively, but not fully, account for non-linearity 
and further improves retrieval accuracy from the initial profile produced by EOF linear regression.  The regression 
coefficients are still classified with respect to cloud-free and cloudy conditions.  The algorithm and other details are 
found elsewhere18,19.  The weighting functions (i.e., Jacobians) can be calculated by an analytical scheme or a numerical 
perturbation method.  The channels in these spectral regions can be used for temperature and water vapor profile 
retrieval6,18.  Detailed IASI retrieval algorithms including both regression and physical retrieval with case validation 
have been published recently elsewhere20. 
 
The emissivity is produced by the regression retrieval only and the rest of the retrieved parameters are further improved 
with a 1-d var. physical retrieval.  Minimal cross talks between parameters to be retrieved are inevitable even in physical 
retrieval (e.g., between the emissivity and the skin temperature as well as boundary layer temperature/moisture).  Since 
the emissivity is nearly linear, we chose to use retrieved emissivity from linear EOF regression, not further retrieved in 
physical iteration, in order to reduce the number of variables in the physical retrieval and to effectively finalize other 
non-linear parameters.  Based on our retrieval analyses over IASI global measurements, an improved regression 
algorithm has been introduced.  Several major modifications made to our previous algorithm are listed herein.  It is noted 
that some of them are made from our empirical experiences through retrieval simulation analyses and real data retrieval 
validations.  It involves more channels in the window regions, however the shortwave channels beyond 2220 cm-1 are 
not used to avoid solar effect that currently cannot be modeled accurately, especially for occasional sun-gleams into the 
sensor.  The solar zenith angle is included in the training and retrieval process to take care of the solar radiation which 
still has small but significant impact on the selected channel radiances for emissivity retrieval.  Figure 1 shows the 
retrieval channels currently used for regression and physical retrieval. 



 
 

 
Fig. 1.  Retrieval channels indicated over IASI spectrum: (a) 5410 channels used in the regression retrieval (i.e., regression 

channel: RC); (b) 1766 channels used in the physical retrieval (i.e., physical channel: PC). 
 
 
Retrieval analysis has been performed to assess the retrieval accuracy including surface parameters using SeeBor 
database for a dependent simulation.  Land surface parameters’ retrieval accuracies are improved with a more diverse 
contrast of surface skin and air temperature, especially over extreme hot and/or cold (e.g., desert and/or polar) regions.  
Land surface skin temperature in the SeeBor training database has been modified by 
 
   ′ T s = Ta + (Ts − Ta ) ×1.8, (1) 
 
where Ta and Ts are surface air and skin temperature, respectively.  
 
A surface emissivity function is used instead of emissivity in the retrieval in order to constrain retrieved emissivity 
spectrum (εν) within a boundary between   ε min  and  ε max .  We introduce an emissivity function  
 
     F(εν ) = log[log(ε min ) − log(ε max −εν )]  (2) 
 
to be used in the training and retrieval algorithm.  The  ε min  (i.e., 0.5) and  εmax  (i.e., 0.995) are preset to the best of our 
knowledge for surface emissivities.  Eigenvectors of F(εν) and associated amplitudes are generated and used in the 
regression equation.  The emissivity is computed later from the emissivity function F(εν) that is calculated from retrieved 
10 EOF amplitudes of F(εν).  It is worth mentioning that the emissivity is retrieved rapidly since the cloud detection and 
emissivity retrieval are done within the same EOF regression; the data volume is small since the emissivity is 
compressed in the EOF domain.  
 
Cloud detection criteria in the regression are re-investigated in order to provide accurate “cloud-free” single field-of-
view (SFOV) measurements.  Multi-stage regression retrievals are performed.  The first-stage involves mixed (i.e., clear 
and cloudy) regression.  The second-stage (e.g., either clear or cloudy) depends on the cloud detection criteria that are 
based on first-stage retrieved cloud parameters (i.e., Hc is cloud top height relative to surface, φ is cloud phase, and τcld is 
cloud visible optical depth).  The second-stage will use clear regression coefficients when the first retrieval satisfies 
these criteria 
 

1. Hc ≤ 2.5 km, and 
2. φ ≤ 0.5, and  
3. τcld ≤ 0.005,  

 



where φ = 0, 1, and 2 are for clear conditions, ice cloud, and water clouds, respectively.  Otherwise, the second-stage will 
use cloudy regression coefficients.  When the second-stage is using cloudy regression, an additional clear regression will 
be performed if one of three following criteria is met from the second-stage cloudy retrieval,  
 
 1. τcld ≤ 0.1,  
 2. Hc ≤ 2.0 km and τcld ≤ 0.2, and 
 3. Hc ≤ 2.5 km and τcld ≤ 0.3. 
 
Actually, it should be explained that so called “clear-sky” cases from this analysis are “cloud undetected.”  They can be 
either real clear or contain a minimal cloud fraction almost not interfering with the retrieval. 
 
Surface emissivity (ε) is often used as a constant (ε ≈ 1), especially over the water, in the retrieval process for satellite 
measurements due to lack of emissivity knowledge.  However, the emissivity is a function of wavelength (or wavenumber) 
and it deviates significantly from one over the land, especially over a desert or barren surface.  Research on the emissivity 
(or reflectivity) and measurements over different types of material samples commonly existing over the Earth’s surface 
have been conducted16.  Satellite measurements concur that surface emissivity contributes significantly to the total 
transmittance measured by the satellite instruments.  Samples shown in Figure 2 are for both day and night observations 
over the Sahara Desert.  Simulated spectral radiances from the retrieved parameters (i.e., atmospheric profiles, surface skin 
temperature and emissivity) are plotted in Figures 2a and 2c (red curves) in comparison with the measurements (blue 
curves).  Retrieved surface emissivity spectra are plotted in Figures 2b and 2d with IASI day and night observations, 
respectively.  If retrieved emissivity is replaced with a unity emissivity, the simulated spectra (green curves) in the window 
regions significantly deviate from the measurements.  This indicates that surface emissivity information is evident in the 
observations and it has to be taken into an account in order to accurately retrieve other surface and atmospheric parameters.  
 
 

 
Fig. 2.  Samples of surface emissivity retrieved over Sahara Desert from both day and night.  Radiance simulations with 

retrievals are compared with the measurements (see text). 
 
 
It is worth mentioning that, in the radiative transfer equation under clear-sky conditions, channel radiance Iν at a certain 
wavenumber is computed by 
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 (3) 

 
where     Iν ,  εν ,  Bν ,  Ts ,  τ ν (z1,  z2),  z s,  T(z),  ρν ,  ρν

solar ,  H ,  θ ,  τ ν
b  are observed spectral radiance, spectral emissivity, 

spectral Planck function, the surface temperature, spectral transmittance from altitude z1 to z2, sensor altitude, spectral 
surface reflectivity, spectral solar reflectivity, solar irradiance, solar zenith angle, and two-path transmittance from the 
Sun to the surface to the satellite respectively.  Here, diffused reflection is assumed; the spectral solar reflectivity and the 



spectral surface IR thermal reflectivity are assumed to be a function of surface emissivity, such as     ρν
solar = (1−εν ) / π  and 

  ρν = (1−εν ) , respectively.  Because of the lack of these parameters, the above assumptions are used based on the best of 
our knowledge.  However, they are not realistic and introduce emissivity retrieval errors, especially during the daytime, 
while additional solar radiation needs to be taken into an account.  These retrieval errors, including “ill-posed” retrieval 
uncertainties of atmospheric thermodynamics parameters, are indicated in the simulated radiances as shown in Figure 2 
(i.e., the difference between measured and retrieval simulated spectra). 
 
Retrieval accuracy can be estimated by taking advantage of radiative transfer model simulation in obtaining synthetic 
observed radiances.  The truth profile (i.e., the radiosonde observation) is known and the retrieval can be directly 
compared with the truth to define retrieval accuracy due to (1) instrumental noise, and (2) retrieval error introduced by 
the so-called “ill-posed” retrieval model.  The disadvantage of this approach is that errors in the forward radiative 
transfer model are not included (e.g., the correlation assumed between emissivity and reflectivity).  However, detailed 
validation in estimating both forward and inversion model errors can be fulfilled with dedicated field campaigns.  
Atmospheric conditions are coincidently captured by multi-instruments from both ground and aircraft validation sites9,21, 
where dedicated coincident radiosondes were launched under satellite overpasses for a reasonable period of time22,23.  
This atmospheric profile retrieval is a solution of an “ill-posed” problem and its retrieval accuracy is measurement or 
scene dependent.  Thus, it is important to estimate retrieval accuracy through globally synthetic simulations, intensive 
field campaigns, and validations.  The retrieval accuracy analysis with a SFOV retrieval algorithm reported here has 
been performed through synthetic simulations with IASI instrumental noise over a global dataset for both cloud-free and 
cloudy conditions.  A test dataset is used to simulate IASI observations for physical retrieval performance analysis.  It is 
noted that this kind of error analysis is dependent on the test dataset; however, the analysis can be done over a large set 
of samples to minimize the bias of the test dataset.  Since the absolute retrieval error is observation or scene dependent, 
retrieval accuracy is represented by the mean difference (i.e., bias) and the standard deviation of the error (i.e., STDE) 
over a global dataset.  The key thermodynamic parameters, such as atmospheric temperature profile, moisture profile, 
surface skin temperature and emissivity (for cloud-free cases) or cloud microphysical parameters (for cloudy cases), are 
used to indicate retrieval accuracy over a global dataset.  Detail analysis outcomes have been reported on retrieval 
accuracy for both clear and cloudy conditions20.  
 
The emissivity assigned to each training profile is randomly selected from a laboratory measured emissivity database, 
indicated in Figure 3a, and has a wide variety of surface types suitable for different geographical locations.  The vertical 
bars show the emissivity STD for this dataset.  The emissivity assigned to the training data is not realistic as the effective 
surface emissivity is to be retrieved from the satellite measurement, however the training data are what we hoped to 
cover the combination of the Earth surface emissivity.  It is noted that the outcomes from simulation analysis only give 
us a very rough estimation.  Estimated surface emissivity retrieval accuracy, the mean difference (or bias) in curve and 
the STDE in vertical bars shown in Figure 3b, is training data dependent.  In other words, we should evaluate the 
emissivity accuracy accordingly in conjunction with the emissivity training variability in the emissivity sensitive regions 
(i.e., window regions).  Emissivity is retrieved in conjunction with skin temperature, and atmospheric profiles of 
temperature and moisture.  Since the skin temperature is one of the most “coupled” parameters with emissivity, it is 
necessary to mention that skin temperature retrieval accuracy has a -0.07°K bias with a 0.84°K STDE from the same 
analysis.  It should be  mentioned that the shortwave region has a relatively poor accuracy, which is due to a higher noise 
level and fewer window channels than that in the longwave region; also the retrieval accuracy is not reliable in the 
opaque regions as hardly any surface information is contained there. 
 
 

3.  GLOBAL LAND SURFACE EMISSIVITY 
 
Global land surface emissivities are retrieved from IASI measurements.  The retrievals, limited to IASI FOV, are 
effective surface emissivities due to non-homogeneous scenes.  In other words, the effective surface emissivity can be a 
combination of all possible materials within the FOV.  Due to cloud coverage, not every measurement can provide 
surface parameters; however, the surface parameters can be retrieved under optically thin clouds but with relatively poor 
accuracy in comparison with that retrieved under clear-sky conditions18.  The composition of the surface emissivity can 
be assembled over a period of time and area.  A set of retrievals is used to generate a convoluted surface emissivity.  
Single retrievals within a spatial grid (area) meeting the following criteria will be taken to generate a convoluted 
emissivity.  These criteria are  



 
 1.     τ cld < 0.5 , and  
 2.     (Ts −σ t ) < Ts < (Ts +σ t ), and  
 3.     ( AF1 − σ F1) < AF1 < ( AF1 + σ F1) , and 
 4.     N > 4,  
 
where     Ts,  σ t ,  AF1,  AF1,  σ F1,  and N  are Ts mean, Ts STD, first EOF amplitude of F(ε), AF1 mean, AF1 STD, and the 
number of SFOV measurements satisfying criteria 1-3, respectively.   
 
 

 
Fig. 3.  (a) The mean surface emissivity spectrum for a set of laboratory measured emissivity spectra for a wide variety of 

surface types suitable for global geographical location.  The vertical bars show the STD of the emissivity for this 
dataset.  (b) Estimated surface emissivity retrieval accuracy through IASI simulation with a global database; the curve is 
the mean difference and the vertical bars are the STDE of the retrieved emissivity against the truth (see text). 

 
 
With a spatial resolution of 0.5×0.5 degrees of latitude-longitude, monthly-convoluted land surface skin temperature and 
emissivity are shown in Figures 4 and 5, respectively.  As the emissivity is a function of wavenumber (or wavelength), 
two selected frequencies at 950 cm-1 (or 10.5 μm) and 1250 cm-1 (or 8.0 μm) are plotted in Figures 5a and 5b, 
respectively.   
 
 

 
Fig. 4.  Monthly-convoluted (July 2007) land surface skin temperature from IASI retrievals.  Notice that white areas were 

covered with clouds. 
 
 



The surface emissivities reflect the Earth’s types and environment including ecosystem health that plays an important 
role in understanding the impacts of climate changes and human activities on altered degradation, biodiversity, and 
ecosystem sustainability. Principal deserts, such as Sahara (Northern Africa), Kalahari and Namib (Botswana, South 
Africa, Namibia, and Angola), Taklamakan and Gobi (China and Mongolia), Great Basin and Mojave (US), Sonoran 
(US and Mexico), Atacama (Chile), and Patagonian (Argentina), and Australian deserts, are identified on the emissivity 
map shown in Figure 5.  The world’s desert can be divided into four categories.  Subtropical deserts are the hottest, with 
parched terrain and rapid evaporation.  Although cool coastal deserts are located within the same latitudes as subtropical 
deserts, the average temperature is much cooler because of frigid offshore ocean currents.  Cold winter deserts are 
marked by stark temperature differences from season to season, ranging from ~311°K (100°F) in the summer to ~261°K 
(10°F) in the winter24,25.  Polar regions are also considered to be deserts because nearly all moisture in these areas is 
locked up in the form of ice.  Satellite derived effective land surface emissivity can be used to assist monitoring global 
change over interested regions such as deserts which generally receive less than ten inches of precipitation a year or the 
potential evaporation rate is twice as great as the precipitation.  Other regions can also be interesting, such as the regions 
covered by sea ice and glacier.  
 
 

 
Fig. 5.  Monthly-convoluted (July 2007) IASI emissivities at 950 cm-1 (10.5 μm) and 1250 cm-1 (8.0 μm). 

 
 
To demonstrate emissivity temporal variation, 2 months worth of data (July and August 2007) are used to produce 10-day 
convoluted emissivity maps; samples at 10.5 μm and 8.0 μm are shown in Figures 6 and 7, respectively.  The American 
continent is focused on for clarity; the changes of surface emissivity can be seen.  These changes, through a 2-month 
period, are mainly due to seasonal variation and weather conditions (e.g., temperature and rainfall).  
 
 

 
Fig. 6.  Temporal variation of 10-day convoluted IASI emissivities at 950 cm-1 (10.5 μm).  Notice that white areas were 

covered with clouds. 
 
 



 
Fig. 7.  Same as Figure 6 but at 1250 cm-1 (8.0 μm). 

 
 
Semi-annual variation is also shown in Figure 8 in order to demonstrate the emissivity contrast between summer and 
winter.  The North American continent is focused on for clarity; Figure 8 shows the monthly-convoluted emissivities 
retrieved from July 2007, January 2008, and their differences between these 2 months at a selected frequency.  
Relatively speaking, the smaller or larger effective emissivity denotes more or less barren land during the winter or 
summer.  As shown in Figure 8c, a higher or lower emissivity over the Great Basin or the Great Plains is expected 
because of the snow/ice or barren land (i.e., soil) during the winter season.  This implies that global land surface 
emissivities derived from satellite IR ultraspectral data can be used to capture the change of land surface property, thus 
having great value in monitoring of the Earth’s environment and global change. 
 
 

 
Fig. 8.  Semi-annual emissivity variation at 950 cm-1 (10.5 μm): (a) and (b) are monthly-convoluted IASI emissivities of 

July 2007 and January 2008, respectively, and (c) is the emissivity difference between July 2007 and January 2008. 
 
 
It should be mentioned that the random error of convoluted emissivity over a certain period of time and area is smaller 
than that from a SFOV (shown in Figure 3).  This depends on the number of SFOV emissivity spectra used for one 
convoluted emissivity spectrum.  For example, there could be up to a few hundred SFOV measurements for one month 
over an area of 0.5×0.5 degrees of latitude-longitude if all these measurements are under “clear-sky” conditions.  The 
convoluted emissivity has its random error reduced by the square root of the number of “clear” measurements, 
depending on the cloudiness over that period of time and area.  However, detailed error estimation needs to be 
investigated along with validation. 
 
 

4.  SUMMARY AND FUTURE WORK 
 
A state-of-the-art retrieval algorithm, dealing with all-weather conditions, has been developed and applied to IASI 
radiance measurements.  Surface emissivity is rapidly retrieved using the multi-stage linear EOF regression.  The 



seasonal variation of global land surface emissivity derived from satellite IR ultraspectral data is evident.  This retrieval 
process is so fast that it can provide near-real-time result that is desired by the numerical weather prediction (NWP) 
model analysis using IR hyperspectral simulations26. Results from IASI retrievals indicate that surface emissivity is 
retrieved with satellite IR ultraspectral data to capture different land surface type properties that contain useful 
information on the terrestrial ecosystem health and reflect on the biosphere’s response to proximal climatic factors (such 
as temperature and rainfall) and human activities.  Operational global satellite data, such as that from IASI and CrIS, are 
and will be available for deriving this kind of product.  In conjunction with other satellite products, these can provide 
information for monitoring the Earth’s environment and global change as well as the study of ecosystem health that 
plays an important role in understanding the impact of climate change and human activity on altered degradation, 
biodiversity, and ecosystem sustainability.  Global land emissivity data compressed in EOF domain can be generated for 
science community research and other uses.  Retrieved emissivity validation will be focused on for providing more-
definitive accuracy of the emissivity products.  The training database will be improved to include more diverse profiles 
for cloudy conditions.  Criteria for cloud detection will be further enhanced through analysis and validation.  Algorithm 
improvements, along with its product validation, will be made and applied to current and future satellite instruments to 
provide data for long-term monitoring of the Earth’s environment and global change.  
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